Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Скоростная характеристика двигателя с искровым зажиганием

Скоростная характеристика двигателя с искровым зажиганием

ВСХ снимается при штатных регулировках систем топливоподачи и зажигания. На большинстве скоростных режимов состав смеси близок к мощностному.

Штатные регулировки системы зажигания обеспечивают φо.з≈φо.з опт или на средних и малых частотах вращения фол., ограниченный появлением детонации

С увеличением п происходит уменьшение относительных потерь теплоты в стенки цилиндров, улучшается качество смесеобразования и сокращается длительность второй фазы сгорания, выраженная в единицах времени (но практически, как правило, сохраняется ее длительность в градусах ПКВ). Это приводит к увеличению ηi с ростом частоты вращения и дальнейшей его стабилизации; последнему способствует некоторое возрастание фазы догорания, увеличивающее тепловые потери в стенки и в основном с отработавшими газами. Аналогичным образом изменяется отношение ηi/α. Таким образом, качество рабочего процесса двигателя с искровым зажиганием не лимитирует возможность его форсирования по скоростному режиму.

Характер изменения ηv в зависимости от частоты вращения неоднозначен для различных двигателей, хотя имеют место некоторые общие закономерности.

Для двигателей легковых автомобилей большие значения ηv в зоне высоких частот вращения обеспечивают высокую номинальную мощность двигателя, что в конечном счете определяет высокую максимальную скорость и хорошую динамику разгона автомобиля.

Для двигателей грузовых автомобилей максимальное значение в зоне низких и средних частот вращения обеспечивает хорошие тяговые свойства автомобиля.

В двигателях с управляемыми фазами газораспределения и/или изменяемой геометрией впускного тракта (изменяемой длиной впускного трубопровода) зависимость ην=f(n) имеет более пологий характер.

Совместное влияние ην , α и ηi определяет соответствующий характер изменения pi (n): его снижение при малых частотах вращения связано с уменьшением ηi и ην , а при высоких — только с понижением η v.

Уменьшение ηi при снижении скоростного режима связано:

• с увеличением относительной теплоотдачи в стенки за цикл вследствие увеличения времени контакта газов со стенками;

• с ухудшением условий смесеобразования за счет снижения скорости воздуха во впускном трубопроводе и уменьшения турбулизации заряда в цилиндре;

• с увеличением утечек рабочего тела через неплотности за счет увеличения длительности рабочего цикла;

• с некоторым обогащением смеси при снижении скоростного режима (не всегда).

Уменьшение ηv при снижении скоростного режима вызывается .несоответствием фаз газораспределения для данного режима в результате чего уменьшается дозарядка цилиндров и даже возможен обратный выброс смеси. Уменьшение ηv с увеличением скоростного режима (на высоких частотах вращения) связано с увеличением гидродинамических потерь во впускном тракте.

Среднее давление механических потерь рв.п возрастает с увеличением n по закону, близкому к линейному, что в сочетании с характером изменения pi (n) приводит, как правило, к монотонному снижению механического КПД (ηм) с ростом n.

Снижение ре при малых п определяется теми же факторами, что и снижение рi (т. е. ηi, и ηv), а при n>nмxmax вызывается снижением ηv и ηм. Как правило, для двигателей с искровым зажиганием скоростной коэффициент лежит в пределах Кп=0,55. 0,70, а коэффициент приспособляемости Кпр — в диапазоне 1,10. 1,30.

Увеличение Ne с возрастанием n продолжается до тех пор, пока рост частоты циклов, пропорциональный n, преобладает над снижением ре. Когда эти два фактора компенсируют друг друга, то достигается максимальная мощность двигателя Nemаx.

При n> nNemax происходит резкое снижение Ne, что связано с соответствующим снижением ηM и ηv. При pi=pвп двигатель выходит на режим холостого хода при полностью открытой ДЗ, достигая максимальной частоты вращения холостого хода nxmax или, как ее иногда называют, разностной частоты вращения пр, которая на 30. 50% превышает номинальную. При этом в силу особенностей рабочего процесса топливных систем ДсИЗ существенного изменения состава смеси и, следовательно, качества рабочего процесса не происходит. Для двигателей легковых автомобилей кратковременный выход на этот режим опасности не представляет.

Частичные скоростные характеристики снимают при достоянных промежуточных положениях ДЗ. Прикрытие ДЗ приводит к более резкому снижению ηv с увеличением n, что приводит : уменьшению соответственно pi, ηM, pe. Чем сильнее прикрыта ДЗ, дам круче зависимости ре(n), Мх(n), Ne(n). При этом их максимальные значения сдвигаются в область меньших частот вращения.

Читать еще:  Что такое эфишный двигатель

При незначительном прикрытии ДЗ, когда снижение ηv невелико, возможно улучшение экономичности двигателя (уменьшение gemin) в диапазоне низких и средних частот вращения при работе по частичной скоростной характеристике по сравнению с работой по ВСХ. Это связано с переходом работы системы питания на приготовление обедненных составов смеси. Однако при высоких частотах вращения преобладающим фактором является снижение ηм, что приводит к резкому возрастанию ge.

При дальнейшем прикрытии ДЗ происходит увеличение gemin вследствие снижения ηм, а при очень сильных прикрытиях ДЗ — и вследствие уменьшения ηi

Дата добавления: 2015-04-16 ; просмотров: 7 ; Нарушение авторских прав

курсовая работа Эксплуатационные свойства автомобиля

Тяговый расчёт автомобиля, его тягово-скоростные характеристики. Полный вес и подбор шин. Внешняя скоростная характеристика двигателя. Передаточное число главной передачи и коробки передач. Топливная экономичность и динамические качества при торможении.

Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»

РубрикаТранспорт
Видкурсовая работа
Языкрусский
Дата добавления04.01.2012
Размер файла65,5 K
  • посмотреть текст работы
  • полная информация о работе

Подобные документы

Определение тягово-скоростных характеристик автомобиля. Выбор прототипа автомобиля. Полный вес, передаточное число коробки передач автомобиля. Расчет показателей топливной экономичности, путевой расход топлива. Динамические качества при торможении.

курсовая работа [429,3 K], добавлен 20.05.2015

Расчет нагрузки на колеса. Внешняя скоростная характеристика двигателя. Силовой и мощностной баланс автомобиля. Динамический паспорт автомобиля, разгонная характеристика, топливная экономичность. Оптимальное передаточное число экономической передачи.

курсовая работа [461,1 K], добавлен 06.12.2013

Расчет и построение внешней скоростной характеристики двигателя. Определение передаточных чисел главной передачи и коробки передач. Оценка приемистости автомобиля. Разработка кинематической схемы трансмиссии. Определение модуля шестерен коробки передач.

курсовая работа [303,8 K], добавлен 13.06.2014

Расчёт мощности и частоты вращения коленчатого вала двигателя автомобиля. Подбор передаточных чисел коробки передач. Тяговый баланс автомобиля. Расчёт внешней скоростной характеристики двигателя. Построение динамической характеристики автомобиля.

курсовая работа [236,2 K], добавлен 12.02.2015

Краткая техническая характеристика автомобиля ВАЗ-21093 (параметры автомобиля). Определение характеристик двигателя и трансмиссии, обеспечивающих требуемые тягово-скоростные свойства автомобиля и топливную экономичность в заданных условиях эксплуатации.

курсовая работа [1,5 M], добавлен 01.03.2010

Техническая характеристика грузового автомобиля ГАЗ-4501. Оценка тягово-скоростных характеристик, уравнение движения. Внешняя скоростная характеристика двигателя. Тяговая характеристика, радиус качения. Мощностная характеристика. Топливная экономичность.

курсовая работа [1,0 M], добавлен 01.03.2010

Характеристика тягово-скоростных свойств автомобиля. Определение мощности двигателя, вместимости и параметров платформы. Выбор колесной формулы автомобиля и геометрических параметров колес. Тормозные свойства автомобиля и его топливная экономичность.

курсовая работа [56,8 K], добавлен 11.09.2010

Построение внешней скоростной характеристики двигателя

Для трактора со ступенчатой трансмиссией изменение нагрузки на крюке и, следовательно, нагрузки на двигатель при неизменном по­ложении рычага управления всережимным регулятором топливного насоса высокого давления (ТНВД) приводит к изменению час­тоты вращения коленчатого вала, которое сопровождается изменением крутящего момента, мощности, часового и удельного расходов топли­ва и других параметров.

Изменение энергетических и топливо-экономических показате­лей двигателя в зависимости от частоты вращения коленчатого вала при неизменном положении рычага управления всережимным регулятором (ТНВД) называет­ся скоростной характеристикой дизельного двигателя.

В курсовой работе скоростная характеристика двигателя представляется в табличной и графической формах. Исходные данные для построения характеристики берутся либо из предыдущей курсовой работы, либо из Приложения 3 или из литературных источников (по заданию преподавателя).

В случае формирования скоростной характеристики по данным Приложения 3 заполнение таблицы 1.9 и построение кривых характеристики производится одновременно, так как некоторые данные в таблицу пе­реносят с графиков соответствующих кривых характеристики, а координаты ряда точек кривых берут из таблицы.

Внешняя скоростная характеристика дизельного двигателя трактора строится на миллимет­ровой бумаге формата А4 (рис. 1.4). Масштаб параметров характеристики следует выбирать таким, чтобы рисунок занимал не менее 80 % рабочей площади листа.

Читать еще:  Что такое резонанс асинхронного двигателя

Рисунок 1.4 – Внешняя скоростная характеристика тракторного дизеля с регуляторной ветвью (пример исполнения)

Таблица 1.9 – Параметры внешней скоростной характеристики двигателя ________при работе с всережимным регулятором

Параметры и размерностьЧастота вращения коленвала,
,
,
, г/кВт·ч
,

Первоначально в таблицу заносят данные номинального режима nн, Nе, ge и Gт, определенные в разделе 1.1.

На оси абсцисс отмечаются характерные значения частоты вращения коленвала двигателя:

nн – номинальная частота вращения;

nм – частота вращения при максимальном крутящем моменте:

, (1.21)

nхх – максимальная частота вращения коленвала на холостом ходу:

, (1.22)

где δр – степень неравномерности всережимного регулятора ТНВД (для большинства автотракторных дизелей δр = 0,06…0,08).

На регуляторном участке характеристики (от nхх до nн) и на корректорном участке характеристики (от nн до nм) намечаются по два промежуточных значения частоты вращения, которые вписываются в таблицу 1.9.

Затем вычисляют крутящий момент двигателя, работающего на режиме номинальной мощности:

, , (1.23)

после чего находят максимальный крутящий момент:

, , (1.24)

где μк – корректорный коэффициент запаса крутящего момента (для большинства отечественных автотракторных дизелей μк = 15…20 %).

Графическое построение внешней скоростной характеристики дизеля начинают с того, что на шкале ординат в выбранном масштабе отмечают три точки, соответствующие Mк.xx = 0; Mн и Mк.max (предварительно построив шкалу частоты вращения коленвала), как показано на рисунке 1.4. На регуляторном участке отмеченные точки соединяют прямой линией, а на корректорном – выпуклой кривой (по лекалу).

Затем для выбранных значений nдв на корректорном участке по графику определяют промежуточные значения Mк и вписывают в таблицу 1.9. Далее определяют значения Ne на корректорном участке по формуле

, (1.25)

и заносят в соответствующие ячейки таблицы 1.9.

Построение кривой изменения удельного эффективного расхода топлива ge начинают с точки, соответствующей режиму номинальной мощности двигателя Nн (см. рис. 1.4).

Удельный эффективный расход топлива при максимальном кру­тящем моменте (ge) обычно на (8. 12) % больше, чем на режиме номинальной мощности. Учитывая изложенное, строят точки ge, ge и соединяют их вогнутой кривой (по лекалу). Значения промежуточных точек вписывают в табли­цу 1.9 и вычисляют часовой расход топлива Gт для корректорного участка характеристики:

, . (1.26)

Часовой расход топлива Gт.xx при работе двигателя без нагруз­ки с максимальной частотой вращения коленчатого вала обычно не превышает (25. 30) % расхода топлива на режиме номинальной мощности Gт.н и изменяется на регуляторном участке по линейному закону. По­строив линию расхода топлива, вписывают в таблицу 1.9 соответствую­щие значения Gт для регуляторного участка характеристики, затем рассчи­тывают и строят окончательно кривую ge, используя зависимость

, г/кВт·ч. (1.27)

Масштаб шкал для скоростной характеристики двигателя сле­дует выбирать так, чтобы кривые Mк, Ne, ge и Gт были равномерно рас­положены на графике (см. рис. 1.4).

16. Скоростные характеристики гоночных двигателей

Зависимость между ηm, ηv и n определяет характер кривой, представляющей изменение мощности в зависимости от частоты вращения, т. е. скоростной характеристики двигателя. Идеальный двигатель работает без потерь наполнения, механических и тепловых потерь, поэтому его мощность Nид увеличивается пропорционалыю частоте вращения и выражается прямой наклонной линией, прозеденной из начала координат (рис. 34). Угол наклона прямой зависит только от степени сжатия: чем больше степень сжатия, тем больше угол.

Мощность действительного двигателя Ni подверженного тепловым потерям и потерям наполнения, выражается кривой линией, расположенной ниже характеристики двигателя, работающего по идеальному циклу; при этом мощность Ni ограничена точкой перегиба, обусловленной падением коэффициента наполнения. Ввиду того, что здесь не учтены механические потери, эта кривая дает изменение индикаторной мощности. Механические потери приводят к дальнейшему уменьшению мощности действительного двигателя; характеристика эффективной мощности Ne располагается еще ниже, и ее точка перегиба перемещается влево вследствие быстрого увеличения механических потерь с увеличением частоты вращения.

Рис. 34. Скоростные характеристики двигателя

Форсирование двигателей уменьшает потери и приближает характеристику двигателя к идеальной характеристике, другими словами, как бы выпрямляет кривую и отдаляет ее точку перегиба в область высоких частот вращения. Скоростные характеристики нескольких гоночных двигателей показаны на рис. 35. Все эти характеристики относятся к двигателям без наддува, причем последние две характеристики принадлежат четырехтактным двигателям, остальные — двухтактным.

Читать еще:  Что такое двигатель дэт

Рис. 35. Скоростные характеристики гоночных мотоциклетных двигателей:
а — «Кавасаки», Зx60x58,8, класс 500 см 3 ; N = 110 кВт/л, К = 1,03, d = 0,31;
б — «Ямаха TD2», 2x56x50, класс 250 см 3 ; N = 132 кВт/л; К = 1,01, d = 0,22;
в — «Ямаха TR2», 2x61x59,6, класс 350 см 3 ; N = 114 кВт/л, К = 1,02, d = 0,27;
г — «Ямаха» (с золотниками), 4x35x32,4, класс 125 см 3 ; N = 237 кВт/л, К = 1,005, d = 0,16;
д — «Eso DT5», 1x88x82, класс 500 см 3 ; N = 74 кВт/л; К = 1,06, d = 0,46;
е — CZ, 4x50x44, класс 346 см 3 ; N = 129 кВт/л, К = 1,02, d= 0,26

Внешняя скоростная характеристика в значительной степени выражает динамические качества мотоцикла, так как она определяет запасы мощности на промежуточных скоростях движения. Характеристика оценивается с точки зрения приспособляемости двигателя к изменениям нагрузки коэффициентом Жирардо, который определяется как отношение максимального крутящего момента Mmax к крутящему моменту Mn при максимальной мощность, т. е.

Значения коэффициента К приведены на графиках рис. 35. Для современных высокофорсированных двигателей значение К редко превышает 1,1, так как все средства, ведущие к получению высоких максимальных мощностей, как правило, влекут за собой относительное снижение мощности при средней частоте вращения.

Другим критерием оценки внешней скоростной характеристики может служить ее диапазон рабочих частот вращения. Границами характеристики обычно являются частота вращения при максимальной мощности nm (точка перегиба) и минимальная частота вращения nmin, при которой двигатель еще может устойчиво работать на полном дросселе. Если характеристика не отличается очень резким перегибом, то иногда представляется целесообразным переходить за точку перегиба в процессе разгона мотоцикла, используя повышенную частоту вращения для получения максимальных ускорений на промежуточных передачах. Многие форсированные двигатели имеют характеристики с резким перегибом при максимальной мощности и, кроме того, работают на этом режиме с очень высокими механическими нагрузками в деталях кривошипно-шатунного и в особенности распределительного механизмов; поэтому при испытаниях характеристику нередко ограничивают точкой максимальной мощности, не фиксируя перегиба кривой. В некоторых случаях максимальная мощность может ограничиваться тепловыми нагрузками деталей двигателя.

Рабочий диапазон частот вращения двигателя можно оценить коэффициентом диапазона d. полученным как отношение

Значения коэффициента d указаны на графиках (рис. 35). Для современных конструкций значения d редко превышают 0,35—0,4 и обнаруживают достаточно отчетливую тенденцию к дальнейшему снижению так же, как значения коэффициента приспособляемости K; известны двигатели, для которых значения коэффициента диапазона d снижаются до 0,05. Такая эволюция коэффициентов d и К обусловлена конструктивными мероприятиями, необходимыми для получения высокой максимальной мощности: увеличением проходного сечения диффузоров карбюраторов, расширением угла перекрытия клапанов, увеличением угла запаздывания закрытия впускного клапана, а на двухтактных двигателях — большим запаздыванием закрытия впускного окна. В некоторой степени эластичность двигателя может быть повышена применением системы питания впрыском бензина.

Во всяком случае высокофорсированные конструкции с карбюраторным питанием все больше приближаются по своим свойствам к однорежимному двигателю и обеспечивают хорошие динамические качества мотоцикла в сочетании с многоступенчатыми трансмиссиями, позволяющими двигателю не выходить из рабочего диапазона частот вращения; по этим причинам на гоночных мотоциклах применялись коробки передач с числами передач, достигающими 14. Оптимальные динамические качества мотоциклов с высокофорсированными двигателями будут получены при установке бесступенчатых трансмиссий с прогрессивным изменением передаточного отношения.

Упомянутые выше конструктивные особенности, ведущие к снижению коэффициента приспособляемости и коэффициента диапазона, нередко дают дополнительный перегиб (переход от выпуклой части к вогнутой) в средней части характеристики.

Для получения высоких литровых мощностей на двигателях без нагнетателей часто используют так называемый эффект резонансного (или инерционного) наддува путем подбора длины и сечений впускного тракта. Этот прием позволяет добиться резкого увеличения коэффициента наполнения при определенной частоте за счет использования колебаний потока горючей смеси во впускном тракте. На характеристике влияние резонансного наддува сказывается в виде участков с соответствующим повышением мощности.

В результате влияния совокупности мероприятий, направленных на получение высоких литровых мощностей, внешние скоростные характеристики двигателей постепенно теряют свою классическую плавную форму и приобретают более сложные очертания.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector