Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Типы авиационных двигателей

Типы авиационных двигателей.

Здравствуйте!

Неоднократно в своих рассказах я упоминал авиадвигатели, но ведь при таком разнообразии летательных аппаратов неизбежно и разнообразие двигателей. Поэтому, я думаю, пришла пора этот вопрос рассмотреть поближе.

Типы авиационных двигателей. На самом деле их существует не так уж мало и всю информацию о них в одной статье уместить было бы неправильно. Получилось бы слишком длинно. Поэтому я подумал: пусть будет цикл статей о типах авиадвигателей. В нем каждому типу будет посвящена одна статья, со всеми необходимыми подробностями. А эта, первая, будет общая, так сказать ознакомительная :-)… Я тут попытался изобразить схемку, надеюсь она вам поможет :-). Итак, начнем…

Авиадвигатели можно подразделять по разному, но мне больше нравится их деление по отношению к атмосферному воздуху. То есть они делятся на такие, которым атмосфера для работы необходима и такие, которым она в принципе не нужна, более того даже снижает их эффективность.

Вторые – это ракетные двигатели, а первые назовем атмосферными (воздушными) . Любой из авиадвигателей использует химическую реакцию окисления топлива или, говоря человеческим языком, горения. Для окисления (горения) в воздушных двигателях используется атмосферный окислитель – кислород, а в ракетных он не нужен, потому что запас окислителя (как и топлива) имеется на борту. Более того для создания самого процесса движения воздушный двигатель так или иначе взаимодействует с атмосферой, либо посредством винта, либо воздух становится рабочим телом двигателя. В ракетном двигателе рабочее тело – это газы, получившиеся при сгорании топлива.

Жидкостный ракетный двигатель. Правда неавиационный

Ракетные двигатели делятся на твердотопливные ( РДТТ ) и жидкостные ( ЖРД ). В первых и топливо, и окислитель в готовом виде спрессованы в корпусе в специальную шашку. А во втором они подаются определенным образом в жидком виде в камеру сгорания.

Воздушные двигатели делятся на реактивные (их еще называют в соответствии с темой воздушно-реактивными, ВРД ) и винтовые . В первых тяга образуется за счет выхода из сопла реактивной струи, а во вторых за счет взаимодействия с воздушной средой вращающегося воздушного винта.

Еще один поршневой двигатель :-). Фирма Siemens.

Винтовые, в свою очередь, могут быть винто-моторными, то есть, попросту говоря, поршневыми (о них мы уже не раз упоминали и еще не раз вспомним :-)) или турбовинтовыми (ТВД). ТВД – это по сути своей ТРД, у которого львиная доля мощности срабатывается на турбине для вращения воздушного винта, который укреплен на валу перед компрессором (через редуктор).

Турбовинтовой двигатель ТВ3-117ВМА-СБМ1.

АН-140. На этом самолете установлены двигатели ТВ3-117ВМА-СБМ1.

Реактивные двигатели – это, в первую очередь турбореактивные (ТРД). О них вы уже знаете из этой статьи. Далее, развитие ТРД – двухконтурный турбореактивный двигатель (ДТРД или ТРДД ). Это двигатель в котором помимо основного тракта (контура) добавлен еще один контур, в котором воздух прогоняется передними ступенями компрессора (их еще назвают вентилятором) поверх основного контура прямо в сопло. Эти двигатели славятся большой экономичностью.

Как простой ТРД, так и двухконтурный могут быть форсированными. Бывает, что необходимо дополнительное увеличение мощности (часто кратковременное). А так как в газах, прошедших турбину, обычно есть еще достаточное количество кислорода, то организуют дополнительный подвод топлива в затурбинное пространство, его поджог, и получается форсажная камера. С ее помощью мощность двигателя можно значительно увеличить (обычно более, чем на треть). Получаем ТРДФ или ТРДДФ . Такой прием чаще всего применяется на военных самолетах.

Еще два вида реактивных двигателей – это прямоточный и пульсирующий воздушно-реактивные двигатели ( ПВРД и ПуВРД ). Это те самые реактивные двигатели, у которых нет турбины, как, впрочем, и компрессора. То есть у них нет вращающегося вала. Это очень специфичные малоприменяемые, однако достаточно интересные двигатели. О них я расскажу в отдельных статьях.

Основные типы авиационных двигателей я перечислил. Однако обязательно надо сказать, что в науке о тепловых машинах существует понятие газотурбинного двигателя (ГТД). И вобщем-то, строго говоря, ТРД – это разновидность ГТД . И первоначально был разработан именно ГТД, как полезный механизм, но не для авиации. В ГТД практически нет выходящей реактивной струи. Вся его мощность превращается турбиной в мощность на валу двигателя, а этот вал вращает нужные человеку агрегаты. В нашем авиационном случае он вращает винт, и чаще всего это несущий винт вертолета. Такие двигатели так и называются: вертолетные ГТД. Или еще по-другому турбовальные двигатели (от слов турбина, вал). В этом же ключе к ГТД можно отнести и турбовинтовые двигатели(ТВД), так как реактивной тяги у них сохранилась только очень малая часть.

Вертолетный ГТД (турбовальный) Д-136. Устанавливается на вертолеты МИ-26

В заключение скажу, что есть еще, скажем так, экзотические виды двигателей. Это такие, как, например, ракетные двигатели на ядерном или электро-ядерном топливе, турборакетные или ракетно- прямоточные двигатели и т.д. Такие двигатели обычно либо в практической (или даже теоретической) разработке, либо в единичных опытных образцах, будущее которых туманно. Я даже не стал включать их в схему. В дальнейшем, если будет к ним интерес и достаточно информации, я о них напишу.

Вот, пожалуй, и все. С вводной темой «Типы авиационных двигателей» мы покончили. Теперь черед более детальных и обязательно более интересных статей о каждом типе в отдельности.

Характеристики ракетного двигателя

4.1. Дроссельная характеристика ракетного двигателя

Зависимость тяги и удельного импульса двигателя от массового се­кундного расхода топлива при постоянной высоте полета и неизменном соот­ношении компонентов топлива называется дроссельной характеристикой ра­кетного двигателя.

В действительности при работе ракетного двигателя изменение массо­вого секундного расхода топлива т сопровождается изменением парамет­ров потока по тракту двигателя (Wa , Ра, Тк). Однако, т.к. изменение т на стабилизированном участке полета незначительно, то принимают:

Определим зависимость

-импульс давления

Дроссельные характеристики представляют собой семейство прямых с угловым коэффициентом А, зависящим от скорости на срезе сопла, рис.12.

Зона нежелательной работы

Рис.12

При массовом секундном расходе , согласно полученной

графической зависимости, рис. 12, тяга принимает отрицательные значения. В действительности этого не наблюдается, т.к. в этом случае существенным об­разом меняется режим истечения (отрыв потока от стенок сопла), что обу­славливает положительные значения тяги. При работе ЖРД существует неко­торое значение массового секундного расхода , меньше которого работа двигательной установки является нежелательной в течение длительного перио­да времени.

Зависимость удельного импульса Iуд от массового секундного расхода т представлена на рис. 13

При работе двигателя целесообразно поддерживать постоянной вели­чину удельного импульса даже при изменении массового секундного расхода. Это возможно за счет обеспечения следующих мероприятий:

Читать еще:  Что такое капремонт двигателя авто

поддержание постоянным перепада давления на форсунках;

поддержание постоянным давления в камере, Pк=const;

обеспечение работы двигательной установки на расчетном режиме.

Рис.13

Мероприятия, обеспечивающие изменение протекания дроссель­ной характеристики.

Рис.14

1.Изменение вида топлива, рис.14

2.Изменение площади среза сопла, рис. 15

4.2. Высотная характеристика

Высотная характеристика — зависимость тяги и удельного импульса от высоты полета при постоянном значении массового секундного расхода и не­изменном соотношении компонентов топлива.

На рис. 16 представлена зависимость давления окружающей среды Рн от высоты Н.

На рис. 16 приведены зависимости тяги и удельного импульса Iуд

от высоты полёта. Необходимо отметить, что при малых высотах полёта из-за сильного перерасширения газа наблюдается отрыв потока от стенок сопла, что учтено при построении высотной характеристики.

Рис.17

4.3. Режимы работы сопла

1) Расчетный режим, Ра = Рн, рис. 18а

2) Режим недорасширения, рис. 186.

Режим недорасширения наблюдается при полете летательного аппа­рата по траектории выше расчетной.

3) Режим перерасширения, Ра 3 воздуха, а для времени пребывания в 15—20 мин может достигать даже 0,2 мг/м 3 . Однако надо иметь в виду, что ряд веществ с особенно высокой токсичностью, таких как фтор, окислы азота, производные фтора и хлора, не допускает даже незна­чительных отклонений от установленных норм.

Степень токсичности различных веществ различна и обычно оценива­ется так называемой допустимой концентрацией ядовитого вещества в воздухе (мг/л). Иногда степень токсичности сравнивается по так называемой летальной

лозе (LD50) — это такое количество ядовитого вещества в миллиграммах на 1 кг веса живого организма, которое будучи введено в организм приводит к 50 % -ной смертности подопытных животных.

Важным экономическим фактором при создании и эксплуатации ком­плексов с ЖРДУ является стоимость компонентов ЖРТ. Вклад стоимости ком­понентов в суммарную стоимость технической системы возрастает с увеличе­нием габаритных размеров ЛА и их количества в серии.

Экономические требования. При массовом использовании ЛА с ЖРДУ, а также ЛА с ЖРДУ многократного использования возрастает роль экономиче­ского фактора. Производство новых высокоэффективных ракетных топлив не­возможно без подготовки и развития сырьевой и производственной базы. При этом стоимость производимых компонентов должна быть достаточно низкой.

Выполнить все требования, предъявляемые к ЖРТ и сформулирован­ные в наст

Электрический ракетный двигатель

Электрический ракетный двигатель (ЭРД) — ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц [1] . Также встречаются названия, включающие слова реактивный и движитель.

Комплекс, состоящий из набора ЭРД, системы хранения и подачи рабочего тела (СХиП), системы автоматического управления (САУ), системы электропитания (СЭП), называется электроракетной двигательной установкой (ЭРДУ).

Содержание

[править] Эволюция ЭРД

В своей истории электрический ракетный двигатель постепенно увеличивал мощность, пройдя путь от ионного двигателя через холловский двигатель к МПД двигателю. Тяга увеличилась с 20-250мН до 2,5-25 Н, потребляемая мощность с 1-7 кВт до 100—500 кВт, а применение от главного тягового двигателя небольшой автоматической космической станции до главного тягового двигателя для тяжелых грузовых и пилотируемых космических кораблей.

[править] Сравнение с химическими ракетами

Различие между электрическими и химическими двигатели показано на рисунке № 2. Электрические двигатели имеют малую тягу по сравнению с химическими ракетами. Однако химические двигатели расходуют огромное количество топлива и поэтому работают только короткое время. Электрические же ракетные двигатели могут работать очень долго и за большое время способны разогнать космический аппарат до приличных скоростей. Поэтому электрические ракетные двигатели лучше всего подходят на медленные путешествия на большие расстояния, а химические ракетные двигатели — на быстрые перелеты на короткие расстояния.

Говоря другими словами электрические ракетные двигатели имеют более высокую Δv — приращение скорости за то же количество топлива. Поэтому хотя химические ракеты и имеют большую тягу, но это преимущество достигается за счет огромного расхода топлива. Причина связана с тем, что скорость истечения топлива у электрических ракетных двигателей намного выше по сравнению с химическими ракетами. А скорость истечения топлива в свою очередь определяет его удельную эффективность — получаемую энергию на единицу массы.

В общем химический ракетный двигатель можно сравнить со спринтером, пробегающим 100 метров со скоростью 10 м/с, а электрический ракетный двигатель — с марафонцем, пробегающим 40 километров со скоростью скажем 1 м/с. Правда тут есть один нюанс. В космосе нет силы трения и гравитации, поэтому любое движение является равноускоренным. Если человек первую секунду бежал со скоростью 1 м/с, то во вторую секунду его скорость уже составит 2 м/с. при тех же усилиях бегуна.

Стоит отметить, что электрический ракетный двигатель можно применять только в космосе, так как его одномоментная сила тяги намного слабее гравитации Земли. Для стартов пока нет альтернативы химическому ракетному двигателю с его способностью развить мощную тягу за считанные секунды.

[править] Введение

Идея использовать для ускорения рабочего тела (РТ) в реактивных двигателях электрическую энергию возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К. Э. Циолковский. В 1916—1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В. П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения РТ, а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела. Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА.

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

Начиная с середины 60-х годов в СССР и в США начались натурные испытания ЭРД, а в начале 70-х ЭРД стали использоваться как штатные ДУ.

В настоящее время ЭРД широко используются как в ДУ спутников Земли, так и в ДУ межпланетных КА.

[править] Классификация ЭРД

Классификация ЭРД не устоялась, однако в русскоязычной литературе обычно принято классифицировать ЭРД по преобладающему механизму ускорения частиц. Различают следующие типы двигателей:

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) — ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД), также встречается (всё реже) наименование — линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

Читать еще:  Что такое пуск двигателя автомобиля

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель — ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы, а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак, для электростатических — ксенон, для сильноточных — литий, для импульсных — фторопласт.

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон. Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия, затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД.

[править] Краткие технические характеристики

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

ЭРД характеризуются не очень высоким КПД — от 30 до 60 %.

[править] История

В 1964 в системе ориентации советских КА «Зонд-2» в течение 70 минут функционировали 6 эрозионных импульсных РД, работавших на фторопласте; получаемые плазменные сгустки имели температуру

30 000 К и истекали со скоростью до 16 км/с (конденсаторная батарея имела ёмкость 100 мкф, рабочее напряжение составляло

1 кВ). В США подобные испытания проводились в 1968 на КА «ЛЭС-6». В 1961 пинчевый импульсный РД американской фирмы «Рипаблик авиэйшен» (англ. Republic Aviation ) развил на стенде тягу 45 мН при скорости истечения 10—70 км/с.

1 октября 1966 года трёхступенчатой геофизической ракетой 1Я2ТА была запущена на высоту 400 км автоматическая ионосферная лаборатория «Янтарь-1» для исследования взаимодействия реактивной струи электрического ракетного двигателя (ЭРД), работавшего на аргоне, с ионосферной плазмой. Экспериментальный плазменно-ионный ЭРД был впервые включён на высоте 160 км, и в течение дальнейшего полёта было проведено 11 циклов его работы. Была достигнута скорость истечения реактивной струи около 40 км/сек. Лаборатория «Янтарь» достигла заданной высоты полёта 400 км, полёт продолжался 10 минут, ЭРД работал устойчиво и развил проектную тягу в пять грамм. О достижении советской науки научная общественность узнала из сообщения ТАСС.

Во второй серии экспериментов использовали азот. Скорость истечения была доведена до 120 км/сек. В 1966—1971 запущено четыре подобных аппарата (по другим данным до 70 года и шесть аппаратов).

Осенью 1970 года успешно выдержал испытания в реальном полёте прямоточный воздушный ЭРД. В октябре 1970 года на XXI конгрессе Международной астрономической федерации советские учёные — профессор Георгий Львович Гродзовский, кандидаты технических наук Ю. Данилов и Н. Кравцов, кандидаты физико-математических наук М. Маров и В. Никитин, доктор технических наук В. Уткин — доложили об испытаниях двигательной установки, работающей на воздухе. Зарегистрированная скорость реактивной струи достигла 140 км/с.

В 1971 в системе коррекции советского метеорологического спутника «Метеор» работали два стационарных плазменных двигателя разработки Института атомной энергии им. И. В. Курчатова и ОКБ Факел, каждый из которых при мощности электропитания

0,4 кВт развивал тягу 18—23 мН и скорость истечения свыше 8 км/с. РД имели размер 108×114×190 мм, массу 32,5 кг и запас РТ (сжатый ксенон) 2,4 кг. Во время одного из включений один из двигателей проработал непрерывно 140 ч. Эта электрореактивная двигательная установка изображена на рисунке.

Также электроракетные двигатели используются в миссии Dawn. Планируется использование в проекте BepiColombo.

[править] Перспективы

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами, они способны работать длительное время и осуществлять медленные полеты на большие расстояния (например к внешним планетам Солнечной системы) [2] . Если же говорить о межзвездном полете, то электроракетный двигатель с ядерным реактором имеет небольшое ускорение, поэтому потребуются столетия для достижения нужной скорости, что позволяет использовать его только в кораблях поколений [3] [4] .

В настоящее время многими странами исследуются вопросы создания пилотируемых межпланетных кораблей с ЭРДУ. Существующие ЭРД не являются оптимальными для использования в качестве маршевых двигателей для таких кораблей, в связи с чем в ближайшем будущем следует ожидать возобновления интереса к разработке сильноточных ЭРД на жидкометаллическом РТ (висмут, литий, калий, цезий) с электрической мощностью до 1 МВт, способных длительно работать при токах силой до 5—10 кА. Эти РД должны развивать тягу до 20—30 Н и скорость истечения 20—30 км/с при КПД 30 % и более. В 1975 г. подобный РД испытан в СССР на ИСЗ «Космос-728» (РД электрической мощностью 3 кВт, работающий на калии, развил скорость истечения

Кроме России и США исследованиями и разработкой ЭРД занимаются также в Великобритании, ФРГ, Франции, Японии, Италии. Основные направления деятельности этих стран: ИД (наиболее успешны разработки Великобритании и Германии, особенно — совместные); СПД и ДАС (Япония, Франция); ЭТД (Франция). В основном эти двигатели предназначены для ИСЗ.

Виды ракетных двигателей схема

Конструктивные особенности современных ракет

Сегодня существует много различных типов ракет. Большинство из них снабжены системой управления, которая обеспечивает полет по требуемой траектории. Среди управляемых ракет большую группу составляют баллистические ракеты, движение которых, за исключением сравнительно небольшого участка управляемого полета с работающими ДУ, происходит по траектории свободно брошенного тела (баллистической траектории). К этой группе относятся оперативно-тактические и стратегические боевые ракеты класса «земля-земля» и «корабль-земля» с дальностью полета от сотен до нескольких тысяч километров.

Читать еще:  Датчик для измерения температуры двигателя

По числу ступеней ракеты делятся на одноступенчатые и составные (многоступенчатые). Одноступенчатая баллистическая ракета состоит из полезного груза (ГЧ) и ракетного блока, образованного в общем случае из ракетной двигательной установки с топливным отсеком с запасом ракетного топлива, системы подачи топлива, системы управления и силовых элементов конструкции. Основная характеристика баллистической ракеты — идеальная скорость, которая может быть достигнута в конце активного участка полета при движении по прямой (вне атмосферы и поля земного тяготения) под действием только силы тяги ракетного двигателя.

Составные ракеты могут быть различных конструктивных схем. Различают конструктивные схемы с поперечным делением (ракетные блоки ступеней расположены последовательно по высоте ракеты и также последовательно вступают в работу), с продольным делением (так называемая пакетная схема, допускающая одновременную работу блоков различных ступеней) и комбинированную, сочетающую особенности первых двух.

Конструкция ракет существенным образом зависит от ее назначения и типа используемых ракетных двигателей. Большинство современных боевых ракет снабжаются РДТТ. Ракетам более ранних разработок присущи ЖРД с насосной подачей топлива, в том числе с дожиганием генераторного газа, вращающего турбину турбонасосного агрегата. Для ракетных блоков первых ступеней ракет характерны многокамерные ракетные двигатели, имеющие на две или четыре камеры сгорания один общий мощный ТНА, что позволяет уменьшить высоту ДУ.

Основные силовые элементы конструкции ракеты выполняются в виде тонкостенных оболочек из высокопрочных легких сплавов или композиционных материалов. В ракетном блоке с ЖРД большую часть объема занимает топливный отсек с жидким ракетным топливом, состоящий из баков с окислителем и горючим. Баки связаны с ЖРД магистральными трубопроводами и снабжены устройствами для заправки и слива компонентов и контроля их уровня. В баках могут быть установлены перегородки для демпфирования продольных и поперечных колебаний топлива во время полета.

Наиболее экономичной и распространенной является силовая схема топливного отсека с несущими баками, стенки которых одновременно выполняют роль оболочки корпуса ракеты. Создавая в таких баках сравнительно небольшое внутреннее давление наддува, можно исключить опасную для тонкостенных оболочек потерю устойчивости и одновременно способствовать бескавитационной работе насосов ТНА. Длина топливного отсека несколько сокращается, если он выполняется в виде единой оболочки, объем которой делится на полости горючего и окислителя герметичной перегородкой. Для стабилизации ракеты промежуточная перегородка может разделять пополам полость, занятую одним и тем же компонентом, причем компонент сначала расходуется из нижней части бака, а затем — из верхней.

В схеме топливного отсека с подвесными баками (которые могут иметь цилиндрическую, сферическую, торообразную или иную более сложную форму) они крепятся силовыми узлами к несущему корпусу. С другими отсеками такой корпус соединяется также торцевыми шпангоутами. Аналогичную конструкцию имеет хвостовой отсек, в котором размещаются ЖРД и некоторые элементы арматуры системы подачи топлива.

Разделение ракетных блоков может происходить как до включения ЖРД блока последующей ступени путем торможения блока предшествующей ступени вспомогательными ракетными двигателями («холодное» деление), так и при работающем ракетном двигателе на участке спада тяги («горячее» деление).

Управление вектором тяги современных ЖРД, необходимое для полета ракеты по заданной программе, осуществляется поворотом камеры РД с помощью управляющих ракетных двигателей малой тяги, вдувом части газа за критическую часть сопла и другими способами. В случае многокамерной ДУ управляющий момент можно также создать рассогласованием тяг неподвижных камер, тяга каждой из которых регулируется в определенных пределах.

В ракетном блоке с РДТТ роль топливного отсека с запасом твердого топлива выполняет корпус РД, а в хвостовом отсеке размещается сопловой блок и оборудование, необходимое для управления вектором тяги. Управление осуществляется либо поворотом одного или нескольких сопел, либо боковым вдувом газа в основной поток продуктов сгорания в зоне расширяющейся части сопла, что приводит к газодинамической асимметрии потока и перераспределению давления на стенки раструба, создавая результирующий управляющий момент относительно центра масс ракеты.

Тяга, развиваемая РДТТ, передается на последующие отсеки или ракетные блоки (в составной ракете поперечного деления) с помощью переходной стержневой фермы или подкрепленной стрингерами оболочки. Чтобы иметь возможность выключить РД до полного выгорания топлива и отделить корпус РДТТ от головной части боевой ракеты, на его переднем днище могут быть предусмотрены наклонные сопла обратной тяги. При достижении определенного сочетания значения скорости полета, ее направления и координат ракеты по специальной команде системы управления эти сопла открываются и направляют газовый поток из камеры сгорания через переднее днище корпуса, создавая обратную тягу, обеспечивающую разделение.

Система управления ракеты предназначена для получения параметров движения в конечной точке участка выведения, необходимых для выполнения поставленной перед ракетой задачи. Одновременно СУ должна обеспечивать решение задачи устойчивости движения и снижения внешних нагрузок на корпус ракеты. В простейшем случае траектория выведения ракеты задается заранее. В более сложном применяется терминальная система управления, которая не приводит траекторию к заданной, а допускает существенные отклонения от нее, следя, однако, за тем, чтобы кинематические параметры в конце активного участка были расчетными. Последний метод требует применения мощных цифровых ЭВМ.

Способы получения управляющих усилий

Применение газодинамических и вспомогательных аэродинамических рулей малой площади

Метод впрыска в закритическую часть сопла жидкого газа

Применение газоотк лоняющих пластин

Поворот камеры сгорания

Применение отклоняемого сопла камеры сгорания

Применение управляющего соплового дефлектора

Применение верньерных или струйных двигателей

СУ состоит из датчиков, преобразующих устройств и рулевых машин. В качестве датчиков обычно используются гироскопические стабилизированные платформы, сохраняющие свое положение относительно неподвижных звезд неизменным и позволяющие измерять углы отклонения корпуса ракеты относительно связанной с такими платформами системы координат. На ГСП устанавливаются приборы, реагирующие на линейные ускорения в продольном и двух поперечных направлениях. Интегрируя нужное число раз сигналы, снимаемые с этих приборов, можно получить полное представление о кинематике движения ракеты, в частности о скоростях и сносах в поперечных к траектории направлениях.

Рулевые машины являются сложным электромеханическим (гидравлическим) приводом для поворотов основного РД или специальных рулевых РД в соответствии с сигналами, вырабатываемыми преобразующими устройствами. Помимо основных задач СУ выполняет и другие функции: подачу питания на нужные приборы, программно-логическое управление работой систем ракеты при подготовке и старте ракеты, взведение взрывательных устройств. Высокие требования, которые предъявляются к надежности СУ, приводят к необходимости дублирования и резервирования наиболее ответственных контуров управления.

Обеспечивает работу системы управления бортовая цифровая вычислительная машина. Она предназначена для решения на борту движущегося объекта (ракеты) задач управления движением и стабилизацией, автономной и инерциальной навигации, программного управления и т. д. Различают специализированные и универсальные БЦВМ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector