Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вредные режимы работы двигателя

Вредные режимы работы двигателя

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
    • Основные понятия о двигателях внутреннего сгорания
    • Топлива применяемые в двигателях и реакция сгорания
    • Смесеобразования и воспламенения в двигателях
    • Выпуск и продувка в двухтактных двигателях
    • Теплоиспользование в двигателях
    • Тепловой расчет двигателя
    • Основные узлы двигателей
      • Остов двигателя
      • Крывошипно-шатунный механизм
      • Уравновешивание двигателя
      • Система газораспределения
      • Регулирования двигателя внутреннего сгорания
    • Топливная аппаратура и система зажигания
    • Пусковые устройства
    • Охлаждение и смазка двигателя
    • Вспомогательные устройства двигателей
    • Примеры конструкций двигателей
    • Эксплуатация и ремонт двигателя
    • Двигатели внутреннего сгорания на электростанциях
    • Наддув двигателей внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
  • Восстановление и ремонт двигателей СМД
  • Топливо для двигателей
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

Наблюдения за эксплуатацией двигателей внутреннего сгорания показывают, что значительную часть их рабочего времени зани­мают такие режимы работы, которые являются следствием смены нагрузки со стороны потребителя энергии (или других внешних условий) или воздействия на двигатель обслуживающего персо­нала. При таких режимах постоянство во времени значений тех или иных параметров, входящих в функциональную зависимость (6), нарушается и все они (или некоторые из них) меняют свои значения с течением времени.

Изменение во времени одного, нескольких или всех параметров, характеризующих работу двигателя, является единственным и исчерпывающим признаком появления в процессе эксплуатации так называемых неустановившихся режимов работы двигателя. Практика показывает, что неустановившиеся режимы часто зани­мают значительно больше рабочего времени двигателя (до 66— 80%), чем установившиеся режимы.

Основным признаком появления неустановившегося режима работы двигателя является нарушение условий статического рав­новесия (1)—(5) или любых других, аналогичных названным. В результате этого двигатель вырабатывает избыточное (или не­достаточное) количество энергии или нарушается его тепловой баланс. Например, избыток (в алгебраическом смысле) энергии в виде крутящего момента М двигателя расходуется на изменение угловой скорости (о коленчатого вала двигателя и связанных с ним агрегатов, определяемое дифференциальным уравнением, написан­ным в соответствии с принципом д’Аламбера:

где J — приведенный момент инерции двигателя и связанных с ним агрегатов.

Нарушение теплового баланса в системе охлаждения двига­теля приводит к изменению температурных показателей работы этой системы в соответствии с дифференциальным уравнением

где С — теплоемкость системы охлаждения двигателя.

Давление Р к воздуха во впускном коллекторе двигателя изменя­ется по закону, определяемому дифференциальным уравнением

где V в — объем впускного коллектора; Т к — температура воздуха в нем; R — газовая постоянная.

Давление р г отработавших газов в выпускном коллекторе двигателя изменяется по закону, определяемому дифференциаль­ным уравнением

где V r — объем выпускного коллектора; Т r — температура отра­ботавших газов в выпускном коллекторе; R r — газовая постоян­ная отработавших газов.

Избыток крутящего момента М т турбины турбокомпрессора приводит к раскрутке его ротора в соответствии с дифференциаль­ным уравнением

где J k — приведенный момент инерции ротора турбокомпрессора; ? к — его угловая скорость.

В связи с нарушением условий статического равновесия (1)— (4) или (5) и появлением в системе изменений, определяемые дифференциальными уравнениями (8)—(11) или (12) (и другими, подобными им), все (или некоторые) параметры, входящие в за­висимость (6), при неустановившихся режимах получают прира­щения, и их значения становятся зависимыми от времени. В связр с этим зависимость (6) применительно к неустановившимся ре­жимам работы двигателя должна быть дополнена координатор времени I и представлена в виде

Введение времени t в функциональную зависимость (13) сви­детельствует о том, что определенные (числовые) значения пара­метров, входящих в эту зависимость, имеют смысл лишь для конкретно выбранного мгновения времени t . В зависимость (13), таким образом, должны входить мгновенные значения параметров, меняющихся во времени. Для неустановившихся режимов можно строить характеристики, аналогичные показанным на рис. 23 или 24, с той лишь разницей, что для каждой точки такой характе­ристики должно быть указано время, при котором получены зна­чения параметров, определяющих точку этой характеристики. Сле­довательно, один неустановившийся режим соответствует только одному значению времени, и это обстоятельство является одним из основных признаков неустановившихся режимов, отличающих их от установившихся режимов.

Во многих случаях наибольший интерес при оценке неустано­вившихся режимов представляют не все параметры, входящие в функциональную зависимость (13), а только некоторые из них или один. Если таким параметром является, например, угловая скорость ? коленчатого вала, то говорят о неустановившемся ско­ростном режиме; если таким параметром является крутящий мо­мент М , то говорят о неустановившемся нагрузочном режиме. При этом изменения во времени других параметров можно не рассматривать.

Приведенные выше признаки неустановившихся режимов под­тверждаются сопоставлением уравнений статического равновесия (1)—(5), обусловливающих работу двигателя на установившихся режимах, с соответствующими уравнениями (8)—(12) динамиче­ского равновесия, обусловливающими появление неустанови­вшихся режимов.

Действительно, если исследуемые параметры в уравнениях (8)—(10) не зависят от времени, то их производные, входящие в эти уравнения, оказываются равными нулю:

В этом случае уравнения (8)—(12) динамического равновесия, со­ответствующие неустановившимся режимам, превращаются в урав­нения (1)—(5), соответствующие установившимся режимам работы двигателя.

Условия (14) могут встречаться и при неустановившихся ре­жимах, но лишь для конкретных мгновений (значений) времени (например, при смене алгебраического знака производных).

Вредные режимы работы двигателя

Линии постоянного расхода топлива универсальной характеристики, представленные на рис. 9, позволяют не только выделить области минимального расхода топлива, но и являются исходными данными для разработки правил экономичного управления автомобилем. Рассматриваемая область расположена всегда ниже границы внешней скоростной характеристики.

Минимальный удельный расход топлива при работе двигателя по нагрузочной характеристике с постоянной частотой вращения коленчатого вала соответствует мощности приблизительно 75% от максимального ее значения для данного режима.

Отклонение режима работы двигателя от оптимального сопровождается ухудшением его топливной экономичности. Увеличение удельного расхода топлива при пониженной частоте вращения и мощности двигателя обусловлено ростом относительных насосных и тепловых потерь, а также ухудшением процессов смесеобразования. Для обеспечения стабильности воспламенения на этих режимах необходимо обогащать горючую смесь, что связано с дополнительным ухудшением топливной экономичности двигателя. Экономичная область работы двигателей грузовых автомобилей с карбюраторными двигателями находится в пределах 1500…2000 об/мин, а легковых — 2500—3000 об/мин.

Читать еще:  Датчики двигателя для чего монтеро

Повышение удельного расхода топлива на режимах максимальных или близких к ним нагрузок является следствием увеличенных потерь на трение, дополнительного расхода мощности на привод вспомогательных агрегатов силовой установки и обогащения горючей смеси. Наиболее экономичен предэкономайзерный режим. В случае применения карбюраторов с последовательным включением камер экономичным считают режим, соответствующий началу включения дополнительной камеры, а на высоких скоростях движения — эко-ностата.

Закономерность изменения универсальной характеристики дизеля отличается от такой же закономерности карбюраторного двигателя. Снижение частоты вращения высокооборотного двигателя до 2200 об/мин сопровождается улучшением топливной экономичности.

В городских условиях автомобильные двигатели по различным причинам работают вне экономичной области, при низкой частоте вращения и частичных нагрузках, для которых характерны повышенные удельные расходы топлива. Экономичная же область работы двигателя находится между 45 и 75% максимальной частоты вращения коленчатого вала, что вытекает из анализа универсальных характеристик двигателя.

Режимы работы автомобилей.

Из таблицы следует, что режимы разгона наиболее представительны как по продолжительности, так и по расходу топлива. Этим и можно объяснить повышенное внимание к ним со стороны водителей и работников технических служб АТП .

Продолжительность работы автомобиля на постоянных режимах относительно невелика, а их влияние на основные показатели автомобиля весьма заметно.

Холостой ход. Продолжительность работы двигателя на холостом ходу автомобилей составляет 17…22%, автобусов 29%, достигая у легковых таксомоторов

В условиях междугородного сообщения эта продолжительность в зависимости от параметров и состояния дорожной сети, а также от характеристик транспортных потоков составляет 1…5%. Большие значения относятся к насыщенным автомагистралям, например к дорогам Московской области.

Двигатель на холостом ходу, как известно, не производит полезной работы, поэтому водитель должен стремиться к ограничению продолжительности этого режима. Если работа автомобиля на холостом ходу не связана прямо или косвенно с безопасностью дорожного движения, то при любой остановке, превышающей две минуты, необходимо выключать двигатель.

Режимы ускорения. В городских условиях продолжительность работы автомобиля на неустановившихся режимах достигает 67%. В часы пик доля режимов разгона дополнительно увеличивается на 10…20%. Протяженность участков разгона и замедления, существенным образом влияющих на среднюю техническую скорость движения, составляют 70…80% от общего пути, пройденного автомобилем.

На долю режимов разгона падает 45…51 % общего количества потребляемого топлива. Во время разгона расход топлива в 1,35…1,45 раза больше, чем при равномерном движении автомобиля на этом же участке. Это можно объяснить тем, что значительная часть топлива, расходуемая на приобретение автомобилем кинетической энергии, при замедлении может быть обращена в полезную работу лишь частично. В процессе разгона грузового автомобиля средней грузоподъемности с карбюраторным двигателем с места путем последова-.

тельного переключения передач до скорости 40 км/ч на преодоление инерционных сил дополнительно расходуется 50…60 г топлива.

Расход топлива на режимах разгона прежде всего зависит от средней величины ускорения автомобиля, производительности ускорительного насоса, частоты и качества выполнения приемов переключения передач, а также от суммарного числа оборотов коленчатого вала, приходящихся на единицу пути.

Испытания автомобиля с различными типами ускорений показали, что наиболее экономичный разгон достигается при ускорении 1 м/с2.

Средние величины ускорений грузовых автомобилей, работающих о прицепами, в 1,3…1,5 раза меньше, чем у одиночных автомобилей.

Важный резерв снижения расхода топлива — совершенствование организации дорожного движения путем уменьшения его неравномерности. Снизить неравномерность можно правильным формированием однородности транспортного потока, сокращением числа остановок перед светофорами и перекрестками, а также использованием водителем менее напряженных объездных магистралей.

Влияние количества остановок на расход топлива может быть показано на примере испытания автомобиля на участке протяженностью 4 км.

Организация безостановочного движения на маршрутах, обеспечивающих более высокие эксплуатационные скорости, снижает расход топлива на 20…25% по сравнению с расходом на загруженных магистралях города. В связи с этим, выбирая маршрут движения, водитель должен помнить, что кратчайший путь с точки зрения экономии топлива не всегда является оправданным.

Наиболее целесообразно использование объездных (кольцевых) или хордовых автомагистралей (с интенсивностью до 250 авт/ч) вне центральной части города. Специальные опыты позволили установить, что при проезде грузового автомобиля через центральную часть города Москвы (кратчайшее расстояние) расход топлива увеличивается на 15…20%, а продолжительность движения возрастает в 1,5…1,7 раза по сравнению с теми же данными на маршрутах с менее интенсивным движением. Объяснить это можно прежде всего ростом интенсивности автомобильного движения, которая в центральной части города ежегодно возрастает на 8… 10%.

Заметное влияние на расход топлива оказывает и расстояние между светофорами. Измерения в реальных условиях эксплуатации позволили выявить следующую закономерность.

С точки зрения экономической эффективности транспортных средств, расстояние между светофорами должно составлять не менее 750…1000 м.

Введение ограничения скорости движения тесно связано с расходом топлива (рис. 10). Анализ показывает, что грузовой автомобиль средней грузоподъемности при ограничении максимальной скорости на междугородных магистралях до 50 км/ч расходует топлива на 12% больше, чем при эффективной экономичной скорости 60…65 км/ч. Эта разница еще больше при уменьшении максимальной скорости до 40 км/ч.

Следует отметить, что ограничение максимальной скорости движения в городах и на междугородных магистралях не противоречит созданию двигателей с достаточным запасом мощности. В разумных пределах этот запас необходим для обеспечения высоких динамических качеств, эффективного преодоления пйдъемов и выполнения быстрых обгонов и маневров.

Установившиеся режимы. Продолжительность работы автомобиля на установившихся режимах относительно невелика, но ее влияние на основные показатели автомобиля весьма заметно.

Около 40% грузовых автомобилей двигаются на междугородных магистралях со скоростью 60 км/ч, в центральной части города — 22 км/ч, а на хордовых маршрутах — 29 км/ч. Движение автомобилей с постоянными скоростями обеспечивает снижение расхода топлива до 35…42% по сравнению с расходом топлива на неустановившихся режимах.

Читать еще:  Что такое приемистый двигатель

Минимальный расход топлива у грузовых автомобилей с карбюраторными двигателями при движении по горизонтальному участку на прямой передаче (без помех) соответствует скорости 25…30 км/ч, а с дизелями — 35…40 км/ч. Однако при таких скоростях резко снижается производительность автомобиля.

Аналогичные закономерности характерны и для легковых автомобилей. Эффективная экономичная скорость движения «Волги» ГАЗ -24 равна 80…85 км/ч, расход топлива в этом случае равен 13,5 л/100 км, а для «Волги» ГАЗ -ЗЮ2 он несколько меньше—12,1 л/ 100 км. При движении же автомобиля со скоростями 30…35 км/ч удельный расход топлива увеличивается в 1,8…2 раза.

Чтобы понять физический смысл приведенных закономерностей, необходимо обратиться к нагрузочной характеристике двигателя. Влияние нагрузки на топливную экономичность двигателя показано на рис. 3. С уменьшением нагрузки удельный расход топлива заметно повышается что связано с ухудшением рабочего процесса, относительным увеличением доли остаточных газов, а также с ростом потерь тепла в системе охлаждения и с ОГ.

Важную роль в снижении расхода топлива играет и правильный выбор необходимой передачи применительно к конкретной дорожной обстановке. При равномерном движении автомобиля с постоянной скоростью, но на различных передачах, расход топлива существенно меняется. Для автомобиля ЗИЛ -130, двигающегося с одной и той же скоростью на третьей или четвертой передачах, расход топлива соответственно повышается на 25 и 16% по сравнению с расходом на прямой передаче.

При движении автомобиля «Жигули» BA3-2103 по горизонтальному участку дороги на любой из промежуточных передач наблюдается повышенный расход топлива во всем диапазоне скоростей. Наиболее наглядно это видно на примере движения автомобиля со скоростью 40 км/ч, которая может быть достигнута на любой промежуточной передаче. На третьей передаче расход топлива увеличивается на 12%, на второй — на 70%, а на первой — возрастает в три раза.

Движение автомобиля с небольшими скоростями на прямой передаче сопровождается малой частотой вращения коленчатого вала, снижающей величину давления в системе смазки. Поэтому продолжительное время ездить на прямой передаче со скоростями, близкими к минимально устойчивой (менее 40 км/ч), нецелесообразно. Частота вращения коленчатого вала двигателя, соответствующая такой скорости, для различных моделей легковых автомобилей равна 1500…1600 об/мин.

Структура и параметры транспортных потоков оказывают заметное влияние на формирование режимов работы автомобилей. Максимальное число (плотность) транспортных средств, двигающихся в одной пачке (потоке), достигает 130…140 единиц, что практически соизмеримо с длиной перегонов между пешеходными переходами и перекрестками. Расход топлива при свободном движении автомобиля ЗИЛ -130 с полной нагрузкой и скоростью 35 км/ч на 1 км пути составляет 230 см3, а при интенсивности движения, равной 600 авт/ч, он достигает 353 см3, т. е. увеличивается на 65%.

Влияние интенсивности дорожного движения на расход топлива носит сложный характер. В случае увеличения средней скорости движения до 40 км/ч, несмотря на рост интенсивности дорожного движения, наблюдается уменьшение расхода топлива.

Таким образом, расход топлива у автомобиля в транспортном потоке (из-за неравномерности дорожного движения) существенно отличается от расхода у одиночного автомобиля на горизонтальном участке дороги. Именно поэтому в городских условиях водитель должен следить за равномерным движением автомобиля с постоянными скоростями.

Режимы замедления. В городских условиях продолжительность работы грузовых автомобилей на режиме ПХХ достигает 25% общего баланса времени пребывания автомобиля на линии. В этом режиме двигатель, не совершая транспортной работы, потребляет в среднем 8… 12% топлива от его общего расхода.

При переходе двигателя на режим ПХХ путем резкого закрытия дроссельной заслонки происходит значительное и ненужное переобогащение горючей смеси, поступающей в цилиндры двигателя.

Специальные эксперименты показали, что торможение грузового автомобиля средней грузоподъемности со скорости 30…40 км/ч до полной остановки приводит к безвозвратной потере энергии, эквивалентной 60 г топлива.

В городских условиях наиболее характерный режим ПХХ соответствует частоте вращения коленчатого вала 1400 об/мин и полному закрытию дроссельной заслонки.

Существует два принципиальных направления снижения токсичности отработавших газов на режимах ПХХ . Первое связано с интенсификацией процесса сгорания, а второе — с его прекращением. Для первой группы устройств характерны подача дополнительного количества горючей смеси и изменение параметров системы зажигания. К ним относят приоткрыватели дроссельной заслонки, демпферы ее закрытия и обводные системы, обеспечивающие снижение выброса СН на 40…65%, но одновременно с этим ухудшающие топливную экономичность на 4…5%. В этом случае несколько ухудшается и эффективность торможения двигателем.

Ко второй группе устройств относят: ограничители разрежения, экономайзеры ПХХ и комбинированные системы.

Общие рекомендации водителю по выбору режимов работы двигателя и автомобиля следующие:
— -экономичная эффективная скорость движения на горизонтальном участке дороги должна быть на 25…30% меньше максимальной скорости автомобиля;
— частота вращения коленчатого вала должна быть на 30…40% ниже номинальной частоты вращения для данного типа двигателя.

В процессе движения важнейшую роль играют правильный выбор и прогнозирование режима работы двигателя и скорости движения автомобиля, рациональное применение техники переключения передач, использование наката с учетом профиля и состояния дорожного покрытия, а также правильная оценка ДТС в целом.

Взлётный режим

Взлётный режим — режим работы авиационного двигателя, обеспечивающий максимальную мощность и тяговое усилие. Взлётный режим характеризуется максимальным значением механических и тепловых нагрузок на двигатель, отчего его применение строго лимитировано, в отличие от номинального режима, близкого к взлётному, но допустимого в течение длительного времени.

Содержание

  • 1 Взлётный режим поршневых двигателей
  • 2 Взлётный режим газотурбинных двигателей
  • 3 Применение взлётного режима
  • 4 Чрезвычайный режим
  • 5 Примечания

Взлётный режим поршневых двигателей [ | ]

Большинство авиационных поршневых двигателей оснащаются агрегатом наддува. Для реализации взлётного режима агрегат наддува включают на повышенную производительность (изменяя передаточное отношение привода, как, например на АШ-82, регулируя проходное сечение воздушных каналов и т.п.). При этом возрастает коэффициент наполнения цилиндров, что позволяет сжигать в них больше топлива и получать повышенную мощность.

Читать еще:  Что такое аппазитный двигатель

У поршневых двигателей, не оснащённых наддувом (например, М-11 самолета По-2 или Continental O-300 самолета Cessna 172), как таковой взлётный режим отсутствует. Просто при взлёте дроссельная заслонка карбюратора открывается полностью, а горючая смесь обогащается.

Взлётный режим газотурбинных двигателей [ | ]

Взлетный режим газотурбинных двигателей реализуется, как правило, повышением оборотов ротора. У одновальных турбовинтовых (АИ-20, АИ-24, НК-12…) или вертолётных турбовальных двигателей, у которых обороты на всех режимах, кроме наинизшего (земной малый газ), одинаковы [1] , взлётный режим определяется максимальным расходом топлива и максимальной температурой выходящих газов.

У двух- или трёхвальных турбовинтовых или турбовальных двигателей (Д-136, ТВ3-117), несмотря на постоянство оборотов свободной турбины, поддерживаемых регулятором оборотов, обороты турбокомпрессора меняются в зависимости от режима, и по ним определяется режим. На силовой установке самолёта Ан-140 (двигатель ТВ3-117ВМА-СБМ1 и винт АВ-140 с регуляторов РСВ-34М) взлётный режим при работе электронной системы управления комбинированный: турбокомпрессор выходит на максимальные обороты, а регулятор винта перестраивается с номинальных оборотов 91 % (поддерживаемых с полётного малого газа по номинальный режим включительно) на взлётные обороты 100 %; свободная турбина, связанная с винтом, также выходит на обороты 100 % [2] . Помимо прочего, повышение оборотов свободной турбины снижает противодавление газов за турбиной компрессора и в некоторой степени повышает мощность двигателя.

На боевых самолётах взлётный режим часто реализуется за счет форсажа.

Применение взлётного режима [ | ]

Как следует из названия, взлётный режим используется для взлёта летательного аппарата, но может быть применен по решению командира воздушного судна и в других случаях, например, для ухода на второй круг или вывода самолёта из срывного режима.

Работа двигателя на взлетном режиме сопровождается значительным шумом, поэтому при расположении аэродромов вблизи населенных пунктов применение взлетного режима может быть ограничено.

Чрезвычайный режим [ | ]

Некоторые двигатели для кратковременного повышения тяги имеют так называемый «чрезвычайный режим» — ЧР, или «чрезвычайный форсаж» — ЧФ. Данный режим работы двигателя применяется только в чрезвычайных случаях, например, при продолжении взлёта на одном двигателе при отказе второго на, Ту-16, Л-410, Ту-204 и др. На четырёхмоторных Ил-96 и новых Ил-76 установлены такие же двигатели, как на Ту-204 (ПС-90), но ЧР они не имеют, так как при отказе одного двигателя теряется всего 25 % тяги, а не 50 %.

Смысл режима заключается в подаче дополнительного топлива в камеру сгорания за счёт катастрофического уменьшения ресурса двигателя. На Ту-16, как правило, после однократного включения ЧР двигатель подлежал демонтажу и отправке в ремонт. Случайное включение ЧР исключается конструкцией органов управления — или сильной пружиной под РУД, или наличием отдельной рукоятки для включения ЧР, либо ЧР вообще включается автоматически — например, на Ан-140 он включается при нахождении обоих РУД на взлётном режиме, включенном переключателе «ЧР» и наличии признаков отказа одного двигателя (разница оборотов компрессоров двигателей более 7 % или других).

Режимы работы двигателя

При определенных условиях работы двигателя потребности его в топливе могут в значительной мере отличаться от тех, что имеют место в условиях установившегося режима работы при нормальной рабочей температуре. Для этих условий необходимо производить корректировку процесса смесеобразования.

Режим пуска двигателя

При пуске двигателя осуществляется специальный расчет изменений по моменту зажигания, количеству поступающего воздуха и впрыскиваемого топлива. Увеличенное количество впрыскиваемого топлива, скорректированное на изменение температурного режима, способствует образованию пленки топлива на стенках впускного трубопровода и камеры сгорания, которое затем используется при переходе двигателя к нормальному послепусковому рабочему режиму. Момент зажигания также адаптируется к режиму пуска двигателя. Дроссельная заслонка на заряд воздуха при пуске двигателя не влияет, однако несколько приоткрывается перед входом двигателя в послепусковой режим работы.

Послепусковой режим

При этом режиме повышенное количество подаваемого воздушного заряда и впрыскиваемого топлива начинает снижаться в зависимости от температуры двигателя и времени, прошедшего с момента окончания режима пуска. Также к этому режиму адаптируется и момент зажигания.

Режим прогрева двигателя

После пуска двигателя при низкой температуре увеличение потребного крутящего момента, лимитируемого этой температурой, может быть достигнуто изменением количества заряда воздуха и впрыскиваемого топлива и корректировкой момента зажигания.

Нагрев каталитического нейтрализатора отработавших газов

При установке очень поздних углов опережения зажигания повышается температура отработавших газов, что позволяет быстро нагреть каталитический нейтрализатор до его рабочей температуры.

Режим холостого хода

При работе двигателя на холостом ходу создаваемый им крутящий момент должен быть достаточен лишь для поддержания его работы и функционирования вспомогательных систем. При использовании системы регулирования частоты вращения коленчатого вала на холостом ходу эта частота при всех условиях остается неизменной.

Работа при полной нагрузке

В режиме работы при полной нагрузке дроссельная заслонка полностью открыта (режим WOT), при этом потери на дросселирование отсутствуют. Двигатель вырабатывает максимальный крутящий момент для заданной частоты вращения коленчатого вала.

Режимы ускорения и замедления

При резких ускорениях и замедлениях происходят быстрые изменения давления во впускном трубопроводе двигателя. Следовательно, изменяются и условия образования пленки топлива на стенках впускного трубопровода. Для предотвращения обеднения смеси при ускорении режима работы двигателя необходима подача дополнительного топлива, что служит для образования на стенках топливной пленки. При замедлении, соответственно, количество впрыскиваемого топлива снижается.

Режим принудительного холостого хода (ПХХ) с отключением подачи топлива, повторный пуск

При переходе в режим принудительного холостого хода (ПХХ) с отключением подачи топлива, характеризуемого прекращением сгорания, система ME-Motronic обеспечивает плавное снижение крутящего момента двигателя, а также производит плавное включение подачи топлива при повторном пуске двигателя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector