Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Внутреннее сгорание двигателя схема

Внутреннее сгорание двигателя схема

Электрооборудование двигателей внутреннего сгорания


Наши дополнительные сервисы и сайты:


e-mail:
office@matrixplus.ru
tender@matrixplus.ru

icq:
613603564

skype:
matrixplus2012

телефон
+79173107414
+79173107418

г. С аратов

В курсе «Электрооборудование двигателей внутреннего сгорания» изучается комплекс электрической аппаратуры, устанавливаемой на карбюраторных двигателях и дизелях. В результате изучения предмета учащиеся должны освоить устройство и работу приборов электрооборудования двигателей внутреннего сгорания, уметь хорошо разбираться в монтажных схемах и получить навыки по определению дефектов и устранению неисправностей в электрических системах пуска, зажигания, автоматизации и контроля за работой двигателей различных типов.

Область применения электрической энергии на двигателях внутреннего сгорания непрерывно расширяется, а используемое при этом электрооборудование совершенствуется.
Электрическая энергия на двигателях внутреннего сгорания обеспечивает их пуск, зажигание рабочей смеси, работу контрольно-измерительных приборов и другой аппаратуры.
Вместо генераторов постоянного тока большое распространение получают генераторы переменного тока, более надежные и долговечные в эксплуатации.
Совершенствуется конструкция и технология изготовления кислотных аккумуляторных батарей, которые становятся более компактными и менее подверженными сульфатации.
Существенно изменяется конструкция реле-регуляторов. Разрабатываются и внедряются транзисторные реле-регуляторы, количество контактных соединений в которых сведено к минимуму. Начинают находить применение в электронных системах зажигания полупроводниковые приборы.
Для обеспечения надежности пуска применяют совершенные стартеры с дистанционным включением и безударным введением шестерни в зацепление с зубчатым венцом маховика.
Двигатели внутреннего сгорания оснащаются также совершенной контрольно-измерительной аппаратурой и приборами автоматики.
В последние годы промышленностью освоен выпуск автоматизированных дизельных электроагрегатов различных мощностей, у которых пуск, обслуживание и остановка полностью или частично автоматизированы. С повышением количества различных приборов электрического оборудования, применяемого на двигателях внутреннего сгорания, повышается и их качество. Хоть данные и устарели, но принципы остались, если знаешь теорию, с практикой справишься.

Принципиальные схемы электрооборудования двигателей внутреннего сгорания

Аккумуляторные батареи

Генераторы и реле-регуляторы

Электрические стартеры и схемы пуска двигателей внутреннего сгорания

Батарейное зажигание

Зажигание от магнето

Контрольно-измерительные приборы

Автоматизация силовых установок с двигателями внутреннего сгорания

Схемы электрооборудования двигателей внутреннего сгорания

Эксплуатация электрооборудования двигателей внутреннего сгорания

для железнодорожного транспорта, сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.

Двухтактный двигатель внутреннего сгорания

3.1. Работа двухтактного двигателя

В двухтактных двигателях рабочий цикл совершается за два такта (за один оборот коленчатого вала), в то время как у четырехтактных двигателей это совершается за 4 такта (2 оборота коленчатого вала). В отличие от четырехтактных двигателей в двухтактных очистка рабочего цилиндра от продуктов сгорания и наполнение его свежим зарядом, т. е. процессы газообмена, происходят только при движении поршня вблизи НМТ, практически одновременно. При этом очистка цилиндра от выпускных газов осуществляется путем вытеснения их не поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью. На рисунке 3.1 приведены схемы наиболее распространенных в настоящее время двухтактных двигателей.


Рисунок 3.1. Схемы двухтактных двигателей: а — петлевая; 6 — прямоточная клапанно-щелевая; в — прямоточная щелевая с противоположно движущимися поршнями; 1 — впуск свежего воздуха; 2 — выпуск отработавших газов; 3 — форсунка; 4 — поршень; 5 — поршень, управляющий впуском; 6 — поршень, управляющий выпуском; 7 — продувочный насос

Предварительное сжатие воздуха или смеси производится в специальном продувочном насосе или компрессоре, выполненном в виде отдельного агрегата. В небольших двигателях в качестве продувочного насоса иногда используют внутреннюю полость картера (кривошипная камера) и поршень двигателя. В процессе газообмена в двухтактных двигателях некоторая часть воздуха или горючей смеси неизбежно удаляется из цилиндра вместе с выпускными газами через выпускные органы. Эта утечка воздуха или горючей смеси учитывается при выборе подачи продувочного насоса или компрессора.

Петлевая схема газообмена (рисунок 3.1, а) значительно упрощает конструкцию двигателя по сравнению с клапанно-щелевой, но при этом ухудшается качество газообмена и возникают потери воздуха или смеси при наполнении. Петлевая схема газообмена отличается большим разнообразием конструктивного выполнения и применяется в двигателях различного назначения (от маломощных для мопедов и до крупных мощностью в несколько десятков тысяч киловатт для судов).

Прямоточные схемы газообмена делятся на 2 типа: прямоточно-клапанные (рисунок 3.1., б) и прямоточно-щелевые (рисунок 3.1., в). Прямоточно-клапанные схемы газообмена широко применялись на всех размерностях дизелей и в настоящее время, среди промышленных двухтактных двигателей, остались только они. Далее будет подробно описана работа двухтактного двигателя на этом типе дизеля.

Прямоточно-щелевая схема газообмена с противоположно движущимися поршнями (рисунок 3.1, в), в которой один поршень управляет впускными окнами, а другой — выпускными, обеспечивает высокое качество газообмена.

Для предварительного сжатия горючей смеси или воздуха, как было указано выше, в двухтактных двигателях может быть использована внутренняя полость картера (кривошипная камера). Такие двигатели называются двигателями с кривошипно-камерной схемой газообмена. Они имеют герметично закрытый картер, который и служит продувочным насосом. При движении поршня 1 от НМТ к ВМТ объем пространства под ним увеличивается и давление падает ниже атмосферного, т.е. в кривошипной камере 2 создается вакуум. Вследствие этого атмосферный воздух устремляется в картер через автоматически действующий впускной клапан. При обратном движении поршня до момента открытия впускных окон происходит сжатие свежего заряда в кривошипной камере. После открытия впускных окон сжатый свежий заряд вытесняется из камеры в цилиндр. Двухтактные двигатели с кривошипно-камерной схемой газообмена отличаются простотой устройства и будут подробно рассмотрены позже. Однако при данном способе газообмена очистка цилиндра и наполнение его свежим зарядом ухудшаются, в результате чего уменьшается мощность двигателя, увеличивается расход топлива.

Традиционно работа двухтактного двигателя объясняется на примере прямоточного клапанно-щелевого двигателя. На рисунке 3.2 приведена схема работы двухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена. Основными особенностями устройства двигателя этого типа являются:

  • впускные окна 8, расположенные в нижней части цилиндра, высота которых составляет около 10 . 20% хода поршня;
  • открытие и закрытие впускных окон производится поршнем 3 при его движении в цилиндре;
  • выпускные клапаны 4, размещенные в крышке цилиндра, с приводом от распределительного вала, частота вращения которого обеспечивает открытие клапанов один раз за один оборот коленчатого вала;
  • продувочный насос 2, нагнетающий воздух под давлением в ресивер для очистки цилиндра от продуктов сгорания и наполнения свежим зарядом.


Рисунок 3.2. Схема работы двухтактного прямоточного клапанно-щелевого двигателя: а — первый такт (сгорание, расширение, выпуск, продувка и наполнение); б — второй такт (выпуск, продувка и наполнение, сжатие); 1 — впускной патрубок; 2 — продувочный насос; 3 — поршень; 4 — выпускные клапаны; 5 — форсунка; 6 — выпускной патрубок; 7 — воздушный ресивер; 8 — впускное окно

Рабочий цикл в двигателе осуществляется следующим образом:

    Первый такт соответствует ходу поршня от ВМТ к НМТ. В цилиндре только что произошло сгорание (линия cz) и начался процесс расширения газов, т. е. осуществляется рабочий ход. Перед тем, как поршень достигнет НМТ (

75° . 65° до НМТ) в крышке цилиндра открываются выпускные клапаны, и продукты сгорания начинают вытекать из цилиндра в выпускной патрубок, при этом давление в цилиндре резко падает (линия zn). Двигаясь дальше к НМТ поршень откроет впускные окна (

65° . 55° до НМТ), при этом давление в цилиндре становится примерно равным давлению предварительно сжатого воздуха в ресивере или немного выше его. Воздух, поступая в цилиндр через впускные окна, вытесняет через выпускные клапаны оставшиеся в цилиндре продукты сгорания и заполняет цилиндр — происходит продувка цилиндра, т.е. осуществляется газообмен (участок na на индикаторной диаграмме). Таким образом, в течение первого такта в цилиндре происходит сгорание топлива, расширение газов, выпуск газов, продувка и наполнение цилиндра.

  • Второй такт соответствует ходу поршня от НМТ к ВМТ. В начале хода поршня продолжаются процессы удаления выпускных газов, продувки и наполнения цилиндра свежим зарядом. Конец продувки цилиндра (линия ak) определяется моментом закрытия впускных окон и выпускных клапанов. Последние закрываются или одновременно с впускными окнами, или несколько ранее. Давление в цилиндре к концу газообмена в двухтактных двигателях несколько выше атмосферного и зависит от давления воздуха в ресивере. С момента окончания газообмена и полного перекрытия поршнем впускных окон начинается процесс сжатия воздуха. Когда поршень не доходит на 10 . 30° по углу поворота коленчатого вала до ВМТ, в цилиндр через форсунку начинает подаваться топливо. Следовательно, в течение второго такта в цилиндре происходит окончание выпуска, продувка и наполнение цилиндра в начале хода поршня и сжатие при его дальнейшем ходе.
  • Читать еще:  Шаговый линейный двигатель своими руками

    Следует еще раз заострить внимание, что у двухтактного двигателя большинство процессов совмещено по времени, и поэтому однозначно их отделить (как в четырехтактном двигателе) сложно, но все 4 процесса: рабочий ход, выпуск, впуск, сжатие так же как и в четырехтактном двигателе должны пройти. Без осуществления данного порядка чередования процессов осуществить рабочий цикл невозможно. Тем не менее, двигатель называется двухтактным, так как для осуществления рабочего цикла необходимо затратить 2 перемещения поршня из одной мертвой точки в другую.

    Из индикаторной диаграммы рабочего цикла двухтактного двигателя видно, что на части хода поршня, когда происходит газообмен, полезная работа очень мала, т. е. практически не совершается.

    Объем Vп, соответствующий этой части хода поршня, называется потерянным.

    Тогда объем, описываемый поршнем при движении от точки b, определяющей момент начала сжатия, до ВМТ и называемый действительным рабочим объемом, рассчитывается по формуле

    .

    Используя действительный рабочий объем следует определить и действительную степень сжатия:

    .

    Тогда геометрическая степень сжатия выражается той же формулой, что и для четырехтактных двигателей:

    .

    Отношение потерянного объема Vп к геометрическому объему Vh представляет собой долю потерянного объема на процесс газообмена:

    .

    В двухтактных двигателях ψ = 10 . 38 %.

    Из сравнения рабочих циклов четырех- и двухтактных двигателей следует, что при одинаковых размерах цилиндра и частотах вращения мощность двухтактного двигателя значительно, больше. Поскольку число рабочих циклов больше в 2 раза, ожидаемый рост мощности двухтактного двигателя выше в 2 раза. В действительности мощность двухтактного двигателя увеличивается приблизительно в 1,5 . 1,7 раза вследствие потери части рабочего объема, ухудшения очистки и наполнения, а также затрат мощности на приведение в действие продувочного насоса. К преимуществам двухтактных двигателей следует отнести большую равномерность крутящего момента, так как полный рабочий цикл осуществляется при каждом обороте коленчатого вала (а не за два, как в четырехтактных). Существенным недостатком двухтактного процесса по сравнению с четырехтактным является малое время, отводимое на процесс газообмена. Очистка цилиндра от продуктов сгорания и наполнение его свежим зарядом более совершенно происходят в четырехтактных двигателях. Кроме того, в двухтактном двигателе температура поршня, крышки цилиндра и клапанов выше, чем в четырехтактном.

    При внешнем смесеобразовании в результате продувки цилиндра горючей смесью она частично выбрасывается через выпускные окна, поэтому двухтактный процесс чаще применяется в дизелях. Исключение составляют мотоциклетные, лодочные и другие двигатели небольшой мощности, для которых большее значение имеют простота и компактность конструкции, чем экономичность.

    Как в четырехтактных, так и двухтактных двигателях, рабочие процессы осуществляются только в одной полости цилиндра, расположенной над поршнем. Такие двигатели принято называть двигателями простого действия.

    Для увеличения цилиндровой мощности можно использовать также полость, расположенную под поршнем. Двигатели, в которых рабочие циклы осуществляются в полостях, расположенных с обеих сторон поршня, называются двигателями двойного действия (рисунок 3.3). Увеличение мощности двигателей двойного действия по сравнению с двигателями простого действия составляет только 80 . 85% вследствие уменьшения рабочего объема нижней полости из-за проходящего через эту полость штока.

    .
    Рисунок 3.3. Схема устройства двухтактного двигателя двойного действия: а — схема; б — реальный двигатель (D=820 мм, S=1500 мм); 1, 3 — нижняя и верхняя крышки; 2 — рабочий цилиндр; 4 — поршень; 5 — шток; 6 — крейцкопф (ползун); 7 — шатун

    Ввиду значительного усложнения конструкции и малой надежности двигатели двойного действия закончили производить в 50-х годах 20-ого века. Необходимое увеличение цилиндровой мощности достигается применением наддува, что проще и надежнее.

    Контрольные вопросы и задания

    1. Дайте определение верхней мертвой точке и нижней мертвой точке;
    2. Дайте определение двигателей внутреннего сгорания и двигателей с внешним подводом теплоты;
    3. Дайте определение рабочему циклу двигателя;
    4. Напишите формулу для расчета рабочего объема цилиндра поршневого ДВС;
    5. Дайте определение и напишите формулу для расчета степени сжатия поршневого ДВС, раскройте значение и смысл входящих в формулу элементов;
    6. Дайте определение такта;
    7. Перечислите последовательно все такты четырехтактного двигателя внутреннего сгорания;
    8. Расскажите о процессах происходящих в каждом из тактов четырехтактного ДВС;
    9. Дайте определение для двигателей с внешним и внутренним смесеобразоанием.

    Рекомендуемая дополнительная литература

    1. Двигатели внутреннего сгорания: устройство и работа поршневых и комбинированных двигателей/ В. П. Алексеев, В. Ф. Воронин, Л. В. Грехов и др.; Под общ. ред. А. С. Орлина,М. Г. Круглова., М.: Машиностроение, 1990
    2. Учебник для втузов по специальности «Двигатели внутреннего сгорания» / Д. Н. Вырубов, Н. А. Иващенко, В. И. Ивин и др.; Под ред. А. С. Орлина, М. Г. Круглова. — 4-е изд., перераб. и доп. — М.: Машиностроение, 1983. — 372 с.
    3. Конструирование двигателей внутреннего сгорания: Учебник для студентов высших учебных заведений, обучающихся по специальности «Двигатели внутреннего сгорания» направления подготовки «Энергомашиностроение» / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков; под. ред. Н. Д. Чайнова. М.: Машиностроение, 2008. 496 с., ил.
    4. Jorn Dragsted. The first 50 years of turbocharged 2-stroke, crosshead, marine diesel engines. CIMAC Central Secretariat, Lyoner Str. 18, 60528 Frankfurt am Main, Germany. 2013. 98 pages.
    5. Doug Woodyard. Pounder’s Marine Diesel Engines and Gas Turbines. Eighth edition. Elsevier Butterworth-Heinemann. Linacre House, Jordan Hill, Oxford OX2 8DP. 200 Wheeler Road, Burlington, MA 01803. 2004. pp.915

    ДВС — определение. Двигатель внутреннего сгорания: характеристики, схема

    Не будет преувеличением сказать, что большинство самодвижущихся устройств сегодня оснащены двигателями внутреннего сгорания разнообразных конструкций, использующими различные принципиальные схемы работы. Во всяком случае, если говорить об автомобильном транспорте. В данной статье мы рассмотрим более подробно ДВС. Что это такое, как работает данный агрегат, в чем его плюсы и минусы, вы узнаете, прочитав ее.

    Принцип работы двигателей внутреннего сгорания

    Главный принцип работы ДВС основан на том, что топливо (твердое, жидкое или газообразное) сгорает в специально выделенном рабочем объеме внутри самого агрегата, преобразуя тепловую энергию в механическую. Рабочая смесь, поступающая в цилиндры такого двигателя, подвергается сжатию. После ее воспламенения при помощи специальных устройств возникает избыточное давление газов, заставляющих поршни цилиндров возвращаться в исходное положение. Так создается постоянный рабочий цикл, преобразующий при помощи специальных механизмов кинетическую энергию в крутящий момент.

    На сегодняшний день устройство ДВС может иметь три основных вида:

    • двухтактный двигатель, часто называемый легким;
    • четырехтактный силовой агрегат, позволяющий добиться более высоких показателей мощности и значений КПД;
    • газотурбинные установки, обладающие повышенными мощностными характеристиками.

    Помимо этого существуют и другие модификации основных схем, позволяющие улучшить те или иные свойства силовых установок данного вида.

    Преимущества двигателей внутреннего сгорания

    В отличие от силовых агрегатов, предусматривающих наличие внешних камер, ДВС обладает значительными преимуществами. Главными из них являются:

    • гораздо более компактные размеры;
    • более высокие показатели мощности;
    • оптимальные значения КПД.

    Необходимо заметить, говоря о ДВС, что это такое устройство, которое в подавляющем большинстве случаев позволяет использовать различные виды топлива. Это может быть бензин, дизельное топливо, природный или сжиженный газ, керосин и даже обычная древесина. Такой универсализм принес данной принципиальной схеме двигателя заслуженную популярность, повсеместное распространение и поистине мировое лидерство.

    Краткий исторический экскурс

    Принято считать, что двигатель внутреннего сгорания ведет отсчет своей истории с момента создания французом де Ривасом в 1807 году поршневого агрегата, использовавшего в качестве топлива водород в газообразном агрегатном состоянии. И хотя с тех пор устройство ДВС подверглось значительным изменениям и модификациям, основные идеи этого изобретения продолжают использоваться и в наши дни.

    Читать еще:  Что такое дисбаланс двигателя

    Первый четырехтактный двигатель внутреннего сгорания увидел свет в 1876 году в Германии. В середине 80-х годов XIX столетия в России был разработан карбюратор, позволявший дозировать подачу бензина в цилиндры мотора. А в самом конце позапрошлого века знаменитый немецкий инженер Рудольф Дизель предложил идею воспламенения горючей смеси под давлением, что существенно повышало мощностные характеристики ДВС и показатели КПД агрегатов подобного вида, которые до этого оставляли желать много лучшего. С тех пор развитие двигателей внутреннего сгорания шло в основном по пути улучшения, модернизации и внедрения разнообразных улучшений.

    Основные виды и типы ДВС

    Тем не менее более чем 100-летняя история агрегатов данного вида позволила разработать несколько основных видов силовых установок с внутренним сгоранием топлива. Они отличаются между собой не только составом используемой рабочей смеси, но и конструктивными особенностями.

    Бензиновые двигатели

    Как явствует из названия, агрегаты данной группы используют в качестве топлива различные виды бензина. В свою очередь, такие силовые установки принято подразделять на две большие группы:

    • Карбюраторные. В таких устройствах топливная смесь перед поступлением в цилиндры обогащается воздушными массами в специальном устройстве (карбюраторе). После чего происходит ее воспламенение при помощи электрической искры. Среди наиболее ярких представителей данного типа можно назвать модели ВАЗ, ДВС которых очень долгое время был исключительно карбюраторного типа.
    • Инжекторные. Это более сложная система, в которой впрыск топлива в цилиндры осуществляется посредством специального коллектора и форсунок. Он может происходить как механическим способом, так и посредством специального электронного устройства. Наиболее продуктивными считаются системы прямого непосредственного впрыска «Коммон Рейл». Устанавливаются почти на все современные автомобили.

    Инжекторные бензиновые двигатели принято считать более экономичными и обеспечивающими более высокий КПД. Однако стоимость таких агрегатов намного выше, а обслуживание и эксплуатация – заметно сложнее.

    Дизельные двигатели

    На заре существования агрегатов подобного вида очень часто можно было слышать шутку о ДВС, что это такое устройство, которое ест бензин, как лошадь, а движется намного медленнее. С изобретением дизельного двигателя эта шутка частично потеряла свою актуальность. Главным образом потому, что дизель способен работать на топливе гораздо более низкого качества. А значит, и на гораздо более дешевом, нежели бензин.

    Главным принципиальным отличием дизельного двигателя внутреннего сгорания является отсутствие принудительного воспламенения топливной смеси. Солярка впрыскивается в цилиндры специальными форсунками, а отдельные капли топлива воспламеняются из-за силы давления поршня. Наряду с преимуществами дизельный двигатель обладает и целым рядом недостатков. Среди них можно выделить следующие:

    • гораздо меньшая мощность по сравнению с бензиновыми силовыми установками;
    • большими габаритами и весовыми характеристиками;
    • сложностями с запуском при экстремальных погодных и климатических условиях;
    • недостаточной тяговитостью и склонностью к неоправданным потерям мощности, особенно на сравнительно высоких оборотах.

    Кроме того, ремонт ДВС дизельного типа, как правило, гораздо более сложен и затратен, нежели регулировка или восстановление работоспособности бензинового агрегата.

    Газовые двигатели

    Несмотря на дешевизну природного газа, используемого в качестве топлива, устройство ДВС, работающих на газе, несоизмеримо сложнее, что ведет к существенному удорожанию агрегата в целом, его монтажа и эксплуатации в частности. На силовых установках подобного типа сжиженный или природный газ поступает в цилиндры через систему специальных редукторов, коллекторов и форсунок. Воспламенение топливной смеси происходит так же, как и в карбюраторных бензиновых установках, – при помощи электрической искры, исходящей от свечи зажигания.

    Комбинированные типы двигателей внутреннего сгорания

    Мало кто знает о комбинированных системах ДВС. Что это такое и где применяется?Речь идет, конечно же, не о современных гибридных автомобилях, способных работать как на горючем, так и от электрического мотора. Комбинированными двигателями внутреннего сгорания принято называть такие агрегаты, которые объединяют в себе элементы различных принципов топливных систем. Наиболее ярким представителем семейства таких двигателей являются газодизельные установки. В них топливная смесь поступает в блок ДВС практически так же, как и в газовых агрегатах. Но поджиг горючего производится не при помощи электроразряда от свечи, а запальной порцией солярки, как это происходит в обычном дизельном моторе.

    Обслуживание и ремонт двигателей внутреннего сгорания

    Несмотря на достаточно широкое разнообразие модификаций, все двигатели внутреннего сгорания имеют аналогичные принципиальные конструкции и схемы. Тем не менее, для того чтобы качественно осуществлять обслуживание и ремонт ДВС, необходимо досконально знать его устройство, понимать принципы работы и уметь определять неполадки. Для этого, безусловно, необходимо тщательно изучить конструкцию двигателей внутреннего сгорания различных типов, уяснить для себя назначение тех или иных деталей, узлов, механизмов и систем. Дело это непростое, но очень увлекательное! А главное, нужное.

    Специально для пытливых умов, которые желают самостоятельно постичь все таинства и секреты практически любого транспортного средства, примерная принципиальная схема ДВС представлена на фото выше.

    Итак, мы выяснили, что собой представляет данный силовой агрегат.

    § 22. Двигатель внутреннего сгорания

    Двигатель внутреннего сгорания — очень распространённый вид теплового двигателя. Топливо в нём сгорает прямо в цилиндре, внутри самого двигателя. Отсюда и происходит название этого двигателя.

    Двигатели внутреннего сгорания работают на жидком топливе (бензин, керосин, нефть) или на горючем газе.

    Тепловые двигатели такого типа обычно устанавливают на автомобили.

    На рисунке 26 показан простейший двигатель внутреннего сгорания в разрезе.

    Рис. 26. Двигатель внутреннего сгорания в разрезе

    Двигатель состоит из цилиндра, в котором перемещается поршень 3, соединённый при помощи шатуна 4 с коленчатым валом 5.

    В верхней части цилиндра имеется два клапана 1 и 2, которые при работе двигателя автоматически открываются и закрываются в нужные моменты. Через клапан 1 в цилиндр поступает горючая смесь, которая воспламеняется с помощью свечи 6, а через клапан 2 выпускаются отработавшие газы.

    В цилиндре такого двигателя периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха. Температура газообразных продуктов сгорания достигает 1600—1800 °С. Давление на поршень при этом резко возрастает.

    Расширяясь, газы толкают поршень, а вместе с ним и коленчатый вал, совершая механическую работу. При этом они охлаждаются, так как часть внутренней энергии газов превращается в механическую энергию.

    Рассмотрим более подробно схему работы такого двигателя. Крайние положения поршня в цилиндре называют мёртвыми точками. Расстояние, проходимое поршнем от одной мёртвой точки до другой, называют ходом поршня.

    Один рабочий цикл в двигателе происходит за четыре хода поршня, или, как говорят, за четыре такта. Поэтому такие двигатели называют четырёхтактными.

    Один ход поршня, или один такт двигателя, совершается за пол-оборота коленчатого вала.

    Рис. 27. Циклы работы двигателя внутреннего сгорания

    При повороте вала двигателя в начале первого такта поршень движется вниз (рис. 27, а). Объём над поршнем увеличивается. Вследствие этого в цилиндре создаётся разрежение. В это время открывается клапан 2 и в цилиндр входит горючая смесь. К концу первого такта цилиндр заполняется горючей смесью, а клапан 1 закрывается.

    При дальнейшем повороте вала поршень движется вверх (второй такт) и сжимает горючую смесь (рис. 27, б). В конце второго такта, когда поршень дойдёт до крайнего верхнего положения, сжатая горючая смесь воспламеняется (от электрической искры) и быстро сгорает.

    Двигатель внутреннего сгорания:
    а — мотоцикла; б — автомобиля; в — самолета

    Образующиеся при сгорании газы давят на поршень и толкают его вниз (рис. 27, в). Под действием расширяющихся нагретых газов (третий такт) двигатель совершает работу, поэтому этот такт называют рабочим ходом. Движение поршня передаётся шатуну, а через него коленчатому валу с маховиком. Получив сильный толчок, маховик продолжает вращаться по инерции и перемещает скреплённый с ним поршень при последующих тактах. Второй и третий такты происходят при закрытых клапанах.

    Дизель Рудольф (1858—1913)
    Немецкий инженер, создатель двигателя внутреннего сгорания используемого по настоящее время.

    В конце третьего такта открывается клапан 2, и через него продукты сгорания выходят из цилиндра в атмосферу. Выпуск продуктов сгорания продолжается и в течение четвёртого такта, когда поршень движется вверх (рис. 27, г). В конце четвёртого такта клапан 2 закрывается.

    Читать еще:  Что такое агрегатная замена двигателя

    Итак, цикл двигателя состоит из следующих четырёх процессов (тактов): впуска, сжатия, рабочего хода, выпуска.

    В автомобилях используют чаще всего четырёхцилиндровые двигатели внутреннего сгорания. Работа цилиндров согласуется так, что в каждом из них поочерёдно происходит рабочий ход и коленчатый вал всё время получает энергию от одного из поршней. Имеются и восьмицилиндровые двигатели. Многоцилиндровые двигатели в лучшей степени обеспечивают равномерность вращения вала и имеют большую мощность.

    Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолёты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

    Двигатель внешнего сгорания- Принцип работы и достоинства

    Паровые двигатели, широко используемые в девятнадцатом веке, не обеспечивали достаточной безопасности при их эксплуатации. Механизмы обладали множественными конструктивными недостатками, не выдерживали высокого давления пара, что приводило к разрывам котлов. Двигатель внешнего сгорания, запатентованный в 1816 году священником из Шотландии по имени Роберт Стирлинг, стал удачным решением для того времени. Его уникальность состояла в применении специального очистителя (регенератора) в, известных ранее, «двигателях горячего воздуха».

    На представленной схеме в доступной форме проиллюстрировано устройство поршневого механизма и порядок его работы.

    Суть изобретения Стирлинга

    На схеме тепловой двигатель состоит из двух цилиндров компрессионного и рабочего. Левая и правая стороны удлиненного цилиндра разделены теплоизоляционной стенкой. Внутри ходит специальный вытеснительный поршень, который не соприкасается с боковыми стенками.

    1. К левой стороне устройства подводится тепло, к правой – охлаждение.
    2. Когда поршень движется влево, горячий воздух вытесняется в холодную правую зону и охлаждается.
    3. При этом газ уменьшается объеме.
    4. Рабочий поршень втягивается влево.
    5. При движении вытеснительного поршня вправо холодный воздух вытесняется в горячую зону, где нагревается и расширяется.
    6. Толкает рабочий поршень вправо.
    7. Рабочий и вытеснительный поршни связаны между собой через коленчатый вал с углом смещения 90 градусов.

    Важно: Тепловой двигатель – это механизм поршневого типа с подводом тепла от внешнего источника. Рабочее тело устройства постоянно находится в замкнутом пространстве и не подлежит замене. Для поставки необходимого количества тепла могут быть использованы следующие источники:

    • электричество;
    • солнце;
    • ядерная энергия и пр.

    История развития двигателей внешнего сгорания

    В отличие от двигателей внутреннего сгорания (ДВС), где энергия выделяется в результате расширения объема воздуха при сгорании топливных смесей, здесь нагрев рабочего материала осуществляется через наружные стенки цилиндра. Отсюда произошло название «Двигатель внешнего сгорания».

    Благодаря появлению в конструкции двигателя регенерирующего элемента, тепло надолго сохраняется в зоне действия при охлаждении рабочего тела, что способствует значительному повышению производительности двигателя. Изобретение позволило увеличить эффективность механизмов, его стали широко применять в промышленном производстве.

    С течением времени, устройства Стирлинга утратили популярность, но по инерции продолжали применяться на некоторых немногочисленных производствах. Паровые двигатели уступили лидирующую ступеньку механизмам нового поколения:

    • двигателям внутреннего сгорания;
    • паровым машинам;
    • электрическим двигателям.

    О достоинствах тепловых устройств снова стали вспоминать только в двадцатом веке. Внедрением двигателей Стирлинга в современные разработки занимаются лучшие инженерные коллективы известных производителей Америки, Швеции, Японии и пр.

    Как работает тепловая машина Стирлинг

    Принцип работы двигателя внешнего сгорания заключается в постоянной смене режимов – нагревание/охлаждение рабочего материала, находящегося в замкнутом пространстве. Исходя из законов физики, при нагревании газа, его объем увеличивается, а при снижении температуры, он уменьшается соответственно. Количество вырабатываемой энергии зависит от коэффициента изменения объема рабочего тела.

    Под термином «рабочее тело» подразумеваются следующие вещества:

    1. Воздух.
    2. Пар.
    3. Газ (гелий, водород, фреон, двуокись азота).
    4. Жидкость (вода, сжиженный бутан или пропан).

    Сфера применения двигателей внешнего сгорания

    В результате последующих усовершенствований конструкции мотора, газ нагревается/охлаждается при постоянном давлении в системе (вместо сохранения объема). Это изобретение инженера из Швеции по имени Эриксон, позволило создавать двигатели, предназначенные для использования работниками шахт, типографий, судов и пр. В пассажирских экипажах того времени тепловые двигатели не применялись, т. к. обладали сравнительно большим весом.

    Двигатели внешнего сгорания часто использовались для приведения в действие генераторов в районах, где отсутствовала подача электроэнергии.

    Интересно: В 1945 году изобретатели-энтузиасты компании Philips придумали обратное применение тепловых устройств. При раскручивании вала электрическим двигателем, головка цилиндра охлаждается до минус 190°С. Это дало возможность использовать усовершенствованный поршневой двигатель внешнего сгорания Стирлинга в холодильных агрегатах.

    Можно ли использовать двигатели Стирлинга вместо ДВС

    Компания General Motors со второй половины ХХ века начала заниматься внедрением в производство V-образных стирлингов для кривошипно-шатунных механизмов. При испытаниях двигателей внешнего сгорания было замечено, что они идеально работают без звуков и шума. Здесь отсутствуют карбюратор, система зажигания, форсунки, требующие высокое давление, свечи, клапаны и пр. Для создания достаточного давления в цилиндрах двигателя не нужно взрывать топливо, как в ДВС. При использовании автомобилей, оснащенных двигателями внешнего сгорания, можно решить проблему, связанную со снижением шума в больших городах.

    В результате проведенных испытаний были выявлены следующие достоинства и недостатки двигателей внешнего сгорания.

    • Преимущества данных устройств:
    • бесшумная работа (нет необходимости устанавливать глушитель);
    • отсутствие вибраций;
    • нет необходимости в создании высокого давления в системе;
    • универсальность, способность работать от различных источников тепла;
    • легкость регулировок.

    К недостаткам двигателей относятся:

    • сравнительно большой вес конструкции;
    • малая экономичность;
    • высокая себестоимость механизма.

    Упрощенная схема V- образного двигателя внешнего сгорания:

    Один из цилиндров двигателя является рабочим (1), другой, соответственно, компрессионным (7). В каждом из них расположен свой поршень (2). В центральной части схемы размещены: охладитель (6), теплообменник (4), нагревательный элемент (3). При максимальной скорости одного из поршней, другой в это же время находится в неподвижном состоянии, его скорость равна нулю. Угол смещения фаз равен 90°, благодаря взаимно перпендикулярному расположению цилиндров.

    Как работает и где применяется двигатель внешнего сгорания

    Несмотря на то, что двигатели Стирлинга были забыты на некоторый период, в современном производстве при создании новых модификаций выдающееся изобретение набирает новую популярность. Народные умельцы по достоинству оценили преимущества двигателей внешнего сгорания и сооружают самостоятельно в домашних условиях различные приспособления, основанные на их применении. Для изготовления теплового двигателя своими руками в домашних мастерских используются различные материалы и подручные средства:

    1. Большие и средние емкости, позаимствованные из домашнего хозяйства.
    2. Подшипники от старых механизмов.
    3. Диски.
    4. Металлические стержни различного диаметра для осей, стоек.
    5. Листы из металла, древесных плит для изготовления платформы.

    Данные устройства используются в домашнем хозяйстве для выполнения самых различных работ:

    1. Вырабатывание электрической энергии в мелких масштабах.
    2. Создание тепловой энергии.

    Количества мощности некоторых образцов самодельных двигателей Стирлинга, достаточно для обустройства электрической сети и обеспечения теплом частных домов, небольших школ, лечебных корпусов, спортивных сооружений, производственных мастерских и пр.

    Двигатели, созданные своими руками, функционируют от различных источников тепла:

    • природный газ;
    • дрова;
    • уголь;
    • торф;
    • пропан и прочие виды топлива местного производства или полезных ископаемых.

    Благодаря простоте конструкции, тепловые устройства, изготовленные своими руками, не нуждаются в регулярном техническом обслуживании агрегата. Сжигание топлива осуществляется за пределами корпуса цилиндра, поэтому рабочее тело не загрязняется продуктами сгорания, на внутренних стенках оборудования не скапливаются вредные отложения.

    В сравнении с ДВС, в состав данной конструкции входит вдвое меньше подвижных узлов и деталей. Здесь требуется намного меньше смазки для ухода за быстро изнашиваемыми элементами. Требования к качеству смазочных материалов – минимальны.

    Для подведения электросети к потребителям не требуется приобретать дорогостоящее оборудование. Подсоединение проводов к электрической сети осуществляется простыми привычными методами.

    Двигатели внешнего сгорания, произведенные в бытовых условиях, легко монтируются на ровных площадках, покрытых гравием, без прочной фиксации. Данные установки не подвержены вредным атмосферным воздействиям. Для обеспечения бесперебойной стабильной работы двигателю не требуется специальный защитный корпус.

    0 0 голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты