Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Инверторный двигатель в современных стиральных машинах

Инверторный двигатель в современных стиральных машинах

Инверторный двигатель в стиральной машине — что это? В стиралках нашли применение два мотора с преобразованием переменного тока в постоянный — асинхронный и трёхфазный. Последний иногда называют бесщёточным двигателем постоянного тока (BLDC — Brushless Direct Current Motor). Рассмотрим подробнее каждый вариант, а также преимущества и недостатки.

  • Трёхфазный асинхронный
  • Прямой привод
  • Каталог СМА с отзывами

Трёхфазный асинхронный

Этот двигатель был изобретён в 1889 году русским инженером Доливо-Добровольским, и нашёл широкое применение в промышленности, где используют трёхфазное напряжение 380 вольт. В стиральных машинах он начал использоваться после развития и широкого распространения электронных систем управления.

  • Преимуществом этих двигателей является бесшумность — он применяется в тихих стиралках.
  • Главный недостаток — сложное управление через инвертор.

Работаю в сфере ремонта бытовой техники. Большой опыт в восстановлении стиральных и посудомоечных машин.

Управление

Так как в домах используется однофазный ток 220 вольт, то для работы такого двигателя нужен преобразователь с регулировкой скорости и направления вращения. Это довольно сложное электронное устройство, схема которого приведена ниже на рисунке.

Схема управления инвертора

Как видно, что сначала переменный ток преобразуется в постоянный в выпрямителе. Для этого используется мост на диодах. Катушка индуктивности L, ёмкость C и термистор (на схеме слева), служат для защиты модуля от перегрузок, а также предохраняет домашнюю электросеть от колебаний при работе машины.

Затем постоянное напряжение поступает в силовую часть, где преобразуется в трёхфазное импульсное, у которого меняется амплитуда и частота. Именно за счёт этого осуществляется изменение скорости и направления вращения двигателя. Тахометрический генератор (обозначен T) выполняет обратную связь с системой управления. С его помощью модуль понимает скорость барабана.

Работаю в сфере ремонта бытовой техники. Большой опыт в восстановлении стиральных и посудомоечных машин.

Основной поломкой таких моторов, является повреждение платы управления. Сам двигатель сгорает редко. Отметим, что диагностировать поломку крайне тяжело. На моторе реально проверить только целостность обмоток с помощью мультиметра . Полноценно диагностировать исправность двигателя можно через модуль управления.

Инверторы бывают следующего исполнения:

  • в виде отдельной платы;
  • интегрированы с мотором;
  • находятся на общем электронном модуле.

Модуль управления инверторным мотором

Прямой привод

Второй тип инверторных двигателей, это трёхфазные бесщёточные постоянного тока. Впервые их стала применять фирма LG в 2005 году в качестве прямого привода. Он находится непосредственно на валу барабана. Ремень при этом отсутствует.

Это было революционным решением, которое стало очень удачным, и в настоящее время его применяют и другие производители: «Самсунг», «Вирпул», «Хайер» и «Беко».

Мотор прямого привода

Считается что эти моторы получили развитие от шаговых двигателей, которые уже широко распространены, в частности, электротехники. Считаются крайне надёжными и долговечными. Поэтому фирма «ЛДЖи» даёт на них расширенную гарантию — 10 лет. Одно из названий — BCDC. Такие двигатели широко применяются в посудомоечных машинах, в составе рециркуляционного насоса, а так же используются в электровелосипедах.

Одной из их особенностей — постоянные магниты на роторе. В стиральных машинах с прямым приводом ротором является металлическая чаша, которая крепится к валу барабана. Внутри неё находятся постоянные магниты.

Статор — неподвижная часть и соединена с внешней стороной бака. Она представляет собой круг, покрытый пластиком с местами для обмотки катушек. Внутри находятся электротехнические пластины. Также здесь располагается тахометрический генератор.

Статор инверторного двигателя

Система управления схожа с асинхронным двигателем, рассмотренным выше. Инвертор преобразует переменное однофазное напряжение 220 вольт, в постоянное трёхфазное. Параметры его могут меняться по напряжению — от 0 до 120 вольт, а по частоте — от 0 до 300 Гц. Схема и логика управления довольно сложная и не рассматривается здесь, т. к. нужна только специалистам.

Инверторные двигатели прямого привода имеют следующие преимущества:

  • простая конструкция;
  • низкий шум;
  • отсутствие приводного ремня, и как следствие уменьшение потерь на трение;
  • нет щёточного узла — не нужно менять щётки и не возникают проблемы из-за оседания пыли.

Недостаток только один — сложная и дорогостоящая система управления. Отметим, что наметилась тенденция по отходу от коллекторных двигателей, но тем не менее они являются основой большинства стиральных автоматических машин.

Линейные двигатели

Применение линейных двигателей имеет следующие преи­мущества перед схемами с серводвигателями: точность позиционирования; возможны сверхмалые подачи (микроны); высокая скорость (свыше 3 м/с); высокое ускорение (80 м/с 2 ); отсутствие мертвого хода; низкий уровень шума даже при максимальной скорости; возможность реализации малых рабочих ходов; отсутствуют упругие деформации элементов привода (зубчатый ремень, винт ШВП); длительный срок службы и надежность. К недостаткам следует отнести: высокие требования к точности изготовления элементов машины; наличие системы охлаждения; высокая стоимость.
В состав типовой сервосистемы на основе линейного двигателя (рис. 1) входят: линейный двигатель, состоящий из первичной и вторичной секций; блок управления (на рисунке не показан); рабо­чий стол; направляющие качения; датчик об­ратной связи; кабелеукладочная цепь; ограничитель хода; буфер.

Для контроля скорости, положения системы и коммутации двигателя используется датчик линейных перемещений. Этот узел преобразует измеряемое перемещение в последовательность электрических сигналов, содержащих информа­цию о величине и направлении этих перемещений. Преобра­зователь состоит из измерительной головки и линейки, при этом между ними отсутствует механический контакт. Как правило, это оптоэлектрические датчики, но также могут ис­пользоваться магнитные и индукционные системы.
Линейный двигатель, как и вращающийся, состоит из двух частей: первичной и вторичной секций. Первичная сек­ция соответствует статору вращающегося двигателя. Она включает в себя шихтованный магнитопровод с трехфазной обмоткой и температурный датчик. Вторичная секция пред­ставляет собой ротор, состоящий из стального несущего каркаса с прикрепленными к нему постоянными магнитами. Первичная и вторичная секции заключены в оболочки.
Условно говоря, линейный двигатель (рис.2) представляет собой вращающийся двигатель, который разрезан и «развернут» в плоское состояние. Соответственно, принципы работы остаются неизменными. Однако, в линейном двигателе движение совершает первичная секция (обмотка) при непод­вижной вторичной секции (роторе).

Движущее магнитное поле генерируется обмоткой первичной секции. Поля вторичной секции и результирующее магнитное поле первичной секции создают движение в соответствующем направлении посредством создания тягового усилия. Положение результирующего вектора определяется фазами токов инвертора, а амплитуда вектора, и, следовательно, развиваемое мотором усилие, задается амплитудами фазных токов.
Для нормальной работы линейного двигателя необходимо точно выдержать воздушный зазор между первичной и вторичной секциями. При увеличении зазора уменьшается нагрузочная способность двигателя. В связи с этим повышаются требования к точности исполнения монтажных поверхностей. На величину и точность воздушного зазора влияют направляющие прямолинейного движения и рабочий стол.
Как и серводвигатель, линейный двигатель управляется блоком управления. Модель блока управления определяется выбранным типом линейного двигателя.
На одной оси могут быть установлены две первичных секции, работающие параллельно от одного блока управления. Эти секции должны быть одного типоразмера с одинаковым типом обмотки. При этом расстояние между первичными секциями определяется требуемыми позициями электрических фаз. Допустимые компоновки секций и расстояния между ними приводятся в документации на двигатель.
Критическим местом для линейных двигателей является температурный режим. Производители предлагают линейные двигатели с воздушным и водяным (масляным) охлаждением. Это может быть один и тот же двигатель, работающий в разных режимах.
Конвекционное охлаждение значительно упрощает конструкцию машины, однако, при этом существенно снижается номинальное тяговое усилие (≈ в 2 раза). Максимальное усилие двигателя остается прежним. На рис. 3 представлена простейшая схема водяного охлаждения. Естественно, наличие охлаждения делает конструкцию всей машины в целом сложнее.

Стремясь улучшить охлаждение двигателя, производители вводят в его конструкцию дополнительные охлаждающие элементы. На рис. 4 (а) приведена конструкция первичной секции двигателя фирмы Sew-Eurodrive с воздушным охлаждением, в которой применен вентилятор. На рис. 4 (б) представлен линейный двигатель фирмы Siemens с дополнительным водяным радиатором направленного охлаждения первичной и контуром охлаждения вторичной секций.

Для предотвращения перегрева линейный двигатель оснащается датчиком температуры. Датчик отключает двигатель при температуре обмотки ≈ 120ºС.
К основным характеристикам линейного двигателя относят: номинальное тяговое усилие FN, H; максимальное тяговое усилие Fmax, H; максимальная скорость Vmax, м/с; сила магнитного притяжения первичной секции – длина L, мм и ширина B, мм. На рис.5 представлена типовая зависимость тягового усилия от линейной скорости. Номинальное усилие FN, задающее область работы с постоянной нагрузкой, определяется температурным режимом. С максимальным усилием двигатель может работать ограниченное время и не во всем диапазоне скоростей.

Читать еще:  Двигатель андория как снять стартер

В таблице 1 приведены данные о характеристиках линейных двигателей от различных производителей. Номинальное тяговое усилие приводится при воздушном и водяном охлаждения (разделены знаком «/»). Естественно, все модели не могут быть представлены в одной таблице. Полные каталоги предоставляются производителями или их дилерами.

Таблица 1. Характеристики линейных двигателей

Mitsubishi(тип HALM 12, 14)

Sew-Eurodrive (тип SL2-Basic)

Siemens (тип 1FN3)

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

Турбовинтовентиляторные реактивные двигатели гражданской авиации ближайшего будущего

Существующие сегодня реактивные двигатели уже не считаются экономичными и удобными для использования и обслуживания, и несколько мировых компаний уже приступили к разработке новых типов силовых установок. Они должны стать легче, экономичнее и мощнее существующих сегодня двигателей пассажирских лайнеров. Фактически отцом современных двигателей, устанавливаемых на транспортные и пассажирские самолеты, является советский конструктор Архип Люлька. В 1941 году он получил патент на изобретение турбореактивного двухконтурного двигателя, однако из-за Великой Отечественной войны построить прототип установки не успел. Первый двигатель такого типа в 1943 году испытали в Германии. От обычных реактивных двигателей, разработка которых началась чуть раньше, новые силовые установки отличались течением воздушных потоков по двум контурам.

  • Наша продукция
  • Презентации по направлениям
  • Инжиниринг
  • Консалтинг
  • Металлообработка
  • Моделирование
  • Разработки

Внутренний контур состоит из зоны компрессоров, камеры сгорания, турбины (газогенератор) и сопла. Во время полета воздух затягивается и немного сжимается вентилятором, самым большим винтом и самым первым по ходу полета. Затем часть этого воздуха поступает в компрессор и сжимается еще сильнее, после чего попадает в камеру сгорания, где смешивается с топливом. После сгорания горючего раскаленные газы вырываются из камеры сгорания и вращают турбину.

Схема турбовентиляторного реактивного двигателя. Слева направо: вентилятор, компрессор низкого давления, компрессор высокого давления, вал компрессора низкого давления, вал компрессора высокого давления, камера сгорания, турбина высокого давления, турбина низкого давления, сопло. K. Aainsqatsi / wikipedia.org

Турбина представляет собой жаропрочный воздушный винт, жестко посаженный на вал. Этим валом турбина связана с компрессорами и вентилятором на входе двигателя. После турбины реактивная струя попадает в сопло и истекает из него, формируя часть тяги двигателя. Вторая часть воздуха после вентилятора поступает в направляющий аппарат. Это такие вертикальные неподвижные лопатки. В этой части воздушный поток тормозится, из-за чего давление в нем повышается. После этого сжатый воздух сразу поступает в сопло и формирует остаток тяги.

Сегодня турбореактивные двухконтурные двигатели делят на два типа: с низкой и высокой степенью двухконтурности. Степень двухконтурности — это отношение объема воздуха за момент времени проходящего через внешний контур, то есть, минуя камеру сгорания, к объему воздуха, проходящего через внутренний контур, то есть газогенератор. Двигатели со степенью двухконтурности меньше двух традиционно ставятся на боевые самолеты, поскольку имеют небольшие размеры и большую тягу. Но они же расходуют много топлива.

Если у силовой установки степень двухконтурности больше двух, его принято называть турбовентиляторным реактивным двигателем. В такой силовой установке большая часть воздуха в полете проходит по внешнему контуру. На современных двигателях от 70 до 85 процентов тяги формируется именно вентилятором, в то время как внутренний контур используется лишь для привода дополнительных агрегатов, типа генератора, а также самого вентилятора и компрессоров.

В турбовентиляторных двигателях коэффициент полезного действия зависит от величины степени двухконтурности. Но увеличение двухконтурности приводит и к увеличению размеров двигателя, его массы и аэродинамических характеристик (большой двигатель имеет большое лобовое сопротивление). В целом же турбовентиляторный двигатель не может развивать скорость выше скорости звука, но имеет небольшой расход топлива, что как раз очень важно для пассажирских и грузовых перевозок.

Турбовентиляторные двигатели в гражданской авиации используются на протяжении последних нескольких десятилетий и зарекомендовали себя как надежные, относительно дешевые и экономичные силовые установки. Эти показатели разработчики из года в год стараются снизить, применяя все новые технические решения вроде саблевидных лопаток вентилятора, позволяющих сильнее сжимать воздух в зоне входа в компрессорную часть. Но эти решения не дают существенной экономии в расходе топлива.

Американский двигатель CFM56, устанавливаемый на самолеты нескольких типов компаний Boeing и Airbus, имеет степень двухконтурности 5,5 и удельный расход топлива в крейсерском режиме 545 граммов на килограмм-силы в час. Для сравнения, двигатель АЛ-31Ф истребителей Су-27 имеет степень двухконтурности 0,57 и удельный расход топлива в крейсерском режиме в 750 граммов на килограмм-силы в час и 1900 граммов на килограмм-силы в час на форсаже. Первый CFM56 расходовал чуть больше 700 граммов топлива на килограмм-силы в час.

Турбовентиляторный реактивный двигатель на самолете Boeing 777-300 Boeing

Частичной экономичности новых турбовентиляторных двигателей конструкторы смогли добиться и за счет использования редуктора. Его установили между вентилятором и валом турбины, благодаря чему удалось избавиться от жесткой связки между горячей и холодной частями силовой установки. Кроме того, вентилятор и турбина стали работать в оптимальных друг для друга условиях. Но для существенной экономии конструкторы, помимо прочего, стали думать в сторону турбореактивных двигателей с ультравысокой степенью двухконтурности.

Ультравысокой, или сверхвысокой, степенью двухконтурности считается, когда объем воздуха проходящего за момент времени через внешний контур в двадцать и более раз больше объема воздуха, проходящего через внутренний контур. Так изобрели турбовинтовентиляторный реактивный двигатель. Он имеет два (иногда три) вентилятора, расположенных на одной оси и вращающихся в разные стороны. Лопатки таких вентиляторов имеют саблевидную форму, а сами роторы — изменяемый шаг.

Схема турбовинтовентиляторного реактивного двигателя с открытым винтовентилятором Hamilton Sundstrand Corporation

Внешне турбовинтовентиляторные двигатели могут быть похожи на обычные турбовинтовые с воздушными винтами. Однако в новых силовых установках диаметр вентиляторов в среднем на 40 процентов меньше обычных воздушных винтов, а воздушный поток за лопатками вентилятора сжимается по разному. Например, в зоне воздухозаборника компрессорной части он, как и у турбовентиляторных двигателей, имеет большую степень сжатия.

Одним из примеров турбовинтовентиляторных двигателей является российский НК-93. Иногда его называют турбовинтовентиляторным реактивным двигателем с закапотированным ротором, или винтовентилятором. В нем винтовентилятор вместе с небольшим по длине внешним контуром забран в капот, специальную конструкцию, защищающую лопатки и упорядочивающую воздушный поток в полете. Такой двигатель примерно на 40 процентов экономичнее сопоставимого по мощности Д-30КП транспортного самолета Ил-76.

Сегодня разработка НК-93 приостановлена. Проект официально не закрыт, но будет ли он когда-либо завершен, не ясно. По разным данным, удельный расход топлива двигателем НК-93 в крейсерском режиме полета составил бы от 370 до 440 граммов на килограмм-силы в час. При этом до 87 процентов тяги будут формироваться именно винто-вентилятором. В третьей серии двигателей Д-30КУ-154 для Ил-76 удельный расход топлива удалось снизить до 482 граммов на килограмм-силы в час.

Схема турбовинтовентиляторного реактивного двигателя с закапотированным ротором avia-simply.ru

Тяга НК-93, по предварительным расчетам, должна была составит около 18 тысяч килограммов-силы. Для сравнения, тот же Д-30КУ-154 способен выдавать тягу в 10,8 тысячи килограммов-силы. Отчасти неудачи проекта НК-93 объясняется недофинансированием проекта, а также не совсем удачными испытаниями опытной модели, некоторые показатели которой оказались несколько выше расчетных. Кроме того, несмотря на свою эффективность и экономичность, НК-93 является двигателем очень крупным.

Между тем, в 2000-х годах Запорожское машиностроительное конструкторское бюро «Прогресс» разработало двигатель Д-27. Он относится к турбовинтовентиляторным реактивным двигателям с открытым винтовентилятором. Сегодня он является единственной в мире силовой установкой такого типа, выпускаемой серийно. Д-27 используется на перспективном украинском военно-транспортном самолете Ан-70. В этом двигателе поток воздуха создаётся двумя соосными многолопастными саблевидными винтами.

Тяга двигателя Д-27 составляет 13,1 тысячи килограммов силы, а удельный расход топлива в крейсерском режиме — около 140 граммов на килограмм-силы в час. Турбовинтовентиляторные двигатели с открытым ротором могут иметь немного различную конструкцию. Как правило, в них предусмотрено использование редуктора для привода винтовентилятора турбиной. Украинский двигатель в своей конструкции редуктор использует. Этот узел позволяет выставить оптимальные обороты для турбины и оппозитно-вращающихся роторов.

В Евросоюзе в настоящее время действует многолетняя программа разработки новых технологий для гражданской авиации, которые в целом должны будут сделать пассажирские самолеты будущего экономичнее, экологичнее, тише и комфортнее. Этот проект называется Clean Sky 2. В рамках этого проекта французская компания Snecma, входящая в холдинг Safran, приступила к сборке первого опытного образца турбовинтовентиляторного двигателя с открытым ротором. Испытания силовой установки состоятся до конца 2016 года.

Читать еще:  Болтает двигатель на холостом ходу

Новый опытный двигатель на время проверок установят на пассажирский лайнер Airbus 340 на специальном подвесе в хвостовой части фюзеляжа. Перед летными испытаниями перспективный двигатель проверят на тестовом стенде на полигоне во французском Истре. Параметры перспективной силовой установки разработчики сравнивают с распространенными CFM56. Ожидается, что выбросы углекислого газа двигателя с открытым ротором будут на 30 процентов меньше, чем у CFM56.

Для сборки опытного образца двигателя Snecma намерена использовать газогенератор турбореактивного двухконтурного двигателя с форсажной камерой M88. Такими силовыми установками оснащаются французские истребители Dassault Rafale. С вала, раскручиваемого турбиной двигателя, через редуктор будет приводиться открытый винтовентилятор с роторами диаметром около 420 сантиметров. Лопатки вентилятора будут изменять угол атаки. Частота вращения винтовентилятора составит около 800 оборотов в минуту.

Для сравнения скорость вращения вентилятора двигателя CFM56 составляет 5200 оборотов в минуту в режиме полной мощности. Двигатель с открытым вентилятором, разрабатываемый Snecma, сможет развивать тягу в 111 килоньютонов (11,3 тысячи килограммов-силы). Идея французского двигателя базируется на американском GE36, разработка которого велась в 1980-х годах, однако из-за несовершенства материалов была закрыта. В частности, общей чертой для двигателей с открытым ротором является изогнутая форма лопаток.

Дело в том, что эффективность двигателя, в общих чертах, зависит от шага винта и скорости вращения. Чем эти показатели выше, тем быстрее полетит самолет. Однако при определенной скорости вращения вала наступает момент, когда скорость обтекания воздушным потоком законцовок лопастей приближается к сверхзвуковой. Из-за этого весь винт теряет эффективность. Изогнутая форма позволяет снизить частоту вращения вала и несколько уменьшить шаг винта, не потеряв в эффективности.

Разработчики рассчитывают, что новые турбовинтовентиляторные реактивные двигатели с открытым ротором будут в целом тише современных турбовинтовых и турбовентиляторных двигателей. Этого можно достичь за счет сдвига шума в более высокочастотную область, а высокочастотный шум, как известно, существенно более сильно спадает с увеличением расстояния до наблюдателя.

С каждым годом проектирование новых авиационных двигателей становится все более сложным. Времена, когда за счет использования нового принципа сжигания топлива или введения дополнительного воздушного контура можно было существенно повысить эффективность и экономичность конструкции, прошли. Теперь конструкторам уже приходится решать множество тесно связанных друг с другом задач и искать новые материалы для производства различных деталей двигателей.

  • Наша продукция
  • Презентации по направлениям
  • Инжиниринг
  • Консалтинг
  • Металлообработка
  • Моделирование
  • Разработки

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Вертикальные двигатели что это

Аппараты с поворотными реактивными двигателями или соплами

В аппаратах этого типа после выполнения вертикального взлета вектор тяги реактивного двигателя поворачивается для создания движущей силы в горизонтальном направлении. Эта концепция обычно реализуется одним из двух способов: поворотом двигателей или отклонением реактивной струи жестко установленных двигателей с помощью специальных сопел.

Первым успешно летавшим аппаратом, использовавшим этот принцип, стала так и не получившая обозначение машина фирмы «Белл», созданная в 1954 году. Это было чисто экспериментальное сооружение, собранное из подручных материалов и снабженное двумя поворотными реактивными двигателями по бортам фюзеляжа. Первый полет состоялся 16 ноября 1954 года. Тяга двигателей едва превышала вес аппарата, но для горизонтального полета была чрезмерной, поэтому пилотирование машины требовало колоссальных усилий от летчика. По результатам испытаний фирма признала эту схему бесперспективной и стала работать над аппаратами, основанными на других принципах (типа X).

Английская фирма «Роллс-Ройс» подошла к этой проблеме более серьезно. В 1958 году в стенах ее лабораторий был создан летающий стенд, сыгравший выдающуюся роль в дальнейшей разработке реактивных конвертопланов.

Летающий стенд фирмы «Роллс-Ройс».

Это сооружение было построено для проверки идеи о том, что отклонение реактивной струи может обеспечить вертикальный взлет.

Силовая установка аппарата состояла из двух двигателей «Нин», каждый из которых развивал статическую тягу 45,6 кН в горизонтальном положении. Вертикальная составляющая тяги возникала при отклонении реактивной струи вниз, проблема состояла в том, как отклонить вектор тяги на 90 градусов без значительных потерь. 25 октября 1958 года такая возможность была подтверждена экспериментально. Ясно, что стенд не проектировался для полетов на большой высоте, но и он нуждался в эффективном управлении. Такое управление обеспечивалось с помощью четырех поворотных сопел, через которые выбрасывался воздух, отработанный от компрессора. Внешний вид этой «летающей табуретки» обычно приводил в шок тех, кто впервые видел это сооружение в воздухе.

В том же 1958 году началась разработка одноместного истребителя, названного «Харриер» («Гончая»).

Британский истребитель «Харриер».

Первые 6 машин оснастили одним двигателем Р.1127 с тягой 5216 кН, оборудованным четырьмя поворотными соплами. Управление на режимах висения и при полете на малых скоростях обеспечивалось с помощью дополнительных небольших сопел, создающих реактивные струи в носовой и хвостовой частях фюзеляжа, а также на концах крыльев.

Первый полет, в котором был проверен режим висения, состоялся 21 октября 1960 года, а первый переход из висения в горизонтальный полет был осуществлен только в сентябре 1961 года. Всего в программе было задействовано 6 машин. Полученные в ходе испытаний результаты вдохновили фирму на создание новых опытных машин с увеличенной тягой. За опытными машинами последовали серийные модели, получившие название «Си Харриер», которые в 1969 году и были приняты на вооружение. Самолеты этого типа до сих пор находятся в серийном производстве в Англии, а также по лицензии выпускаются в США как машины непосредственной авиационной поддержки для нужд корпуса морской пехоты.

Наиболее современная модель («Харриер-3») имеет следующие данные: силовая установка — двигатель «Пегас-103» тягой 97,5 кН; размах крыльев — 7,7 м; максимальная взлетная масса при взлете с укороченным разбегом — 11 340 кг; максимальная скорость — 1186 км/ч; время набора высоты 12 000 м — 2 мин 22 с. Благодаря большому диапазону отклонения сопел самолет может не только взлетать вертикально, но способен летать назад или даже вбок, как вертолет. Опыт, полученный в ходе Фолклендской войны 1982 года, показал, что такое нетрадиционное маневрирование вызывает значительные трудности в бою для вражеских летчиков. Правда, надо учитывать, что аргентинские пилоты воевали на устаревших машинах, а зона боев была на самой границе их боевого радиуса действия. Война высветила и крупные недостатки машин: для того чтобы «Харриер» был способен выполнять вертикальный взлет, его масса должна быть меньше тяги двигателей. Это накладывает жесткие ограничения на дальность полета (из-за уменьшенного запаса топлива) и боевую нагрузку. В частности, боевой радиус действия при вертикальном взлете составил всего 80 км. При выполнении взлета с разбегом (даже укороченным) самолет способен нести нагрузку почти вдвое больше. С учетом опыта войны в носовой части английских авианосцев был установлен наклонный трамплин, что увеличило угол атаки в конце разбега.

Такое внимание к самолетам вертикального или укороченного взлета именно в Великобритании было совсем не случайно. Военные моряки прекрасно понимали, что удержание господства на море невозможно без надежного прикрытия с воздуха боевых кораблей, а для этого необходимы авианосцы. Однако отмечая высокую эффективность кораблей данного класса, специалисты указывают на колоссальные затраты на их строительство, содержание и эксплуатацию. И действительно, если стоимость «Форрестола» (первого американского послевоенного авианосца, построенного в 1952 г.) составляла небывалую по тем временам сумму — 250 млн долларов, то на первый атомный авианосец, «Энтерпрайз» (1961 г.), пришлось затратить почти вдвое больше — 445 млн, а пятый, «Теодор Рузвельт», (1988 г.) обошелся совсем в фантастическую сумму — 3 млрд долларов. Современные самолеты, обладая большой массой и посадочной скоростью, требовали огромных взлетно-посадочных палуб. Водоизмещение кораблей возросло до 91 000 т, а длина достигла 340 м.

Экономика Англии в 1960-е годы переживала далеко не лучшие времена, и «потянуть» таких гигантов страна конечно не смогла. Лебединой песней английских судостроителей были два корабля типа «Игл», построенные в 1951 году. Эти махины имели водоизмещение 50 000 т, длину 247 м, ширину 34,4 м (по палубе — 52 м) и могли развить скорость 31,5 узла. Вооружение состояло из 34 самолетов и 10 вертолетов. В 1977 году из соображений экономии их вывели из состава флота: тощий бюджет на корню загубил имперские амбиции. Самолет вертикального или укороченного взлета позволял создать корабли меньших размеров и стоимости, чем атомные авианосцы, и открывал новые пути в развитии этого класса судов.

Читать еще:  Что такое имульсия в двигателе

В 1979 году вступил в строй первый английский авианесущий крейсер «Инвинсибл», вооруженный ракетами, шестью самолетами «Харриер» и десятью вертолетами.

Английский авианесущий крейсер «Инвинсибл».

Вслед за ним последовали еще два корабля — «Илластриес» и «Арк Ройал». Их водоизмещение составляет всего 19 500 т, длина — 206 м, ширина — 27,5 м, а скорость — 28 узлов. «Инвинсибл» воевал в Южной Атлантике во время конфликта с Аргентиной из-за Фолклендских островов и в целом показал довольно неплохие боевые качества, приемлемые для участия в локальных войнах. С 1980-х. годов крупные авианосцы были только во флотах Соединенных Штатов, Франции и СССР, потому что другие морские державы, включая и Великобританию, посчитали их чересчур дорогими.

Однако в отличие от англичан Советский Союз вначале создал авианесущие крейсера и лишь затем приступил к строительству настоящих авианосцев, а не наоборот. Впервые самолет, способный совершать вертикальный взлет и посадку, Советские ВВС показали в 1967 году на авиационном празднике в Домодедово.

Небольшая серебристая машина, управляемая Героем Советского Союза полковником Мухиным, взревев реактивными двигателями, вертикально поднялась и как бы зависла в воздухе. Лишь набрав высоту около 50 м, самолет постепенно начал разгоняться и, убрав шасси, на огромной скорости промчался над трибуной. Молниеносно совершив круг, машина начала торможение; было видно, как летчик выпустил шасси. Подойдя к месту посадки, самолет на какой-то миг завис на высоте 50 м, сделал разворот и, снижаясь вертикально, плавно приземлился на свое место. Никаких технических данных этой сугубо экспериментальной машины опубликовано не было, зато лицо симпатичного пилота появилось почти во всех центральных газетах. Красавец мужчина, Мухин был явно использован для отвлечения внимания пишущей братии от секретов КБ Яковлева, разработавшего этот самолет.

Параллельно с доработкой самолета 21 июля 1970 года в Николаеве был заложен тяжелый авианесущий крейсер, получивший название «Киев».

Тяжелый авианесущий крейсер «Киев».

Первый корабль, специально предназначенный для базирования эскадрильи самолетов вертикального старта. В конце 1972-го крейсер был спущен на воду, а в январе 1975-го вступил в строй, опередив англичан почти на два года. В 1978 году в строй вступил аналогичный «Минск», а в 1982 году — «Новороссийск». Завершил серию в 1987 году «Адмирал флота Горшков», отличающийся от предшественников более современным радиотехническим оборудованием и увеличенным на четыре установки количеством ударных ракет. Технические данные кораблей впечатляли: водоизмещение — 44 000 т, длина — 273 м, ширина — 31 м (по летной палубе 51,3 м), скорость хода — 32 узла. Вооружение состояло из противокорабельных и зенитных ракет (24 и 192 шт.), 100-мм и 30-мм пушек, а также 16 самолетов и 21 вертолета (19 типа Ка-27 и 3 — Ка-25).

В качестве базового самолета использовалась машина Як-38, чье серийное производство началось в 1971 году (тут англичане немного впереди).

Палубный истребитель Як-38.

Самолет имеет следующие характеристики: длина — 15,5 м, размах крыла — 7,3 м, максимальная стартовая масса (при вертикальном взлете) — 8,2 т, максимальная скорость у земли — 978 км/ч. Двигатели: 1 подъемно-маршевый ТРД Р-27 (тяга — 6800 кгс), 2 подъемных РД-36 (тяга — 262840 кгс). Дальность полета без подвесных баков — 460 км.

В 1972 году, чувствуя огромную заинтересованность ВМС, четыре американские и одна английская фирмы выдвинули проекты сверхзвуковых палубных самолетов с вертикальным взлетом и посадкой. Флот согласился рассмотреть два проекта — «Дженерал Дайнемикс» и «Рокуэлл». Принять один из самолетов на вооружение планировалось в конце 1980-х годов. В. 1976 году принимается комплексная программа, цель которой — полностью заменить традиционные самолеты аппаратами с вертикальным взлетом. 1978 год: ВМС сосредоточивают все усилия на вертикально взлетающем сверхзвуковом истребителе-бомбардировщике фирмы «Рокуэлл» Х-12А. 1979 год: наблюдается полное охлаждение к самолетам вертикального взлета и авианесущим кораблям небольшого водоизмещения. Истребитель Х-12А в воздух так и не поднялся. Построенный в единственном экземпляре из деталей самолетов «Фантом» и «Скайхок», он успел пройти только статические испытания на специальном стенде. Дальнейшие работы над аппаратами такого типа были признаны совершенно бесперспективными и полностью прекращены.

Однако советские конструкторы с этими выводами не согласились, и в 1991 году на авиационном салоне в Ла Бурже был продемонстрирован первый в мире сверхзвуковой самолет вертикального взлета и посадки. Это был советский ЯК-141. Машина вооружена 30-мм пушкой, полным комплектом ракет и может развивать скорость до 1850 км/ч. К большому сожалению, из-за развала ВПК серийное производство этой уникальной машины развернуто не было.

Получив необходимый опыт строительства авианесущих кораблей, Советский Союз приступил к постройке настоящих авианосцев, т. е. кораблей, на которых предусмотрено базирование реактивных самолетов горизонтального взлета и посадки. В апреле 1982 года в Николаеве заложен первый в истории отечественного судостроения корабль такого класса, получивший название «Рига» (с 1990 г. «Адмирал флота Кузнецов»). В 1985-м заложен его систер-шип «Варяг». Это были уже настоящие великаны водоизмещением в 70 000 т, длиной 304 и шириной 38 м (по полетной палубе — 75 м). Максимальная скорость составляла 32 узла, а дальность плавания 6000 миль. На вооружении помимо ракет и орудий состояло 24 самолета и 42 вертолета. Первоначально планировалась установка катапульт, позже их заменили трамплином. Учитывая великолепную тяговооруженность Су-37К, поступивших на вооружение этих кораблей, отказ от катапульты оказался правомерным. «Кузнецов» вошел в строй в 1990 году. «Варягу» повезло меньше. В 1992 году его строительство было приостановлено при степени готовности 85 %.

Развитием серии должны были стать корабли типа «Ульяновск» — первые советские ударные атомные авианосцы (головной заложен в 1988 году в Николаеве). Строительство этого уникального корабля прекращено при степени готовности 20 %, и в 1992 году его остов разделан на стапеле на металл. Атомный первенец был бы водоизмещением 75 000 т, длиной 320 м и мог бы нести 60 самолетов.

Сравнение советских кораблей с их английскими аналогами явно не в пользу «владычицы морей»: их водоизмещение достигает лишь половины водоизмещения судов класса «Киев» и они могут взять на борт только 18 самолетов и вертолетов против 37 у советских судов. После четырех кораблей класса «Киев» и трех британских типа «Инвинсибл» восьмым подобным судном стал итальянский «Гарибальди».

Итальянский авианесущий крейсер «Гарибальди

Его водоизмещение равно только половине водоизмещения британских кораблей, он может брать на борт комбинированную группу из 16 вертолетов и самолетов вертикального взлета, имеет 174 м в длину и 30 м в ширину. Корабль способен развивать скорость 29 узлов, а по очертаниям корпуса очень похож на классический авианосец времен Второй мировой войны.

В общем, в Советском Союзе были созданы действительно замечательные авианесущие корабли.

С огромным сожалением употребляем слово «были».

В августе 1994 года «Киев», «Минск» и «Новороссийск» выведены из боевого состава флота и переданы в отдел фондового имущества для демонтажа и реализации. Гиганты не прослужили и 15 лет, что для кораблей такого класса преступно мало. Американцы, например, тщательно сохраняют некоторые авианосцы еще военной постройки. Недостроенный «Варяг» продан Украиной за 20 млн долларов Китаю. Если бы существовала книга черных рекордов Гиннесса, думаем, что эти факты заняли бы там почетное место. Какой новый Достоевский способен объяснить: до каких пор людей, по крохам собиравших державу и беспощадно каравших ее врагов, мы будем обзывать палачами, а индивидов, разваливших страну и пустивших на ветер труды целых поколений, именовать реформаторами?

Из нашего краткого очерка видно, что, несмотря на огромные преимущества, машины с вертикальным взлетом и посадкой широкого распространения не получили. Дело в том, что аппаратам этого класса присущи принципиальные недостатки, делающие невозможным их коммерческое применение. В первую очередь, это очень высокая стоимость, малая нагрузка и неоправданно большое потребление горючего. Поэтому «кормить таких прожорливых питомцев» пока по силам только военным. На этой грустной ноте и закончим наш небольшой рассказ об этих в некоторой степени парадоксальных машинах и их носителях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector