Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Революционная разработка»: в чём уникальность российской космической ядерной установки

«Революционная разработка»: в чём уникальность российской космической ядерной установки

Российские учёные успешно испытали систему охлаждения ядерной энергодвигательной установки мегаваттного класса. Об этом сообщается в акте приёмки, размещённом на сайте госзакупок. В документе подчёркивается, что «работы выполнены в полном объёме, результаты соответствуют требованиям технического задания».

«Были выявлены закономерности функционирования элементов и узлов перспективных систем отвода тепла ЯЭДУ мегаваттного класса в наземных условиях, максимально приближенных к условиям космического пространства», — говорится в акте.

В документе уточняется, что специалисты изготовили и испытали экспериментальные образцы генератора капель, элементов заборного устройства (гидросборника) и модели капельного холодильника-излучателя (КХИ).

Разработкой КХИ занимаются ФГУП «Исследовательский центр им. Келдыша», Центр космических технологий Московского авиационного института, ОАО «РКК «Энергия» им. Королёва» и Московский энергетический институт.

ЯЭДУ — перспективный двигатель для космических аппаратов, который позволит совершать межпланетные полёты в несколько раз быстрее, чем сейчас. С его помощью Россия получит возможность проводить исследования Луны, Марса, дальних планет Солнечной системы и создавать там автоматические базы.

«Принцип работы ЯЭДУ заключается в том, что компактный ядерный реактор вырабатывает тепловую энергию, которая с помощью турбины преобразуется в электрическую. Она нужна для того, чтобы питать энергией ионные электрореактивные двигатели и оборудование», — пояснил в беседе с RT младший научный сотрудник НИИ ядерной физики им. Скобельцына МГУ Василий Петров.

Не имеет аналогов в мире

На современных двигателях низкопотенциальное (избыточное) тепло, которое может повредить бортовую аппаратуру, выводится в окружающее пространство (космос) через трубы панельных радиаторов, где циркулирует жидкость-теплоноситель. Такая система охлаждения представляет собой громоздкую конструкцию, не защищённую к тому же от попадания метеоритов.

Российские учёные изобрели принципиально новую схему отвода тепла. С помощью генератора холодильник-излучатель формирует капельные струйки горячего теплоносителя, который охлаждается на пути к гидросборнику и, собираясь в нём, направляется снова в рабочий контур. Подобная технология не предусматривает использования труб и таким образом облегчает конструкцию системы охлаждения.

«Успешное испытание системы охлаждения означает, что российским учёным удалось решить ключевую проблему на пути создания ЯЭДУ. Дело в том, что у атомной силовой установки один большой недостаток — она очень сильно нагревается. Если на Земле ядерный реактор охлаждается под напором воды, то в космосе такая возможность отсутствует», — сказал Петров.

Инициатором создания ЯЭДУ считается академик отделения физико-технических проблем энергетики РАН, бывший генеральный директор ФГУП «Исследовательский центр им. Келдыша» Анатолий Коротеев. Головной разработчик атомной энергодвигательной установки — Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля (НИКИЭТ).

Создание ЯЭДУ ведётся в рамках запущенного в 2010 году проекта транспортно-энергетического модуля (ТЭМ), над которым работают предприятия «Росатома» и «Роскосмоса». Согласно графику комиссии по модернизации при президенте РФ, опытный образец ядерного реактора мегаваттного класса должен появиться до конца 2018 года. В материалах «Росатома» подчёркивается, что данный проект не имеет аналогов в мире.

«Реализация этого проекта позволит на базе уже имеющегося задела поднять отечественную технику на принципиально новый уровень, во многом опережающий зарубежные разработки», — заявил в октябре 2009 года на заседании комиссии по модернизации глава «Роскосмоса» (в 2004—2011 годах) Анатолий Перминов.

Как сообщил ранее генеральный конструктор НИКИЭТ доктор технических наук Юрий Драгунов, в основу ЯЭДУ лёг накопленный с 1960-х годов опыт создания ядерных ракетных двигателей, термоэлектрических энергоустановок и эксплуатации всевозможной космической техники. Мощность первого образца ядерной энергодвигательной установки он оценил в 1 МВт.

Однако, как заявил Драгунов, в недалёком будущем Россия сможет производить 10-мегаваттные установки, «что подразумевает практически неограниченные возможности энергетики для космоса». По его словам, ЯЭДУ будет обладать более высоким коэффициентом полезного действия, так как тепловая энергия реактора не будет направляться на разогрев газовой смеси.

В процессе работы над космической атомной установкой специалисты ФГУП «НИИ НПО «Луч» (Подольск) впервые в мире разработали промышленную технологию создания монокристаллических длинномерных трубок из тугоплавких металлов (молибден, вольфрам, тантал, ниобий) и сплавов. Данное изобретение позволяет изготавливать агрегаты двигателей, способных работать при температуре 1500 °C.

«Очень востребованные разработки»

Василий Петров рассказал, что достижения при разработке ЯЭДУ и ТЭМ позволят создать управляемый с Земли необитаемый космический аппарат, который сможет быстрее и эффективнее транспортировать различные грузы на другие планеты и выполнять функции межорбитального буксира. Сегодня для аналогичных целей используется разгонный блок «Фрегат».

«Надо понимать, что «Фрегат» — это одноразовый аппарат, расходующий гигантское количество топлива. После выполнения своей задачи он сгорает. Конечно, это недешёвое удовольствие. Гораздо экономичнее иметь в космосе многоразовое транспортное средство, которое человек будет использовать по необходимости, причём на протяжении десятков лет. Это будет по-настоящему революционная разработка», — пояснил Петров.

Как полагает эксперт, ядерная энергодвигательная установка не несёт опасности для окружающей среды. Отработавший свой ресурс реактор может быть отправлен на «орбиту захоронения», куда уводятся аппараты после выхода из строя. Также Петров не исключает, что через десятки лет человечество изобретёт технологию утилизации ЯЭДУ.

«Создание компактных мощных ядерных реакторов и прогресс в системах охлаждения наверняка окажут серьёзный положительный эффект на развитие промышленности и экономики России. Это очень востребованные разработки в сфере энергетики, которые должны найти применение в самых разных сферах», — отметил Петров.

В беседе с RT военный эксперт Юрий Кнутов предположил, что ЯЭДУ и научно-технический прогресс, связанный с его изобретением, могут заинтересовать Минобороны РФ. По его мнению, технологический рывок, который совершили российские учёные, применим для совершенствования электромагнитного оружия, а также источников энергии для нужд ВКС и ВМФ.

«Ядерная энергия вполне может использоваться при разработке оружия с электромагнитным импульсом и как источник питания для различных средств разведки. Также эти наработки пригодятся для создания более эффективных и простых в эксплуатации морских силовых установок. Речь идёт о «вечном» ядерном реакторе с ресурсом на весь жизненный цикл атомной подлодки», — заявил Кнутов.

Эксперт также отметил, что в ближайшее время не стоит ожидать создания межпланетного корабля из-за невозможности на данный момент обеспечить 100%-ную защиту человека от солнечной радиации на расстоянии свыше 500 км от Земли. Кроме того, вспышки на Солнце будут пагубно влиять не только на экипаж, но и на электронику.

«Пока говорить о возможности создания корабля с ЯЭДУ преждевременно. Чтобы защитить экипаж, ему потребуется свинцовый корпус толщиной несколько метров. В итоге корабль будет громоздким и чрезвычайно дорогим. Конечно, никто в это вкладывать деньги не будет. Но прогресс не стоит на месте. С изобретением лёгкого прочного средства защиты перед Россией и человечеством откроются действительно невероятные перспективы», — резюмировал Кнутов.

Читать еще:  Двигатель b47 bmw характеристики

Без ограничений по дальности: что такое ракета с ядерным двигателем

Российские военные успешно испытали крылатую ракету с ядерной энергетической установкой. Дальность ее полета на дозвуковой скорости не ограничена. Такие изделия способны на низкой высоте обходить районы противовоздушной и противоракетной обороны, с высокой точностью уничтожая объекты противника. О появлении новинки сообщил президент России Владимир Путин в своем послании Федеральному собранию. По мнению экспертов, эти системы относятся к оружию сдерживания. Они используют для перемещения воздух, нагретый ядерной энергетической установкой.

По информации специалистов, речь идет об изделии с индексом 9М730, разработанном ОКБ «Новатор». В угрожаемый период такие ракеты можно поднять в воздух и вывести в заданные районы. Оттуда они смогут ударить по важным объектам противника. Испытания новинки идут достаточно активно, и в них принимают участие летающие лаборатории Ил-976.

— В конце 2017 года на Центральном полигоне Российской Федерации состоялся успешный пуск новейшей российской крылатой ракеты с ядерной энергоустановкой. В ходе полета энергоустановка вышла на заданную мощность, обеспечила необходимый уровень тяги, — заявил в своем выступлении Владимир Путин. — Перспективные системы вооружения России основаны на новейших уникальных достижениях наших ученых, конструкторов, инженеров. Одно из них — создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз — в десятки раз! — большую дальность полета, которая является практически неограниченной. Низколетящая, малозаметная крылатая ракета, несущая ядерную боевую часть, с практически неограниченной дальностью, непредсказуемой траекторией полета и возможностью обхода рубежей перехвата является неуязвимой для всех существующих и перспективных систем как ПРО, так и ПВО.

В представленном видеосюжете зрители смогли увидеть запуск уникальной ракеты. Полет изделия был запечатлен с борта истребителя сопровождения. Согласно представленной далее компьютерной графике, «ядерная ракета» облетела зоны морского ПРО в Атлантике, обошла с юга Южную Америку и ударила по территории Соединенных Штатов со стороны Тихого океана.

— Судя по представленному видео, это ракета либо морского, либо сухопутного базирования, — рассказал «Известиям» главный редактор-интернет проекта MilitaryRussia Дмитрий Корнев. — В России есть два разработчика крылатых ракет. «Радуга» производит только изделия воздушного базирования. Наземные и морские — в ведении «Новатора». На счету этой фирмы — линейка крылатых ракет Р-500 для комплексов «Искандер», а также легендарные «Калибры».

Не так давно в открытых документах ОКБ «Новатор» появились упоминания о двух новых изделиях — 9М729 и 9М730. Первое — это обычная дальнобойная крылатая ракета, а вот про 9М730 ничего не было известно. Но это изделие явно находится в стадии активной разработки — по данной тематике на сайте госзакупок размещено несколько тендеров. Поэтому можно предположить, что «ядерная ракета» — это и есть 9М730.

Как отметил военный историк Дмитрий Болтенков, принцип работы ядерной энергетической установки достаточно прост.

— По бортам ракеты находятся специальные отсеки с мощными и компактными нагревателями, работающими от ядерной энергоустановки, — отметил эксперт. — В них попадает атмосферный воздух, который нагревается до нескольких тысяч градусов и превращается в рабочее тело двигателя. Вытекание горячего воздуха создает тягу. Такая система действительно обеспечивает практически безграничную дальность полета.

Как заявил Владимир Путин, испытания новинки прошли на Центральном полигоне. Этот объект расположен в Архангельской области в поселке Ненокса.

— Это историческое место испытания дальнобойного оружия, — отметил Дмитрий Болтенков. — Оттуда маршруты ракет проходят вдоль северного побережья России. Их протяженность может доходить до нескольких тысяч километров. Для снятия телеметрических параметров с ракет на таких расстояниях нужны специальные самолеты — летающие лаборатории.

По словам эксперта, не так давно были восстановлены два уникальных самолета Ил-976. Это специальные машины, созданные на базе транспортного Ил-76, долгое время использовались для испытания дальнобойного ракетного оружия. В 1990-е годы они были законсервированы.

— В сети Интернет были опубликованы фото Ил-976, перелетевших на аэродром вблизи Архангельска, — отметил эксперт. — Примечательно, что машины несли эмблему «Росатома». В это же время Россия выпустила специальное международное предупреждение NOTAM (Notice to Airmen) и закрыла район для судов и самолетов.

По мнению военного эксперта Владислава Шурыгина, новая «ядерная ракета» — это не наступательный боевой комплекс, а оружие сдерживания.

— В угрожаемый период (обострение обстановки, как правило, предшествующее началу войны) российские военные смогут вывести в заданные районы патрулирования эти изделия, — отметил эксперт. — Это позволит предотвратить попытки противника нанести удар по России и ее союзникам. «Ядерные» ракеты смогут выполнить роль оружия возмездия или нанести превентивный удар.

Вооруженные силы России располагают несколькими линейками дозвуковых низковысотных крылатых ракет. Это Х-555 и Х-101 воздушного, Р-500 наземного и 3М14 «Калибр» морского базирования.

Двигателестроение

текст Владимир Тесленко , кандидат химических наук

Россия — абсолютный мировой монополист в разработке энергодвигательной установки с ядерным реактором мегаваттного класса.

Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки (ЯЭДУ) мегаваттного класса выполняется совместно предприятиями Росатома и Роскосмоса в соответствии с решением, принятым в 2009 году президентской комиссией по модернизации. Не имеющая аналогов энерготранспортная установка позволит создать качественно новую технику высокой энерговооруженности для изучения и освоения дальнего космоса. Новый проект предполагает использование ионных электрореактивных двигателей, в которых реактивная тяга создается за счет ускоренного электрическим полем потока ионов. При использовании космических ядерных энергоустановок можно приступить к решению таких задач, как полет на Марс, детальные исследования планет и их спутников, промышленное производство в космосе. Также можно будет заниматься очисткой околоземного космического пространства от космического мусора, бороться с астероидной опасностью, создавать на планетах автоматизированные базы.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики — высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении. Они не могут не впечатлять специалистов из других стран, в первую очередь США.

Тайный проект

ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.

Проблема радиационной безопасности решается теневой защитой — реактор закрывают только с одной стороны, с той, где расположено оборудование и полезный груз. Излучение может свободно распространяться во все остальные стороны, там нет ничего, кроме космической пустоты. Так можно существенно сэкономить на весе защиты.

Читать еще:  Двигатель n04c технические характеристики

рис.01 Компоновка ЯЭДУ. Транспортно-энергетический модуль

Масса кг 20290
Габаритные размеры (рабочее положение), м 53,4-21,6-21,6
Электрическая мощность ЭБ, МВт 1,0
Удельный импульс ЭРД, км/с не менее 70,0
Мощность ЭРД, МВт не более 0,94
Суммарная тяга маршевых ЭРД, Н не менее 18,0
Ресурс, лет 10
Средство выделения РН «Ангара-А5»

    Назначение
  • межорбитальная буксировка полезной нагрузки
  • передача на полезную нагрузку энергии (до 225 кВт)

Главным конструктором реакторной установки и координатором работ от Росатома является НИКИЭТ — Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля.

С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США таб. 01 .

По состоянию на июль 2015 года в НИКИЭТ уже защищен технический проект активной зоны — ключевого элемента ядерного реактора. В конце года планируется защитить технический проект всей реакторной установки.

С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.

Сейчас в двух центрах — Институте реакторных материалов в городе Заречном Свердловской области и Научно-исследовательском институте атомных реакторов в Димитровграде — проходят испытания тепловыделяющих элементов (твэлов). Они разработаны в Физико-энергетическом институте им. А.И. Лейпунского (Обнинск), а изготовлены в прошлом году на Машиностроительном заводе в Электростали (ОАО «ТВЭЛ»).

Этому топливу придется работать при очень высоких температурах. В обычной ядерной топливной энергетике температуры на тысячу градусов ниже. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию — нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их — монокристаллический сплав тугоплавких металлов на основе молибдена (разработка НПО «Луч» в Подольске).

Уникальность проекта в использовании специального теплоносителя — гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия. Схема дана на рис. 02 .

рис. 02 Компоновка ядерной установки. 3D-модель РУ с карбонитридным топливом

Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе?

На Земле для охлаждения электростанций используется либо вода, либо гигантские градирни. В космосе эти способы не доступны. Единственная возможность — охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет.

Общая схема холодильника представлена на рис. 03-04 .

По состоянию на лето 2015 г. промежуточные результаты такие:

  • для экспериментального подтверждения принципа работы капельного холодильника-излучателя был проведен первый этап космического эксперимента «Капля-2» на российском сегменте Международной космической станции;
  • для теплообменных аппаратов выбрана, экспериментально обоснована и изготовлена моноблочная бескорпусная конструкция с использованием теплообменной матрицы из унифицированных штампованных пластин.

Рис. 03 Параметры холодильника ЯЭДУ

    Вариант компоновки ЯЭДУ в составе многоразового межорбитального буксира:
  • с панельным холодильником-излучателем
  • с капельным холодильником излучателем
Рис. 04

    Варианты размещения ЯЭДУ под обтекателем в транспортном положении:
  • с панельным холодильником-излучателем
  • с капельным холодильником излучателем

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

Известно, что с начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Исследовательский центр имени М.В. Келдыша (ранее РНИИ, НИИ-1, НИИТП) разработал и изготовил опытный образец ионного двигателя высокой мощности ИД-500. Его параметры такие: мощность 32-35 кВт, тяга 375-750 мН, удельный импульс 70000м/с, коэффициент полезного действия 0,75.

На данном этапе опытный образец ИД-500 имеет электроды ионно-оптической системы, выполненные из титана с диаметром перфорированной отверстиями зоны 500 мм, катод газоразрядной камеры, который обеспечивает ток разряда в диапазоне 20-70 А и катод-нейтрализатор, способный обеспечить нейтрализацию ионного пучка в диапазоне токов 2-9 А. На следующем этапе разработки двигатель будет оснащен электродами из углерод-углеродного композиционного материала и катодом с графитовым поджигным электродом.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом «вытягиваются» ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета. Смета на период 2010-2018 гг. составляет 7245 млн руб.

Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса вызвал нешуточные научно-технологические дискуссии в среде двух выликих кланов — атомного и космического. Но пока живы «проигравшие», подробности решено не выносить на публику.

Таб. 01 Сравнительные показатели результатов, полученных по программам разработок ядерных реактивных двигателей в СССР и в США в 1959-1989 гг.

Ядерный ракетный двигатель

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва [2] [3] . К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования продолжаются и в 21-м веке [4] .

Читать еще:  Двигатель 1kz не развивает обороты

Содержание

  • 1 Твердофазный ядерный ракетный двигатель
  • 2 Жидкофазные и коллоидные ядерный ракетный двигатель
  • 3 Газофазный ядерный ракетный двигатель
  • 4 Ядерный импульсный двигатель
  • 5 Другие разработки
  • 6 Ядерная электродвигательная установка
  • 7 Перспективы
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Твердофазный ядерный ракетный двигатель

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850—900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей [5] . Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Жидкофазные и коллоидные ядерный ракетный двигатель

Работы по жидкофазным и коллоидным ЯРД не получили большого развития, так как эти ЯРД по своей эффективности сравнительно мало превосходят твердофазные, а по технической сложности сравнимы с газофазными (проблемы организации запуска, регулирования и выключения для жидкофазных и коллоидных ЯРД являются столь же сложными).

Газофазный ядерный ракетный двигатель

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30—50 тыс. м/с. Перенос тепла от топлива к теплоносителю достигается в основном за счёт излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Лётные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек [6] . Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. [7] [8] Однако приоритеты изменились, и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70-х годах [9] . Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Другие разработки

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе [10] .

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю [11] [12] [13] .

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свёрнута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies, для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства [14] , также с 2015 года идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 год ведётся отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата лётных испытаний космического тягача с ЯЭДУ — 2030 год.

В 2021 году Космическое агентство Великобритании заключило соглашение с компанией Rolls-Royce, в рамках которого планируется создать ядерный силовой двигатель для космических аппаратов дальнего действия [15] .

Перспективы

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца [16] [17] и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года [18] .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector