Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автомобиль с атомным двигателем

Автомобиль с атомным двигателем

14 июня’ 2015 | 07:06
INNA

Как это часто случалось в истории автомобилестроения, пальму первенства, на этот раз — в деле атомной легковушки, постарались захватить конструкторы компании Ford Motors. Сразу оговоримся: название «атомный автомобиль» не совсем корректное. Как и «атомная бомба». На самом деле и то, и другое устройство величать можно не иначе, как «ядерными», ибо в них используются именно ядерные силы, которые освобождаются при делении ядер урана (плутония и так далее) на ядра более простых элементов.

Атомное автостроение чуть было не началось с танков. В 1954 г. На посвящённой развитию бронетехники конференции Question Mark III в Детройте была представлена модель танка TV-I с ядерным реактором в роли силовой установки. Полной зарядки реактора по замыслам конструкторов должно было хватить на 500 ч работы. Весил танк 70 т, из которых примерно 10 приходилось на реактор и 20 — на биологическую защиту. Соотношение было признано нецелесообразным, и к следующему году танк изрядно похудел. Новая модель, получившая индекс R32 и представленная на Question Mark IV, весила уже 50 т, из которых на реактор с защитой приходилось около 15. Пробег машины на одной «заправке» должен был составить порядка 6500 км.

Такой вариант был признан более удачным, однако и он не ушёл дальше чертежей и пластилиновых макетов. На этом интерес военных инженеров к ядерному транспорту утих. Зато гражданские конструкторы из того же Детройта пошли гораздо дальше своих коллег.

Не будем ломать копья и традиции и продолжим называть «ядерный» автомобиль «атомным». За его разработку инженеры Ford взялись в 1957 г. А уже год спустя широкой общественности был представлен первый атомный концепт — атомобиль Ford Nucleon (от латинского nucleus — ядро).

Кассета с ядерным топливом, так называемый ТВЭЛ (Тепло Выделяющий ЭЛемент), как и сам ядерный реактор у этого необычного авто располагались сзади. Реакторный отсек был защищён двойным дном и мощным слоем биологической защиты. Кассета была легкосъёмной и после того, как ядерное топливо «отрабатывало» свой ресурс, менялась на новую. Предполагалось, что менять их будут на специальных автозаправках. Сам процесс замены должен был занимать не больше получаса. Учитывая, что на одной «заправке» машина должна была проходить от 8000 км и больше (предполагались кассеты разных ёмкостей — «эконом», «стандарт» и «супер»), время более чем приемлемое.

Кабина водителя была вынесена далеко вперёд, аж за переднюю ось. Причин тому было две. Во-первых, таким образом экипаж машины максимально отдалялся от потенциально опасного ядерного отсека. И, во-вторых, кабина в этом случае уравновешивала установленную сзади тяжёлую биологическую защиту. Сама же кабина представляла почти сплошной стеклянный колпак с панорамным обзором. По бокам от неё были смонтированы воздухозаборники, предназначенные для охлаждения реактора.

Концепт был выполнен в одну восьмую натуральной величины, однако производители клятвенно заверяли общественность, что они готовы хоть сейчас соорудить его в нормальном размере. Что все детали и узлы просчитаны, продуманы и прочерчены, и дело остаётся за самым малым. А именно — за малым ядерным реактором, который пока не создан, но будет создан вот-вот. Буквально, лет через пять. А пока его не создали, маленький Nucleon был определён на стоянку в Музей Генри Форда в Дирборне (штат Мичиган). Где он стоит и по сию пору.

С компьютером на борту

Однако по прошествии пяти лет реактор так и не родился. Зато родился новый концепт. Ещё более революционный и значительно более реальный. Уже хотя бы потому, что был сделан в натуральную величину.

Ford Seattle-ite был представлен на Всемирной ярмарке 1963 г. Это уже был поистине автомобиль будущего, имевший довольно мало общего с другими машинами. Одной из главных его фишек (кроме ядерной начинки) была сменная силовая установка. Она была смонтирована в легкосъёмной передней части автомобиля. По желанию можно было ездить на экономичном 60-сильном передке, либо на агрессивном 400-сильном. Все органы управления подключались через шарнирные передачи за считанные минуты. В машине предусматривалось некое подобие современной GPS, только без использования спутников. Бортовой компьютер (именно, Seattle-ite начала 1960-х имел самый настоящий бортовой компьютер) получал с приборов данные о пройденном километраже, поворотах и откладывал маршрут на «вшитой» в память карте, которая отображалась на цветном экране. Машина имела шестиколёсную схему, четыре передних колеса были ведущими и управляемыми. Такая конструкция резко улучшала манёвренность машины, да и тормозила она в шесть колёс более эффективно, чем её четырёхколёсные братья. Лучше всего эффект четырёх ведущих ощущался на мокрой дороге, когда передняя пара фактически «осушала» своими покрышками дорогу для пары «ведомой».

Кабина машины была оснащена стёклами с переменной прозрачностью, вентиляционными жалюзи, а почти всё управление осуществлялось буквально кончиками пальцев. Дизайн автомобиля и сейчас вызывает у людей неподдельное восхищение. В буклете, посвящённом концепту, было написано: «Передовые стилисты не ограничены существующими техническими и научными достижениями. Свобода мысли — ключ к прогрессивному автомобильному конструированию. Seattle-ite приведёт к созданию новых понятий в дизайне, комфорте и безопасности». И опять же дело упиралось в компактный ядерный реактор. Впрочем, в данном конкретном случае конструкторы немного перестраховались и заявили, что машина может работать и на топливных элементах. Однако тогда и нормальных топливных элементов, преобразующих органическое химическое топливо непосредственно в электричество, не существовало. Они появились лишь спустя два десятилетия. А компактный ядерный реактор? Его нет и сейчас.

Получив два концепта и ни одного атомобиля, человечество на некоторое время забыло про свою ядерную автомечту. А после катастрофы 1986-го как минимум десятилетие и вспоминать о ней не хотело, настолько ярко стояли перед глазами обывателя тёмные руины четвёртого агрегата Чернобыльской АЭС. Считалось, что авария атомобиля, если таковой, например, врежется в столб, обязательно приведёт к ядерному взрыву районного масштаба. Обыватели плохо себе представляют, как работает нормальный ядерный реактор. Им часто представляется, что в его недрах происходят один за другим маленькие ядерные взрывы, в одну тысячную или одну десятитысячную Хиросимы, и эти взрывы толкают мощные поршни, которые и крутят гигантские генераторы. На самом деле, всё не так страшно, и реактор, скорее, представляет собой большую топку, чем взрывную камеру.

Очень грубо процесс выглядит так: в рабочую зону загружаются заряженные обогащённым ураном-235 (чаще всего) ТВЭЛы. Термин «обогащённый» обозначает, что в топливе этого урана содержится порядка 10%, остальное — посторонние вещества. Когда несколько таких ТВЭЛов сближаются, они начинают «обстреливать» друг друга нейтронами. При этом элементы нагреваются, и чем ближе их сводят — тем нагрев больше. В разных типах реакторов температура рабочей зоны составляет от 250 до 400°С. Проходящая через теплообменники реактора вода, превращаясь в пар, вращает турбины генераторов точно так же, как она делает это на тепловых электростанциях. Процесс продолжается до тех пор, пока концентрация урана-235 в ТВЭЛах не упадёт до 3-4%.

Даже если свести ТВЭЛы вплотную, взрыва не произойдёт, ибо 10-процентный уран просто не может взорваться. В Чернобыле рвануло не ядерное топливо, а перегретое рабочее тело. Проще говоря — пар. То есть, никакого ядерного взрыва там не было, да и не могло быть. Было сильнейшее радиационное заражение местности, ибо взорвавшийся «паровой котёл» разнёс в прах и ТВЭЛы, в которых обогащённого радиоактивного урана и не менее радиоактивных продуктов его распада содержались тонны. Но то была огромная электростанция, одна из самых больших в мире. В случае с малым автомобилем какой-либо грандиозной катастрофы, да и не грандиозной, произойти не может никак. К тому же разработка новых более безопасных и эффективных реакторов далеко не закончена, и ныне в МАГАТЭ рассматриваются около 50 перспективных проектов. Что-то оттуда вполне может перепасть и атомобилю.

Электричество на шару

Инцидент с четвертым энергоблоком Чернобыльской АЭС сильно подкосил веру народа в мирный атом. Для того чтобы её вновь укрепить, учёные из США, ЮАР и Китая сообща придумали ядерный реактор, который обладает свойствами самозащищённости и в принципе не может взорваться. Вот как он устроен.

Страсти по атому несколько улеглись, но в 2009-м мы получили третий атомный концепт. На этот раз постаралась уже компания General Motors. А помог ей нью-йоркский дизайнер и изобретатель Лорен Кулесус. Свой прототип для марки Cadillac он назвал WTF — World Thorium Fuel Vehicle — «всемирный автомобиль на ториевом топливе». И это далеко не самая главная особенность нового атомобиля.

Его можно назвать «вечмобилем», ибо запас его прочности и выносливости превосходит все мыслимые пределы. Во-первых, на одной заправке WTF будет ходить не 8000, и даже не 80 000 км. Запас хода в нём вообще считается не в километрах, а в годах. Так вот, на одной заправке «вечмобиль» будет колесить не менее 100 лет. Во-вторых, все детали и узлы у авто многократно задублированы, поэтому никакая поломка не выведет его из строя. Одних только колёс предусмотрено 24. По формуле 4х6. Причём у каждого колеса – свой собственный электромотор. Заменять колёса не нужно, ни полностью, ни частично, требуется лишь их регулировать один раз в пять лет. В-третьих, машина имеет гибкую конструкцию. В зависимости от условий и от ситуации она может «льнуть» к дороге или, напротив, «вздыбиться». Конечно, не сильно, но на динамике и управляемости это отразится существенно.

Реактор расположен в задней части машины. Работать он будет постоянно, а излишки энергии, например на стоянке, вполне можно продавать в городские энергосети через специальные принимающие розетки. Но, к сожалению, и для этого авто маленький ториевый реактор ещё не построен. Однако увидеть работающий атомобиль и даже прокатиться на нём уже можно. Фанаты вышедшей в конце прошлого года ролевой компьютерной игры Fallout-3 рассекают игровые просторы именно на старом добром Ford Nucleon. Кстати: «fallout» в переводе с английского — «радиоактивное заражение».

Читать еще:  Щелчки при холодном двигателе

Наш комментарий
Виктор Сидоренко, член-корреспондент РАН: «Жизнь диктует пределы целесообразности»

После освоения военного применения атомной энергии естественным стало стремление её гражданского использования, имея в виду все достоинства высокой концентрации энергии и большого энергозапаса в ядерном топливе. Были просмотрены все возможные направления и цели ядерных энергоисточников, в том числе и для различных видов транспорта. Помимо технической осуществимости, жизнь диктует свои пределы целесообразности, которые формируются многими факторами: и экономикой, и простотой использования, и безопасностью.

Следует учитывать принципиальные особенности ядерного двигателя — это агрегат высокой технологии, дорогой и имеющий специфическую ядерную и радиационную опасность. Насколько целесообразно его использование в областях массового применения и широкой доступности: автотранспорте, железной дороге, других областях наземного транспорта, авиации? Сегодня, по-видимому, нет. А завтра? Повторюсь: жизнь сама продиктует пределы целесообразности. Ведь в своё время ядерные двигатели продемонстрировали свою востребованность в судостроении и по-прежнему остаются привлекательными для освоения космического пространства.

Ядерный ракетный двигатель

Следует разделять две принципиально разные установки: ядерные энергетические установки (ЯЭУ) на космических аппаратах и ядерные ракетные двигатели (ЯРД). Первые предназначены для выработки энергии на борту космического корабля (когда необходимое количество энергии невозможно получить другими способами, например с помощью солнечных батарей или изотопных источников энергии). Вторые обеспечивают разгон и движение самих ракет.

Вначале кратко рассмотрим историю создания ядерных энергетических установок для использования на космических аппаратах. Первым такого рода ядерным реактором стал американский SNAP-10А, созданный компанией Boeing по заказу Комиссии по атомной энергии США по программе Systems for Nuclear Auxiliary Power (SNAP). Тепловая мощность реактора составляла 40 кВт, а электрическая мощность, обеспечиваемая термоэлектрическим преобразователем энергии, составляла от 500 до 650 Вт. Реактор SNAP-10А был установлен на борту аппарата Snapshot, запущенного 3 апреля 1965 года ракетой-носителем «Атлас». Планировалось провести летные испытания реактора в течение 90 суток. Реактор успешно проработал 43 дня — до 16 мая 1965 года. В этот день был включен установленный на борту спутника ионный двигатель, запитываемый от реактора. Но работа двигателя сопровождалась многочисленными высоковольтными пробоями, нарушившими работу бортовой аппаратуры. SNAP-10A стал первым и последним космическим реактором США, запущенным в космос, хотя проектов и наземных опытных ЯЭУ различные группы в США наплодили очень немало, и продолжают разрабатывать их по настоящее время.

В конце 2017 года в США начали испытание демонстрационного прототипа реакторной энергетической установки Kilopower, предназначенной для выработки электроэнергии с выходной мощностью до 10 кВт с ресурсом 10 лет на поверхности Марса (NASA to test prototype Kilopower reactor. Портал World Nuclear News. 2017-11-17).

Первый в СССР термоэлектрический реактор-преобразователь «Ромашка» был запущен в Институте атомной энергии 14 августа 1964 года. Реактор на быстрых нейтронах имел тепловую мощность 40 кВт (топливом служил оружейный уран) и был оснащен термоэлектрическим преобразователем энергии мощностью до 800 Вт. В планы С.П.Королева входило использовать ЯЭУ «Ромашку» на космических аппаратах в сочетании с импульсными плазменными двигателями. Испытания «Ромашки» закончились в середине 1966 года, уже после смерти Королева, но реактор так никогда не побывал в космосе.

За «Ромашкой» последовала серия ядерных реакторов-преобразователей энергии «Бук» и «Топаз». «Бук» разрабатывался с 1960 года в НПО «Красная звезда» для использования на спутнике радиолокационной разведки УС-А, предназначенном для слежения за авианосцами США. Общая масса урана в реакторе составила 30 кг, обогащение по 235-му изотопу урана — до 90 %. Первый аппарат этой серии был запущен 3 октября 1970 года с Байконура («Космос-367»). На орбите находился в течение 8 лет, причем планировалось сгорание ядерных твэлов реактора при схождении с орбиты. Однако этого не произошло вследствие неудачного спуска, завершившегося ядерным заражением местности разрушившимся «Буком». Поэтому в последующих модификациях «Бука» был запланирован принудительный сброс твэлов специальным газовым исполнительным механизмом (Демидов А.С., Конструкция энергосиловых установок космических аппаратов. — М.: МАИ, 2011.).

Следующей советской космической ядерной энергетической установкой стала ТЭУ-5 «Тополь» или «Топаз-1». Работа над «Топазом» велась с 1960-х годов. Наземные испытания были начаты в 1970 году. Реактор имел тепловую мощность 150 кВт, причем количество 235U в реакторе было снижено до 11,5 кг по сравнению с 30 кг в БЭС-5 «Бук». «Топаз» проработал на орбите более 11 месяцев.

Последний запуск советской ЯЭУ состоялся 14 марта 1988 года. И хотя полет прошел более-менее нормально, от эксплуатации аппаратов с ЯЭУ было решено отказаться. Основной причиной этого стало давление со стороны США и международных организаций, требовавших от Советского Союза «прекратить загрязнение космоса». Но немаловажным фактором стали и сравнительно низкие технические характеристики ЯЭУ.

За все годы запусков советских ЯЭУ на орбиту было отправлено 32 установки. Одна из них не долетела до космоса, две возвратились назад, а остальные до сего дня продолжают пребывать на высоте 700-800 км от Земли. Большой резонанс вызывало известное падение остатков реактора Космос-954 на территории Канады в январе 1978 года, что привело к радиоактивному заражению и международному скандалу.

Здесь следует упомянуть доклад Генерального секретаря ООН под названием «Воздействие космической деятельности на окружающую среду» от 10 декабря 1993 года, в котором где особо отмечено, что проблема имеет международный, глобальный характер: засорение космического пространства Земли, одинаково негативно влияющее на все страны. К этому следует добавить ужесточающиеся требования ООН по ядерно-безопасным орбитам, которые запрещают запуск ядерных реакторов ниже орбиты в 800 км над поверхностью Земли. Параллельно происходит стремительный прогресс солнечных батарей, мощности которых увеличился с десятков ватт в начале 60-х до единиц киловатт к 1990 году. Их простота и изученность перекрывает путь ЯЭУ мощностью в единицы и даже десятки киловатт.

Упомяну также так называемый «каскадный эффект», который может возникнуть от взаимного столкновения объектов и частиц «космического мусора». При экстраполяции существующих условий засорения низких околоземных орбит этот эффект может в долгосрочной перспективе привести к катастрофическому росту количества объектов орбитального космического мусора и, как следствие, к практической невозможности дальнейшего освоения космоса. Вклад в создание космического мусора на 2014 г. составил: Россия — 39,7 %; США — 28,9 %; Китай — 22,8 %, остальные страны — 8,6 % (Космический мусор и его коллеги — И. Черный // «Новости космонавтики», № 10, 2014 г.).

Обращаю внимание на многочисленные происшествия и аварии при работе с энергетическими установками:

25 апреля 1973 года вследствие выхода из строя двигательной установки запуск советского спутника радиолокационной разведки с ядерной энергетической установкой на борту завершился неудачей. Аппарат не был выведен на расчетную орбиту и упал в Тихий океан.

12 декабря 1975 года сразу после выхода на орбиту вышла из строя система ориентации советского спутника радиолокационной разведки «Космос-785» с ЯЭУ на борту. Началось хаотичное вращение аппарата, что грозило его падением на Землю. Активная зона реактора была успешно отделена и переведена на орбиту захоронения, где и находится в настоящее время.

(Под эвфемизмом «орбита захоронения» понимают орбиту искусственных космических объектов, на которую осуществляется их увод после окончания активной работы для уменьшения вероятности столкновений и освобождения места на геостационарной орбите. Хотя срок жизни ЯЭУ на этих орбитах составляет порядка 2 тысяч лет, рано или поздно начиненный оружейным ураном реактор сгорает в высших слоях атмосферы со всеми вытекающими отсюда последствиями… Следует также напомнить, что период полураспада урана-235 составляет 710 миллионов (. ) лет.)

24 января 1978 года в северо-западных районах Канады упал советский спутник радиолокационной разведки «Космос-954» с ядерной энергетической установкой на борту. При прохождении плотных слоёв земной атмосферы произошло разрушение спутника и поверхности Земли достигли лишь некоторые его фрагменты. Произошло радиоактивное загрязнение поверхности.
28 апреля 1981 года на советском спутнике радиолокационной разведки «Космос-1266» с ЯЭУ на борту зафиксирован выход из строя бортового оборудования. Активная зона реактора была успешно отделена и переведена на орбиту захоронения, где и находится в настоящее время.

7 февраля 1983 года в пустынных районах Южной Атлантики упал советский спутник радиолокационной разведки «Космос-1402» с ЯЭУ на борту. Конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Тем не менее, было зафиксировано заметное повышение естественного радиационного фона.

Апрель 1988 года — вышел из-под контроля советский спутник радиолокационной разведки «Космос-1900» с ЯЭУ на борту. Космический аппарат медленно терял высоту, постепенно приближаясь к Земле. 30 сентября, за несколько дней до расчетного момента входа в плотные слои атмосферы, сработала аварийная защитная система, и активная зона реактора была успешно отделена и переведена на орбиту захоронения.

4 июля 2008 года, согласно данным NASA, произошла фрагментация спутника «Космос-1818» на орбите. Предположительно, отделившиеся фрагменты сферической формы в количестве около 30 — капли металлического теплоносителя из разрушившегося по какой-то причине контура охлаждения реактора.

Специалисты отмечают весьма ограниченные итоги полувековых исследований по созданию ядерных энергетических реакторов на космических аппаратах и несоизмеримость практических результатов с затраченными усилиями и колоссальными средствами. Это связано со спецификой работы реакторов в космосе, их недостаточной надежностью и значительной опасностью радиационного заражения в случае аварийного падения. Отмечу, что еще в конце 1980-х была заключена договоренность не запускать больше спутники с такими энергоустановками.

Перейдем к рассмотрению проблемы ядерных ракетных двигателей, использующих энергию деления ядер не для выработки энергии, а для создания реактивной тяги. В традиционных ЯРД рабочее тело (как правило — водород) подается из бака с сжиженным газом в активную зону реактора, где разогревается до высоких температур и затем, расширяясь, выбрасывается через сверхзвуковое сопло двигателя, создавая реактивную тягу. Удельный импульс ЯРД, по оценкам, составляет 8000-9000 и даже 15000 м/с, что гораздо выше показателей наиболее совершенных химических ракетных двигателей.

В СССР постановление по созданию ЯРД было подписано в далеком 1958 году. Руководство проектом было тогда возложено на академиков М.В.Келдыша, И.В.Курчатова и С.П.Королева, а к работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. К концу 1970-х гг в СССР был создан и активно проходил испытания на стендовой базе в районе Семипалатинска ядерный ракетный двигатель РД-0410. Основу этого двигателя с тягой 3,6 т составлял ядерный реактор ИР-100 с топливными элементами из твердого раствора карбида урана и карбида циркония. Температура водорода достигала 3000 К при мощности реактора

Читать еще:  Двигатель внутреннего сгорания строение схема

В США космические разработки с использованием ЯРД осуществлялись с 1958 года в рамках проекта «Орион» по заказу ВВС США. Программа была рассчитана на 12 лет, расчетная стоимость составила 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Американцы создали ЯРД «NERVA», двигатель которой должен был нагреваться до температуры более 2000 °C. Реактор был готов к использованию в качестве двигателя третьей ступени ракеты-носителя «Сатурн V», однако лунную программу к этому времени закрыли, а других задач для этих ЯРД тогда не было. Космические затраты и трудности выполнения подобных проектов привели к тому, что к 1970 году подобные проекты как в США, так и в СССР, были закрыты. В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю (Даниил Ревадзе//NASA возвращается к идее ядерного двигателя для космических кораблей. Портал hightech.fm. 17 февраля 2018)

На конец 1-го десятилетия XXI в. не известно ни одного случая практического применения ядерных ракетных двигателей, несмотря на то, что основные технические проблемы создания такого двигателя были худо-бедно решены полвека тому назад. Основным препятствием на пути практического применения ЯРД являются оправданные опасения того, что авария летательного аппарата с ЯРД может создать значительное радиационное загрязнение атмосферы и некоторого участка поверхности Земли, нанеся как прямой вред, так и осложнив геополитическую ситуацию.

Здесь надо иметь в виду, что можно говорить о потенциале применении ЯРД для космолетов, где химические ракетные двигатели достигли практического предела своей эффективности и их потенциал развития весьма ограничен, то есть ЯРД представляют потенциальный интерес для создания скоростного, долговременно работающего и экономически оправданного межпланетного транспорта (скажем, при полетах на Марс). Но мне представляется безумием использовать ЯРД в ракетах военного назначения, так как сами реакторы ЯРД являются более грозным и «грязным» оружием, чем атомные заряды, поскольку разрушение реактора на земле и выброс десятков килограмм ядерного топлива далеко оставляет позади Чернобыльскую катастрофу и Фукусиму-1. (Здесь я веду речь о «крылатой ракете со сверхмощной ядерной установкой», которая, по определению, является абсурдом или плодом психопатического сознания).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017-2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки (ЯЭДУ) мегаваттного класса для космических транспортных систем. Для реализации задуманного в период с 2010 по 2018 год было обещано 17 млрд рублей. Из этих средств 7,245 млрд рублей предназначались госкорпорации «Росатом» на создание самого реактора. Другие 3,955 млрд — ФГУП «Центр Келдыша» на создание ядерной энергодвигательной установки. Еще 5,8 млрд рублей — для РКК «Энергия», где в те же сроки предстоит сформировать рабочий облик всего транспортно-энергетического модуля. По словам директора и генерального конструктора ОАО «НИКИЭТ» Юрия Драгунова, чье предприятие конструирует реакторную установку, согласно плану ЯЭДУ должна быть готова в 2018 году. На начало 2016 года проведены испытания корпуса реактора и испытания полномасштабных макетов радиационной защиты реакторной установки. Комментируя последнее, я заявляю, что современные военные разработки РФ — это горький плач по совку, по разрушенной военной промышленности СССР. И в заключение цитата из «Дневника писателя» Ф.М.Достоевского: «Положим, мы и есть великая держава, но я только хочу сказать, что это нам слишком дорого стоит — гораздо дороже, чем другим великим державам, а это предурной признак. Так что даже оно как бы и ненатурально выходит».

Как сделать простейший электродвигатель своими руками?

Многие радиолюбители всегда не прочь смастерить какой-нибудь декоративный прибор исключительно в демонстративных целях. Для этого используются простейшие схемы и подручные средства, особенно большим спросом пользуются подвижные механизмы, способные наглядно показать воздействие электрического тока. В качестве примера мы рассмотрим, как сделать простой электродвигатель в домашних условиях.

Что понадобится для простейшего электродвигателя?

Учтите, что изготовить рабочую электрическую машину, предназначенную для совершения какой либо полезной работы от вращения вала в домашних условиях довольно сложно. Поэтому мы рассмотрим простую модель, демонстрирующую принцип работы электрического двигателя. С его помощью вы можете продемонстрировать взаимодействие магнитных полей в обмотке якоря и статоре. Такая модель будет полезной в качестве наглядного пособия для школы или приятного и познавательного времяпрепровождения с детьми.

Для изготовления простейшего самодельного электродвигателя вам понадобится обычная пальчиковая батарейка, кусочек медной проволоки с лаковой изоляцией, кусочек постоянного магнита, по размерам не больше батарейки, пара скрепок. Из инструмента хватит кусачек или пассатижей, кусочка наждачной бумаги или другой абразивный инструмент, скотч.

Процесс изготовления электродвигателя состоит из таких этапов:

  • Намотайте на пальчиковую батарейку от 10 до 15 витков медной проволоки – это и будет ротор мотора. Можно использовать не только батарейку, но и любое круглое основание.
  • Снимите намотку с батарейки, постарайтесь не сильно нарушать диаметр витков. Зафиксируйте всю катушку двумя диаметрально противоположными витками, как показано на рисунке ниже. Рис. 1: зафиксируйте обмотку витками
  • При помощи мелкого наждака зачистите концы якоря электродвигателя. Ваша задача – удалить слой изоляции, так как через эти концы будет осуществляться токосъем.
  • При помощи пассатижей согните две скрепки таким образом, чтобы получились круглые петли посредине скрепки. В качестве основания для перегиба петли можно использовать любой твердый предмет, к примеру, спичку. Рис. 2: согните скрепку
  • Зафиксируйте скотчем обе скрепки на выводах пальчиковой батарейки, важно добиться плотного прилегания. Если нужно, намотайте несколько слоев скотча.
  • Поместите в петли концы ротора, он же будет выступать и валом электродвигателя. Зачищенные концы провода должны располагаться на скрепках. Рис. 3: поместите ротор в петли
  • Зафиксируйте под катушкой на поверхности пальчиковой батарейки постоянный магнит.

Простой электродвигатель готов – достаточно толкнуть пальцем катушку и она начнет вращательное движение, которое будет продолжаться до тех пор, пока вы не остановите вал мотора или не сядет батарейка.

Рис. 4: запустите катушку

Если вращение не происходит, проверьте качество токосъема и состояние контактов, насколько свободно ходит вал в направляющих и расстояние от катушки до магнита. Чем меньше расстояние от магнита до катушки, тем лучше магнитное взаимодействие, поэтому улучшить работу электродвигателя можно за счет уменьшения длины стоек.

Одноцилиндровый электродвигатель

Если предыдущий вариант никакой полезной работы не выполнял в силу его конструктивных особенностей, то эта модель будет немного сложнее, зато найдет практическое применение у вас дома. Для изготовления вам понадобится одноразовый шприц на 20мл, медная проволока для намотки катушки (в данном примере используется диаметром 0,45мм­), проволока из меди большего диаметра для коленвала и шатуна (2,5 мм), постоянные магниты, деревянные планки для каркаса и конструктивных элементов, источник питания постоянного тока.

Из дополнительных инструментов понадобится клеевой пистолет, ножовка, канцелярский нож, пассатижи.

Процесс изготовления электродвигателя заключается в следующем:

  • При помощи ножовки или канцелярского ножа обрежьте шприц, чтобы получить пластиковую трубку.
  • Намотайте на пластиковую трубку тонкую медную проволоку и зафиксируйте ее концы клеем, это будет обмотка статора. Рис. 5: намотайте проволоку на шприц
  • С толстой проволоки удалите изоляцию при помощи канцелярского ножа. Отрежьте два куска проволоки.
  • Согните из этих кусков проволоки коленчатый вал и шатун для электродвигателя, как показано на рисунке ниже. Рис. 6: согните коленвал и шатун
  • Наденьте кольцо шатуна на коленчатый вал, чтобы обеспечить его плотную фиксацию, можно надеть кусок изоляции под кольцо. Рис. 7: наденьте шатун на коленвал
  • Из деревянных плашек изготовьте две стойки для вала, деревянное основание и ушко для неодимовых магнитов.
  • Склейте неодимовые магниты вместе и приклейте к ним ушко при помощи клеевого пистолета.
  • Зафиксируйте второе кольцо шатуна в ушке при помощи шплинта из медной проволоки. Рис. 8: зафиксируйте второе кольцо шатуна
  • Вставьте вал в деревянные стойки и наденьте втулки для ограничения перемещения, сделайте их из кусочков родной изоляции провода.
  • Приклейте статор с обмоткой, стойки с шатуном на деревянное основание, кроме дерева можете использовать и другой диэлектрический материал. Рис. 9: приклейте стойки и статор
  • При помощи саморезов с плоской шляпкой зафиксируйте выводы на деревянном основании. Два контакта должны иметь достаточную длину, чтобы касаться вала электродвигателя – один выгнутой части, другой прямой. Рис. 10: точки касания вала
  • Наденьте на вал с одной стороны маховик для стабилизации вращения, а с другой крыльчатку для вентилятора.
  • Припаяйте один вывод обмотки электродвигателя к контакту колена, а второй к отдельному выводу. Рис. 11: припаяйте выводы обмотки
  • Подключите электродвигатель к батарейке при помощи крокодилов.

Одноцилиндровый электродвигатель готов к эксплуатации – достаточно подключить питание к его выводам для работы и прокрутить маховик, если он находится в том положении, с которого сам стартовать не может.

Рис. 12: подключите питание

Чтобы прекратить вращение вентилятора, отключите электродвигатель посредством снятия крокодила хотя бы с одного из контактов.

Электродвигатель из пробки и спицы

Также представляет собой относительно простой вариант самоделки, для его изготовления вам понадобится пробка от шампанского, медная проволока в изоляции для намотки якоря, вязальная спица, медная проволока для изготовления контактов, изолента, деревянные заготовки, магниты, источник питания. Из инструментов вам пригодятся пассатижи, клеевой пистолет, мелкий натфиль, дрель, канцелярский нож.

Процесс изготовления электродвигателя будет состоять из таких этапов:

  • Обрежьте края пробки, чтобы получить две плоских поверхности, на которых будет располагаться провод.
  • Просверлите сквозное отверстие в пробке и проденьте в него спицу. С одной стороны намотайте изоленту. Рис. 13: вставьте спицу и намотайте изоленту
  • В торце пробки вставьте два отрезка проволоки и приклейте их.
  • Намотайте обмотку ротора из тонкой проволоки в одном направлении. Сделайте перемотку якоря изолентой, чтобы витки в электродвигателе не распустились во время работы.
  • Зачистите надфилем концы обмотки электродвигателя и выводы на пробке и соедините их.
Читать еще:  Что такое калибровка двигателя g4fc

Рис. 14: соедините концы обмотки и выводы

Для лучшего контакта можно припаять. Выводы следует согнуть так, чтобы они буквально лежали на спице.

Рис. 15: согните выводы

  • Сделайте деревянное основание, две опоры для вала и две стойки для магнитов. Высверлите в опорах отверстия под спицу.
  • Приклейте опоры на основание и вставьте в них ротор электродвигателя. Зафиксируйте подвижный элемент ограничителями, наиболее просто сделать их из изоленты. Рис. 16: установите вал на стойки
  • Из двух концов проволоки изготовьте щетки для электродвигателя и зафиксируйте их саморезами на основании. Рис. 17: щетки для электродвигателя
  • На стойки приклейте два магнита и разместите их с двух сторон от ротора с минимальным зазором.

Рис. 18: установите магниты

Наденьте крыльчатку вентилятора на вал и подключите к источнику питания – при протекании электрического тока по катушке произойдет магнитное взаимодействие с полем постоянных магнитов, благодаря чему и возникнет вращательное движение. Простейший электродвигатель готов, запитать его можно и от переменного тока в сети, но вместо батарейки вам придется использовать блок питания.

Видео инструкции в помощь




Ядерный ракетный двигатель, описание, принцип работы

Ядерный ракетный двигатель — ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела — порядка 8—50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа — твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым — режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.



Ядерные тепловые ракетные двигатели

Существует много типов двигателей, использующих ядерную энергию. В этом параграфе мы не будем рассматривать двигатели в которых ядерная энергия предварительно преобразуется в электрическую. Их мы выделим в самостоятельный класс двигателей (-), а здесь же рассмотрим ядерные тепловые (ядернотермические) двигатели. Когда мы будем говорить о ядерных ракетных двигателях (ЯРД), то будем подразумевать под ними тепловые.

Принцип действия этих двигателей почти не отличается от принципа действия химических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «постороннего» тепла, выделяющегося при внутриядерной реакции. Приблизительная пропорциональность скорости истечения величине остается в силе. Критерием выбора рабочего тела теперь служит главным образом молекулярный вес М. Поэтому превосходным рабочим телом может служить водород, неплохим будет и вода. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается.

Понятно, что твердофазный ядерный реактор (с твердым ядерным горючим, рис. 1) может нагреть рабочее тело лишь до температуры, меньшей его собственной температуры плавления. Между тем наиболее тугоплавкий материал, из которого могут быть сделаны элементы ядерного реактора, содержащие уран, а именно карбид гафния и тантал, плавится уже при температуре 3900°С. Превышение температуры превратило бы твердофазный реактор в жидкую массу, охлаждать же ядерный реактор, подобно стенкам камеры, бессмысленно. В проводившихся в США экспериментах температура рабочего тела — водорода была менее 2000°С, а скорость истечения достигала 8 км/сек (ЯРД «Нерва» — работа над ЯРД «Нерва» в США была свернута после затраты 1,4 млрд. долл., однако в бюджете NASA на 1973 финансовый год намечалась разработка ЯРД меньших размеров). В будущем можно ожидать повышения скорости истечения до 12 км/сек и несколько выше.

Рисунок 1. Схема ЯРД с твердофазным реактором

Температуру рабочего тела можно повысить, если пропускать водород через жидкофазный ядерный реактор — через расплавленные соединения урана. Таким путем можно достичь скорости истечения до 20 км/сек.

Наконец, еще большего эффекта можно достичь, пропуская рабочее тело через газофазный ядерный реактор. Предлагаются различные способы предохранения делящегося урана от выбрасывания с рабочим телом, а стенок камеры — от расплавления (температура рабочего тела будет составлять десятки тысяч градусов). Предполагается, что скорость истечения для таких двигателей будет достигать 15— 70 км/сек.

Пульсирующие ЯРД. В этих двигателях энергия атомного взрыва должна испарять рабочее тело. По проекту «Орион» (см. также Missiles and Rockets, 14. XII. 1964) космическая ракета диаметром 10 м и массой 90 т после выведения ее на орбиту ракетой-носителем «Сатурн-5» разгоняется посредством ядерных взрывов, производящихся позади мощного стального днища. Достигается скорость истечения 10 км/сек при реактивном ускорении 10 -4 — 10 -3 g. По проекту фирмы «Мартин» взрывы ядерных капсул мощностью, эквивалентной 10 т тринитротолуола, внутри камеры диаметром 40 м должны, испарив 935 т воды, вывести на околоземную орбиту нагрузку 160 т (на нижней ступени используется связка из девяти ЖРД F-1), а в будущем — даже 13 000 т. По некоторым предположениям взрывы атомных бомб позволят достичь скорости истечения, в 10 раз большей, чем у химических ракет. Есть и более оптимистичные прогнозы. Однако опасность радиоактивного заражения атмосферы и заключение договора о прекращении ядерных испытаний в атмосфере, в космосе и под водой, привели к прекращению финансирования упомянутых проектов в США, хотя двигатель типа «Орион» еще продолжает упоминаться в литературе.

ЯРД на термоядерном синтезе. В этих двигателях используется управляемая реакция объединения (синтеза) атомных ядер, которая является еще не решенной «проблемой номер один» для физики наших дней. Рабочее тело, как предполагают, будет обтекать шнур высокотемпературной дейтериевой плазмы и изгоняться из ракеты со скоростью до 100 км/сек, причем реактивное ускорение составит 10 -4 -10 — 2 g.

ЯРД на радиоактивном распаде изотопов (рис. 2). При самопроизвольном радиоактивном распаде выделяется тепловая энергия, которую можно использовать для нагревания водорода. После израсходования рабочего тела понадобится (если мы хотим сохранить для будущего использования запас радиоактивных материалов) система охлаждения, так как остановить радиоактивный распад невозможно. Достоинством подобного двигателя является простота конструкции. Скорость истечения для него составит 8-12 км/сек, реактивное ускорение – порядка 10 — 3 g.

Рассматривая три последних типа ЯРД, мы столкнулись со случаями, когда двигатели сообщают космическому аппарату крайне малое ускорение – в сотни и даже в десятки тысяч раз меньше g = 9.8 м/сек 2 . Причина этого – в чрезвычайно высоком удельном весе указанных ЯРД. Двигатели такого типа называют двигателями малой тяги. Они, конечно, не могут оторвать космический аппарат от поверхности Земли, но оказываются весьма эффективными в космосе.

Общая схема ЯРД

Как следует из зарубежных публикаций, твердофазные ЯРД, по-видимому, смогут устанавливаться (-) на верхних ступенях космических ракет (установка на первых ступенях привела бы к радиоактивному заражению). Разработка остальных типов ЯРД может потребовать десятков лет.

В.И. Левантовский

«Механика космического полета в элементарном изложении»

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector