Турбореактивный двигатель — Turbojet
Турбореактивный двигатель — Turbojet
турбореактивный — это воздушно-реактивный двигатель , обычно используемый в самолетах. Он состоит из газовой турбины с движущимся соплом . Газовая турбина имеет воздухозаборник, компрессор, камеру сгорания и турбину (которая приводит в движение компрессор). Сжатый воздух из компрессора нагревается за счет сжигания топлива в камере сгорания, а затем расширяется через турбину. Затем выхлоп турбины расширяется в движущем сопле, где он ускоряется до высокой скорости для создания тяги. Два инженера, Фрэнк Уиттл в Соединенном Королевстве и Ханс фон Охайн в Германии , независимо друг от друга разработали концепцию практических двигателей в конце 1930-е годы.
Хотя турбореактивный двигатель был первой формой газотурбинной силовой установки для авиации, он в значительной степени был заменен другими разработками первоначальной концепции. Во время работы турбореактивные двигатели обычно создают тягу за счет ускорения относительно небольшого количества воздуха до очень высоких сверхзвуковых скоростей, тогда как турбовентиляторные двигатели ускоряют большее количество воздуха для уменьшения трансзвуковой скорости. Турбореактивные двигатели были заменены на более медленных самолетах на турбовинтовые , поскольку они имеют лучший удельный расход топлива . На средних скоростях, когда пропеллер уже неэффективен, турбовинтовые двигатели были заменены на турбовентиляторные. Турбореактивный двухконтурный двигатель тише и имеет лучший расход топлива в зависимости от дальности полета, чем турбореактивный двигатель. Турбореактивные двигатели могут быть высокоэффективными для сверхзвуковых самолетов.
Турбореактивные двигатели имеют низкую эффективность на низких скоростях транспортного средства, что ограничивает их полезность в транспортных средствах, отличных от самолетов. В отдельных случаях турбореактивные двигатели использовались для питания транспортных средств, отличных от самолетов, обычно для попыток установления рекордов наземной скорости . В тех случаях, когда транспортные средства «приводятся в действие от турбины», это чаще всего происходит за счет использования двигателя с турбонаддувом , усовершенствования газотурбинного двигателя, в котором дополнительная турбина используется для привода вращающегося выходного вала. Они распространены в вертолетах и судах на воздушной подушке. Турбореактивные двигатели использовались на «Конкорде» и на более дальних версиях Ту-144 , которые требовались для длительных сверхзвуковых полетов. Турбореактивные двигатели по-прежнему широко используются в крылатых ракетах средней дальности из-за их высокой скорости истечения, небольшой лобовой площади и относительной простоты. Они также все еще используются на некоторых сверхзвуковых истребителях, таких как МиГ-25 , но большинство из них тратят мало времени на сверхзвуковые путешествия, поэтому используют турбовентиляторные двигатели и форсажные камеры для увеличения скорости выхлопа для сверхзвуковых спринтов.
Содержание
- 1 История
- 2 Ранние разработки
- 3 Конструкция
- 3.1 Воздухозаборник
- 3.2 Компрессор
- 3.3 Камера сгорания
- 3.4 Турбина
- 3.5 Сопло
- 3.6 Увеличение тяги
- 3.6.1 Форсажная камера
- 4 Чистая тяга
- 5 Улучшения цикла
- 6 См. Также
- 7 Ссылки
- 8 Дополнительная литература
- 9 Внешние ссылки
История
Первый патент на использование газовой турбины для питания самолета был подан в 1921 году француз Максим Гийом . Его двигатель должен был быть турбореактивным с осевым потоком, но он так и не был сконструирован, так как требовал значительного прогресса по сравнению с современными компрессорами.
. В 1928 году курсант британского колледжа RAF Cranwell Фрэнк Уиттл официально представил свои идеи турбореактивного двигателя своему начальству. В октябре 1929 г. он развил свои идеи дальше. 16 января 1930 года в Англии Уиттл подал свой первый патент (выданный в 1932 году). В патенте показан двухступенчатый осевой компрессор , питающий односторонний центробежный компрессор . Практические осевые компрессоры стали возможны благодаря идеям А.А. Гриффит в основополагающей статье 1926 года («Аэродинамическая теория конструкции турбины»). Позднее Уиттл сосредоточился только на более простом центробежном компрессоре по ряду практических причин. 12 апреля 1937 года Уиттл запустил первый турбореактивный двигатель, Power Jets WU . Он работал на жидком топливе и включал автономный топливный насос. Команда Уиттла испытала почти панику, когда двигатель не останавливался, разгоняясь даже после отключения топлива. Оказалось, что топливо просочилось в двигатель и скопилось в лужах, поэтому двигатель не остановился, пока не сгорело все вытекшее топливо. Уиттл не смог заинтересовать правительство своим изобретением, и разработка продолжалась медленными темпами.
В Германии Ханс фон Охайн запатентовал аналогичный двигатель в 1935 году.
27 августа 1939 года Heinkel He 178 стал первым в мире самолетом, летавшим с турбореактивным двигателем. с летчиком-испытателем Эрихом Варсицем за штурвалом, став первым практическим реактивным самолетом. Gloster E.28 / 39 (также известный как «Gloster Whittle», «Gloster Pioneer» или «Gloster G.40») был первым британским самолетом с реактивным двигателем, который летал. Он был разработан для испытания реактивного двигателя Уиттла в полете, что привело к созданию Gloster Meteor.
Первые два действующих турбореактивных самолета, Messerschmitt Me 262 , а затем Gloster Meteor , вступил в строй в 1944 году, ближе к концу Второй мировой войны .
Воздух втягивается во вращающийся компрессор через впускное отверстие и сжимается до более высокого давления перед входом в камеру сгорания. Топливо смешивается со сжатым воздухом и горит в камере сгорания. Продукты сгорания покидают камеру сгорания и расширяются через турбину , где мощность отбирается для привода компрессора. Выхлопные газы турбины по-прежнему содержат значительную энергию, которая преобразуется в сопле двигателя в высокоскоростную струю.
Первыми реактивными двигателями были турбореактивные двигатели с центробежным компрессором (как в Heinkel HeS 3 ) или осевыми компрессорами (как в Junkers Jumo 004 ), который дал двигатель меньшего диаметра, но более длинный. За счет замены пропеллера, используемого в поршневых двигателях, на высокоскоростную выхлопную струю можно было достичь более высоких скоростей самолета.
Одним из последних приложений для турбореактивного двигателя был Concorde , в котором использовался двигатель Olympus 593 . Во время проектирования было установлено, что турбореактивный двигатель является оптимальным для крейсерского полета с удвоенной скоростью звука, несмотря на преимущество турбореактивных двигателей для более низких скоростей. Конкорду требовалось меньше топлива для создания заданной тяги на милю со скоростью 2,0 Маха, чем современному двухконтурному ТРДД, например General Electric CF6 при оптимальной скорости 0,86 Маха.
Турбореактивные двигатели. оказал значительное влияние на коммерческую авиацию . Помимо обеспечения более высоких скоростей полета турбореактивные двигатели обладали большей надежностью, чем поршневые двигатели, причем некоторые модели демонстрировали рейтинг надежности диспетчеризации, превышающий 99,9%. Предварительно реактивные коммерческие самолеты были спроектированы с четырьмя двигателями отчасти из-за опасений по поводу отказов в полете. Маршруты зарубежных полетов были проложены таким образом, чтобы самолеты находились в пределах часа от посадочной площадки, что увеличивало продолжительность полетов. Повышение надежности турбореактивного двигателя позволило создать трех- и двухмоторный двигатель и увеличить число прямых перелетов на большие расстояния.
Высокотемпературные сплавы были обратным выступом , ключевой технологией. это замедлило прогресс в области реактивных двигателей. Реактивные двигатели не британского производства, построенные в 1930-х и 1940-х годах, приходилось ремонтировать каждые 10 или 20 часов из-за выхода из строя и других повреждений лопастей. Однако в британских двигателях использовались сплавы Nimonic , которые позволяли длительное использование без капитального ремонта, двигатели, такие как Rolls-Royce Welland и Rolls-Royce Derwent , а к 1949 г. de Havilland Goblin , прошедший типовые испытания в течение 500 часов без обслуживания. Лишь в 1950-х годах технология суперсплавов позволила другим странам производить экономически практичные двигатели.
Ранние конструкции
Ранние немецкие турбореактивные двигатели имели серьезные ограничения по количеству работающих двигателей. могло произойти из-за отсутствия подходящих жаропрочных материалов для турбин. В британских двигателях, таких как Rolls-Royce Welland , использовались лучшие материалы, обеспечивающие повышенную долговечность. Welland был сертифицирован по типу вначале на 80 часов, позже был продлен до 150 часов между капитальными ремонтами в результате продленных 500 часов пробега, достигнутых в ходе испытаний. Несмотря на высокие требования к техническому обслуживанию, некоторые из первых реактивных истребителей все еще эксплуатируются с исходными двигателями.
General Electric в США имел хорошие возможности для входа в производство реактивных двигателей благодаря своему опыту с используемыми высокотемпературными материалами. в своих турбокомпрессорах во время Второй мировой войны.
Впрыск воды был обычным методом, используемым для увеличения тяги, обычно во время взлета, в ранних турбореактивных двигателях, которые были ограничены допустимой температурой входа в турбину. Вода увеличивала тягу на пределе температуры, но препятствовала полному сгоранию, часто оставляя очень заметный след дыма.
Допустимые температуры на входе в турбину неуклонно увеличивались с течением времени как с введением лучших сплавов и покрытий, так и с появлением и повышением эффективности конструкции охлаждения лопаток. На ранних двигателях пилот должен следить за температурным пределом турбины и избегать его, как правило, во время запуска и при максимальных настройках тяги. Введено автоматическое ограничение температуры, чтобы снизить рабочую нагрузку на пилот и снизить вероятность повреждения турбины из-за перегрева.
Турбореактивный двигатель
Турбореактивный двигатель (ТРД, англоязычный термин — turbojet engine) — воздушно-реактивный двигатель (ВРД), в котором сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы. В камере сгорания производится подвод теплоты. Часть энергии рабочего тела отнимается турбиной. В реактивном сопле формируется реактивная струя.
Содержание
- 1 Ключевые характеристики
- 1.1 Форсажная камера
- 1.2 Гибридный ТРД / ПВРД
- 1.3 Регулируемые сопла
- 1.4 Область применения
- 1.5 Двухконтурный турбореактивный двигатель
- 1.6 Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)
- 1.7 ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель
- 1.8 Область применения
- 2 Винтовентиляторный двигатель
- 3 Турбовинтовой двигатель (ТВД)
- 3.1 Примечания
Ключевые характеристики [ править ]
Ключевые характеристики ТРД следующие:
- Создаваемая двигателем тяга.
- Удельный расход топлива. (Масса топлива потребляемая за единицу времени для создания единицы тяги/мощности)
- Расход воздуха. (Масса воздуха проходящего через каждое из сечений двигателя за единицу времени)
- Степень повышения полного давления в компрессоре
- Температура газа на выходе из камеры сгорания.
- Масса и габариты.
Степень повышения полного давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД (Jumo-004) этот показатель составлял 3, то у современных он достигает 40 (General Electric GE90). Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своим каскадом турбины, которую также делают двухкаскадной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последним (самым низкооборотным) каскадом турбины, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя также именуют роторами низкого и высокого давления.
Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.
Первичный воздух — поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической.
Вторичный воздух — поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.
Третичный воздух — поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.
Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу.
Благодаря компрессору ТРД (в отличие от ПВРД) может «трогать с места» и работать при низких скоростях полёта, что для двигателя самолёта является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.
При повышении скорости полёта давление в камере сгорания и расход рабочего тела растут за счёт роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.
Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат «турбина-компрессор», позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:
- Температура, которую может выдерживать турбина, ограничена, что накладывает ограничение на количество тепловой энергии, подводимой к рабочему телу в камере сгорания, а это ведёт к уменьшению работы, производимой им при расширении.
Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счёт применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счёт организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.
- Турбина поглощает часть энергии рабочего тела перед поступлением его в сопло.
В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что в соответствии с формулой для реактивной тяги ВРД на расчетном режиме, когда давление на срезе сопла равно давлению окружающей среды, [1]
, (1)
где — сила тяги,
— секундный расход массы рабочего тела через двигатель,
— скорость истечения реактивной струи (относительно двигателя),
— скорость полёта,
ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями M = 2,5 — 3 (M — число Маха). На этих и более высоких скоростях полёта торможение встречного потока воздуха создаёт степень повышения давления, измеряемую десятками единиц, такую же, или даже более высокую, чем у высоконапорных компрессоров, и ещё бо́льшее сжатие становится нежелательным, так как воздух при этом нагревается, а это ограничивает количество тепла, которое можно сообщить ему в камере сгорания. Таким образом, на высоких скоростях полёта (при M > 3) агрегат турбина-компрессор становится бесполезным, и даже контрпродуктивным, поскольку только создаёт дополнительное сопротивление в тракте двигателя, и в этих условиях более эффективными становятся прямоточные воздушно-реактивные двигатели.
Форсажная камера [ править ]
Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере — из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных форсажной камерой, расположенной между турбиной и соплом. В режиме форсажа в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полетах на высоких скоростях. В форсажной камере применяется стабилизатор, функция которого состоит в снижении скорости за ним до околонулевых значений, что обеспечивает стабильное горение топливной смеси. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолётов Ту-144 и Конкорд, полеты которых уже прекратились.
Гибридный ТРД / ПВРД [ править ]
В 1960-х годах в США был создан гибридный ТРД / ПВРД Pratt & Whitney J58, использовавшийся на стратегическом разведчике SR-71 Blackbird. До числа Маха М = 2,4 он работал как ТРД с форсажем, а на более высоких скоростях открывались каналы, по которым воздух из входного устройства поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась, и она начинала работать, как ПВРД. Такая схема работы позволяла расширить скоростной диапазон эффективной работы двигателя до М = 3,2. В то же время двигатель уступал по весовым характеристикам как ТРД, так и ПВРД, и широкого распространения этот опыт не получил.
Регулируемые сопла [ править ]
ТРД, скорость истечения реактивной струи в которых может быть как дозвуковой, так и сверхзвуковой на различных режимах работы двигателей, оборудуются регулируемыми соплами. Эти сопла состоят из продольных элементов, называемых створками, подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях и режимах работы двигателя.[1]
Область применения [ править ]
ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолётов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытесненными более экономичными двухконтурными ТРД (ТРДД).
- Образцы летательных аппаратов, оборудованных ТРД
Ракетно-турбинный двигатель комбинированного типа
Использование: в двигателестроении. Сущность изобретения: ракетно-турбинный двигатель комбинированного типа состоит из ракетно-турбинного двигателя, образующего совместно с его корпусом и подвижным кожухом двухрежимный прямоточный воздушно-реактивный двигатель. Внутри центрального тела в укороченном сопле внешнего расширения установлен жидкостный ракетный двигатель с кольцевой камерой сгорания и соплом внешнего расширения с центральным телом, внутри которого размещены элементы общего турбонасосного агрегата. 1 ил.
Изобретение относится к устройствам, характеризующимся сжатием потока за счет скоростного напора воздуха, то есть к прямоточным воздушно-реактивным двигателям (ПВРД), а еще точнее — к комбинированным ракетно-турбинным двигателям (РТД).
В двигателях данного класса представляется возможным сочетать преимущества турбореактивных двигателей (ТРД) — малый расход топлива (горючего) с преимуществами ракетных двигателей (РД) — с хорошей скоростной и высотной характеристиками.
Имеется опыт разработки двигателей, состоящих из ТРД и РД, имеющих общий привод и размещенных в едином корпусе.
В массовом отношении также РТД выгоднее, чем простая комбинация ТРД и РД.
Наиболее близким по принципу работы и техническому устройству к заявляемому изобретению является ракетно-турбинный двигатель комбинированного типа ATR.
Данный двигатель ATR был предложен для перспективного одноступенчатого воздушно-космического самолета (ВКС) военного назначения и может быть отработан, как утверждают зарубежные специалисты, через 10-15 лет. Для такого типа двигателя характерно расширение диапазона достигаемых скоростей и высот полета. Несмотря на то, что данный тип двигателя еще не освоен ни одной страной, дальнейшее развитие ракетной и космической техники уже сейчас требует своего дальнейшего совершенствования, например, при разработке и создании аэрокосмического самолета.
Для летательных аппаратов, перспективных до 2000 г. и далее, требуется широкий диапазон плавного изменения скорости их полета, начиная от дозвуковых и кончая гиперзвуковыми, а также, чтобы их двигатели работали экономично на любых высотах вплоть до безвоздушного пространства.
Рассматриваемая схема известного РТД комбинированного типа обеспечивает вариацию параметров силовой установки в случаях включения в работу ТРД в условиях атмосферы или ЖРД в космосе. Плавное изменение режимов работы с изменением высоты и скорости полета летательного аппарата в этом известном двигателе не обеспечивается по той причине, что нет промежуточного режима между ВРД и ЖРД (при больших числах Маха свыше 5-6 наиболее эффективным является применение ПВРД).
Кроме того, для данного типа РТД характерны сравнительно большие размеры смонтированного в нем ЖРД из-за использования высотного сопла Лаваля. Даже в случае применения раздвижного сопла частично ухудшаются как массовые, так и геометрические характеристики двигателя.
Задача изобретения состояла в разработке ракетно-турбинного двигателя комбинированного типа, в котором возможно объединение различных типов двигательных установок ЛА для обеспечения различных режимов полета в широком диапазоне скоростей и высот.
Решение поставленной задачи означает создание двигателя, работа которого эквивалентна работе ТРД, ЖРД и двухрежимного ПВРД (сверхзвукового ПВРД-СПВРД и гиперзвукового ПВРД-ГПВРД), а также возможность их комбинации в процессе полета летательного аппарата.
Поставленная задача решается тем, что ракетно-турбинный двигатель (РТД) комбинированного типа, представляющий собой комбинацию элементов РТД с жидкостным ракетным двигателем (ЖРД), смонтированных в едином корпусе и образующих блочную конструкцию, согласно изобретению снабжен внешним кожухом, прикрепленным к корпусу РТД внутренними пилонами, внутри которых размещены элементы топливной аппаратуры, а во входном и выходном сечениях установлены кольцевые регулирующие створки, образующие совместно с подвижным кожухом и корпусом РТД двухрежимный ПВРД, причем передние регулирующие створки установлены на подвижном кожухе, задние — на внешнем кожухе, а сопловая часть представляет собой двойное концентрическое укороченное сопло внешнего расширения с центральным телом, внутри которого установлен ЖРД с кольцевой камерой сгорания и соплом внешнего расширения с центральным телом, внутри которого размещены элементы общего турбонасосного агрегата.
На чертеже представлена кинематическая схема ракетно-турбинного двигателя комбинированного типа.
Двигатель состоит из двух основных двигателей, объединенных в одной конструкции: ТРД 1 и ЖРД 2. Кроме того, в состав РТД входят внешний кожух 3, внутренние пилоны 4, задние кольцевые створки 5, подвижный кожух 6, передние кольцевые створки 7, двойное концентрическое сопло 8, общий турбонасосный агрегат (ТНА) 9, блоки топливной автоматики 10, редуктор 11 с разобщающей муфтой и с изменяемым передаточным числом, газогенератор 12, блок пусковых клапанов 13, выдвижной конус 14, осевой компрессор 15, турбина 16.
РТД может функционировать в нескольких различных режимах. При этом газогенератор 12 и турбонасосный агрегат 9 функционируют на всех режимах. Управление подачей компонентов топлива осуществляют блоки топливной автоматики 10.
Первый режим работы РТД комбинированного типа — режим турбореактивного двигателя.
При этом ЖРД и ПВРД не функционируют.
Исходное положение элементов РТД: подвижной кожух 6 сдвинут таким образом, что кольцевые створки 7 раскрыты полностью, что обеспечивает максимальный подвод воздуха к осевому компрессору 15 и полное перекрытие входного сечения ПВРД; осевой компрессор 15 соединен через редуктор 11 с турбиной 16. Створки 5 закрыты полностью.
РТД в данном режиме работает следующим образом.
Запуск осуществляется аналогично запуску самолетного турбореактивного двигателя. Раскрученная после запуска турбина 16 приводит в действие осевой компрессор 15 и насосы ТНА 9, из которых используется только насос для подачи негорючего в газогенератор 12. Расходом горючего управляют блоки топливной автоматики 10. Горючее через топливную аппаратуру поступает в газогенератор 12, где смешивается с воздухом, поступающим от осевого компрессора 15, и сгорает. Продукты сгорания вращают турбину, а затем истекают через внутренний контур двойного концентрического сопла внешнего расширения с центральным телом — ЖРД 2, создавая реактивную тягу.
Второй режим работы РТД комбинированного типа — режим сверхзвукового ПВРД (СПВРД) совместно с турбореактивным двигателем (ТРД) При этом ЖРД не работает.
Исходное положение элементов РТД: подвижный кожух 6 частично сдвинут вперед навстречу потоку; кольцевые створки 7 открывают входное сечение ПВРД и прикрывают входное сечение ТРД; кольцевые створки 5 прикрыты, образуя критическое сечение во внешнем контуре двойного концентрического сопла 8; остальные элементы РТД находятся в положении, как указано в первом режиме.
Этот режим предпочтительно использовать после достижения ЛА скорости звука. Работа ТРД в данном режиме аналогична работе его в первом режиме с учетом того, что начинает функционировать сверхзвуковой ПВРД. При этом помимо генератора 12 ТРД горючее подается через топливную аппаратуру, установленную во внутренних пилонах 4, в камеру сгорания ПВРД, где, смешиваясь с атмосферным воздухом, сгорает. Создаваемое при этом рабочее тело истекает через критическое сечение, образованное корпусом ТРД и кольцевыми створками 5, а затем разгоняется по центральному телу внешнего контура двойного концентрического сопла 8 и выходит в атмосферу, создавая силу тяги помимо силы тяги ТРД. В этом режиме параметры входных потоков как РТД так и ПВРД регулируются кольцевыми створками 7 и выдвижным конусом 14. Параметры выходного потока ПВРД регулируются изменением площади критического сечения с помощью кольцевых створок 5.
Третий режим работы РТД комбинированного типа — режим гиперзвукового ПВРД(ГПВРД).
При этом ЖРД не функционирует. ТРД работает на минимальном режиме, необходимом только для функционирования ТНА 9.
Исходное положение элементов ТРД: подвижный кожух перемещается вперед навстречу входному потоку, полностью открывая входное сечение ГПВРД и прикрывая входное сечение РТД до минимального значения площади поперечного сечения; передаточное число редуктора 11 имеет минимальное значение, створки 5 открыты полностью. Остальные элементы РТД находятся в положении, как указано в первом режиме.
Работа РТД в данном режиме заключается в следующем.
Подача горючего осуществляется аналогично подаче горючего во втором режиме. ТРД работает на минимальном режиме, который обеспечивает только необходимую частоту вращения турбины 16 ТНА 9 и практически тягу не создает. Сила тяги в данном режиме создается только ГПВРД. Работа ГПВРД имеет отличительные особенности относительно работы СПВРД. Сжатие входного потока дозвукового, как в СПВРД, не происходит. Смешение горючего осуществляется со сверхзвуковым потоком атмосферного воздуха. Соответственно продукты сгорания (рабочее тело) тоже имеют сверхзвуковую скорость. Следовательно, дальнейший разгон потока может осуществляться не сужением, а расширением площади поперечного сечения канала. Поэтому отпадает необходимость создания критического сечения. Следовательно, кольцевые створки 5 полностью открыты. Разгон потока осуществляется с помощью центрального тела внешнего контура двойного концентрического сопла 8. Рабочее тело из газогенератора 12, пройдя через лопатки турбины, протекает через внутренний контур сопла 8, что повышает эффективность работы внешнего его контура.
Четвертый режим работы РТД комбинированного типа — режим ЖРД.
Работает только ЖРД 2. Исходное положение элементов РТД: кольцевые створки 5 закрыты; подвижный кожух 6 перемещен навстречу входному потоку в крайнее положение; кольцевые створки 7 закрыты; вал осевого компрессора 15 разобщен с валом турбины 16 при помощи разобщающей муфты редуктора 11; блоки топливной автоматики обеспечивают подачу окислителя и горючего в камеру ЖРД 2 и в газогенератор 12.
Работа РТД в данном режиме заключается в следующем.
При поступлении окислителя и горючего в газогенератор 12 они воспламеняются. При этом образуется рабочее тело (продукты сгорания), которое вращает турбину 16. Турбина приводит в действие насосы окислителя и горючего ТНА 9. Из ТНА 9 компоненты топлива с помощью блоков топливной автоматики 10 подаются в камеру сгорания ЖРД 2 и в газогенератор 12 с целью создания рабочего тела для турбины 16. Продукты сгорания из кольцевой камеры ЖРД 2 истекают через критическое сечение и разгоняются соплом внешнего расширения с центральным телом. Таким образом создается сила тяги. Рабочее тело, вытекающее из газогенератора 12, пройдя через лопатки турбины, истекает через внутренний контур двойного концентрического сопла 8 наружу.
Пятый режим работы РТД комбинированного типа — совместный режим ГПВРД и ЖРД.
Исходное положение элементов РТД аналогично исходному положению в третьем режиме за исключением того, что окислитель и горючее подаются в камеру сгорания ЖРД 2.
Работа РТД в этом режиме аналогична работе его в третьем и четвертом режимах, осуществляемых параллельно.
Шестой режим работы РТД комбинированного типа — режим совместной ТРД и ЖРД.
Исходное положение элементов РТД аналогично исходному положению для первого режима (режима ТРД) за исключением того, что окислитель и горючее подаются в камеру ЖРД 2.
Работа РТД в этом режиме аналогична его работе в первом (режим ТРД) и в четвертом (режим ЖРД), осуществляемых параллельно.
Седьмой режим работы РТД комбинированного типа — совместный режим ТРД, СПВРД и ЖРД.
Исходное положение элементов РТД аналогично исходному положению для второго режима (совместный режим ТРД и СПВРД) за исключением того, что в камеру сгорания ЖРД подаются окислитель и горючее. Работа РТД в этом режиме аналогична его работе во втором (совместный режим ТРД и СПВРД) и в четвертом (режим ЖРД) режимах, осуществляемых параллельно.
Разработанная конструктивная схема заявляемого РТД комбинированного типа дает возможность разработки в следующем столетии как нового пилотируемого транспортно-космического и аэрокосмического летательных аппаратов, так и новых видов вооружения. В настоящее время данным работам за рубежом уделяется большое внимание. Например, фирмы США и Японии к 1992 г. планируют завершить разработки двигателя ATREX, совмещающего в одной конструкции ТРД и двухрежимный ПВРД.
Заявляемый в качестве изобретения РТД комбинированного типа позволяет значительно расширить диапазон плавного изменения скорости ЛА, начиная от дозвуковых ее значений и кончая гиперзвуковыми на различных высотах его полета. Это позволит решить такие задачи космического полета, как стыковка и причаливание космических аппаратов, их маневрирование на орбите и сход с нее, ориентация и стабилизация в космическом пространстве, а также посадка на безатмосферные планеты и др.
Конструктивное выполнение всех типов двигателей в едином устройстве позволяет значительно улучшить массовые и геометрические характеристики ЛА по сравнению с автономным их использованием.
Используемое сопло внешнего расширения обеспечивает расчетный режим работы двигателя на всех высотах полета ЛА, что повышает экономичность его работы.
Кроме того, экспериментальные исследования показали, что такие сопла целесообразно применять при значительном их укорочении. Например, уменьшение длины контура сопла на 50% практически не приводит к потерям тяги, а сокращение его длины на 80-90% уменьшает величину тяги не более, чем на 1,5-2%. Однако выигрыш в габаритах и массе оказывается весьма существенным.
Большие перспективы открываются при использовании разработанного типа двигателя для военных целей, например для перехвата баллистических ракет, для создания новых, практически неуязвимых ракетоносителей и др.
Ракетно-турбинный двигатель комбинированного типа, представляющий собой комбинацию элементов ракетно-турбинного двигателя с жидкостным ракетным двигателем, смонтированных в едином корпусе и образующих блочную конструкцию, отличающийся тем, что он снабжен внешним кожухом, прикрепленным к корпусу ракетно-турбинного двигателя внутренними пилонами, внутри которых размещены элементы топливной аппаратуры, а во входном и выходном сечениях установлены кольцевые регулирующие створки, образующие совместно с подвижным кожухом и корпусом ракетно-турбинного двигателя двухрежимный прямоточный воздушно-реактивный двигатель, причем передние регулирующие створки установлены на подвижном кожухе, задние — на внешнем кожухе, а сопловая часть представляет собой двойное концентрическое укороченное сопло внешнего расширения с центральным телом, внутри которого установлен жидкостный ракетный двигатель с кольцевой камерой сгорания и соплом внешнего расширения с центральным телом, внутри которого размещены элементы общего турбонасосного агрегата.
rpd000014165 (220100 (27.03.03).Б1 Моделирование и исследование операций в авиационных организационно-технических системах), страница 3
Описание файла
Файл «rpd000014165» внутри архива находится в следующих папках: 220100 (27.03.03).Б1 Моделирование и исследование операций в авиационных организационно-технических системах, 220100.Б1. Документ из архива «220100 (27.03.03).Б1 Моделирование и исследование операций в авиационных организационно-технических системах», который расположен в категории «образовательные программы бакалавриата». Всё это находится в предмете «вспомогательные материалы для первокурсников» из первого семестра, которые можно найти в файловом архиве МАИ. Не смотря на прямую связь этого архива с МАИ, его также можно найти и в других разделах. Архив можно найти в разделе «остальное», в предмете «вспомогательные материалы для первокурсников» в общих файлах.
Онлайн просмотр документа «rpd000014165»
Текст 3 страницы из документа «rpd000014165»
Форма организации: Лекция, мастер-класс
1.1.2. Основные схемы ВРД (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.2.1. ГТД как тепловая машина (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.2.2. Работа ГТД как движителя (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.3.1. Входные устройства ВРД (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.3.2. Компрессоры ГТД (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.3.3. Камеры сгорания ВРД (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.3.4. Турбины ГТД (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.3.5. Выходные устройства ВРД (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.4.1. Турбореактивные двигатели и ТРДФ (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.4.2. Двухконтурные турбореактивные двигатели и ТРДДФ (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.4.3. Турбовинтовые, турбовальные и винтовентиляторные двигатели (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.4.4. Силовые установки самолетов с вертикальным взлетом и посадкой (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.4.5. Комбинированные двигатели, двигатели на криогенных топливах (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.4.6. Согласование силовой установки и летательного аппарата (АЗ: 2, СРС: 1)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.4.7. Тенденции развития авиационных двигателей (АЗ: 2, СРС: 0)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
1.5.1. Топливные системы силовых установок (АЗ: 2, СРС: 0)
Тип лекции: Информационная лекция
Форма организации: Лекция, мастер-класс
Практические занятия
Лабораторные работы
1.1.1. Схемы и конструкции ГТД и их основных элементов (АЗ: 4, СРС: 2)
Форма организации: Лабораторная работа
1.2.1. Изменение параметров рабочего процесса в проточной части ТРД (АЗ: 4, СРС: 2)
Форма организации: Лабораторная работа
1.4.1. Дроссельная характеристика ТРД (АЗ: 4, СРС: 2)
Форма организации: Лабораторная работа
1.4.2. Дроссельная характеристика ТВД (АЗ: 4, СРС: 2)
Форма организации: Лабораторная работа
Типовые задания
Приложение 3
к рабочей программе дисциплины
«Силовые установки ЛА»
Прикрепленные файлы
Зачет с оценкой (4 семестр).doc
Промежуточная аттестация №1
Зачет с оценкой (4 семестр)
Вид контроля: Зо
В каждом билете по зачету задается три вопроса по основным разделам дисциплины.
Первый вопрос в билете
Схема ТРДД. Основные узлы двигателя, их назначение.
Принцип действия ТРДД и ТРДД. Назначение газогенератора и турбовентилятора.
Преимущества и недостатки ТРД и ТРДД. Их применение.
Изобразите схемы, по которым выполняются ТРДД и прокомментируйте их.
Изобразите схему ТРД и объясните принцип действия этого двигателя.
Особенности принципа действия турбовинтовых двигателей. Изобразите схему ТВД.
Особенности действия турбовальных двигателей. Изобразите типичную схему ТВалД.
Особенности принципа действия ТРДФ и ТРДДФ. Изобразите схему ТРДФ.
Изобразите схемы, по которым выполняются ТРДФ и ТРДДФ. В чем их преимущества и недостатки по сравнению с ТРД?
Перечислите и охарактеризуйте основные удельные параметры и параметры рабочего процесса ТРД и ТРДФ.
Перечислите и охарактеризуйте основные удельные параметры и параметры рабочего процесса ТРДД и ТРДДФ.
Объясните физический смысл работы идеального цикла ГТД. Теоретическая работа.
От каких параметров зависит работа цикла ГТД? Различаются ли ТРД, ТРДД и ТВД по величине работы цикла?
Как и почему работа цикла ГТД зависит от температуры газа перед турбиной? Объясните физический смысл минимальной температуры ?
Как и почему работа цикла ГТД зависит от степени повышения давления рабочего цикла?
Чем отличается реальный цикл ГТД от идеального?
Эффективный КПД ГТД. Чем он отличается от термического КПД, от каких параметров он зависит?
Полетный КПД. Какие потери им учитываются, от каких факторов и как он зависит?
Объясните физический смысл работы идеального цикла ГТД с форсажной камерой сгорания.
Общий КПД ГТД. Какая связь удельного расхода топлива с общим КПД?
Второй вопрос в билете
Входные устройства: назначение, основные параметры эффективности (σвх, φвх).
Дозвуковые и сверхзвуковые входные устройства ВРД.
Характеристики сверхзвуковых воздухозаборников ВРД.
«Помпаж» и «зуд» сверхзвуковых входных устройств (неустойчивая работа).
Регулирование сверхзвуковых воздухозаборников.
Выходные устройства: назначение, основные параметры.
Сопло Лаваля: особенности рабочего процесса, применение.
Регулирование реактивных сопел.
Параметры, характеризующие работу выходных устройства.
Камеры сгорания: назначение, основные параметры.
Схемы основных камер сгорания и организация процесса горения в них.
Схемы форсажных камер сгорания и организация процесса горения в них.
Схемы и конструктивные особенности компрессоров.
Основные параметры, характеризующие компрессор.
Понятие о режимах неустойчивой работы компрессора. Запас устойчивой работы.
Способы регулирования компрессоров.
Линия рабочих режимов ТРД на характеристике компрессора.
19.Основные параметры, характеризующие турбину.
Третий вопрос в билете
Как удельная тяга ТРД зависит от степени повышения давления в компрессоре и почему?
Как удельный расход топлива ТРД зависит от степени повышения давления в компрессоре и почему?
Как удельная тяга ТРД зависит от температуры газа перед турбиной и почему?
Как удельный расход топлива ТРД зависит от температуры газа перед турбиной и почему?
Как удельная тяга и удельный расход топлива ТРДД зависят от степени двухконтурности и почему?
Как удельная тяга и удельный расход топлива ТРДДФ зависят от степени двухконтурности и почему?
Как удельная тяга и удельный расход топлива ТРДФ зависят от степени повышения давления в компрессоре и почему?
Как удельная тяга и удельный расход топлива ТРДФ зависят от температуры газа перед турбиной и почему?
Как удельная тяга и удельный расход топлива ТРДФ зависят от температуры газа в форсажной камере сгорания и почему?
По каким критериям должны выбираться параметры ТРД?
По каким критериям должны выбираться параметры ТРДФ?
Как удельная масса ТРД зависит от параметров рабочего процесс ( ), поколения двигателей и почему?