Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шприц для перорального приема

Шприц для перорального приема

Ученые из MIT создали первую удобную инсулиновую таблетку

Физики и биологи из Массачусетского технологического института разработали особую нанокапсулу-«шприц», позволяющую вводить инсулин и другие нестабильные субстанции в организм через желудок. Первые итоги ее использования были представлены в журнале Science (Abramson et al., An ingestible self-orienting system for oral delivery of macromolecules).

«Мы сильно надеемся, что эти капсулы уже скоро начнут помогать диабетикам и пациентам, которые сейчас нуждаются в постоянных инъекциях. Вдобавок, они могут радикально изменить и фармакологию, так как сегодня мы в основном создаем лекарства, которые можно принимать оральным путем. Теперь это не требуется», – заявил Роберт Лангер (Robert Langer), профессор MIT (в пресс-релизе New pill can deliver insulin – ВМ).

По статистике ВОЗ, сегодня в мире насчитывается около 340 миллионов людей, страдающих от диабета. Большая часть из них вынуждена принимать по две или даже по 5-6 инъекций инсулина в день для того, чтобы стабилизировать уровень сахара в крови.

Несмотря на его огромную важность для организма, инсулин – достаточно опасный гормон, так как его передозировка может повредить здоровью диабетика или даже убить его в результате гипогликемии – резкого снижения доли сахара в крови.

В последние годы ученые пытаются создать безопасный синтетический аналог инсулина или такие системы ввода гормона в организм, которые защищали бы человека от передозировки.

К примеру, в начале 2013 года американские биохимики создали микрокапельницу-«медузу», медленно выделяющую инсулин после ввода под кожу, а год назад они разработали своеобразные растворимые капсулы, способные доставить инсулин в кишечник.

Пока такие альтернативы не пройдут все проверки и не попадут в аптеки, диабетикам приходится принимать обычный инсулин и периодически сталкиваться с гипогликемией или гипергликемией – столь же опасным резким «скачком» в концентрации глюкозы в крови из-за недостатка инсулина.

Лангер и его коллеги сделали первый большой шаг к решению этой проблемы, создав особые нанокапсулы, способные вводить инсулин или другие лекарства в организм больного, приклеиваясь к стенкам желудка при помощи специальной нано-иглы.

По своей структуре эта «таблетка» похожа на своеобразный желудь, панцирь черепахи или перечницу. Подобная форма, как объясняет медик, позволяет капсуле присоединиться к поверхности стенки желудка, пищевода или любой другой части организма только одной стороной, что предотвращает побег инсулина или других лекарств в пищеварительную систему.

Когда таблетка закрепляется на поверхности, желудочный сок постепенно растворяет особую сахарную пробку на ее вершине, которая удерживает пружину и присоединенную к ней иглу на месте. Когда они высвобождаются, игла «выстреливает» и пробивает нижнюю часть капсулы, проникая внутрь слизистой желудка.

После этого инсулин постепенно проникает внутрь кровотока, а сама капсула постепенно растворяется и исчезает примерно через час. Как подчеркивают медики, пациент при этом не испытывает боли, так как подобные рецепторы в тканях желудка отсутствуют.

Работу этих таблеток Лангер и его коллеги проверили на свиньях, используя две разных версии подобных капсул. Как показали эти опыты, одна такая пилюля может доставить в организм около пяти миллиграммов инсулина, что сопоставимо с дозой, необходимой для носителей диабета второго типа.

По словам исследователей, их разработка уже привлекла внимание ведущих фармацевтических компаний. Сейчас они вместе работают над созданием новых, более универсальных версий подобных нанокапсул и планируют провести их клинические испытания в самое ближайшее время.

РАЗВЕСТИ ПАРЫ!

Такого ни на одних соревнованиях сегодня не услышишь. Между тем в 20-30-е годы многие моделисты использовали на судо-, авто- и даже авиамоделях паровой двигатель. Наибольшем популярностью пользовалась паровая машина с качающимся цилиндром. Она проста в изготовлении- Впрочем, предоставим слово автору — моделисту Александру Николаевичу ИЛЬИНУ: по просьбе редакции он изготовил и испытал судомодель с таким двигателем

Надежность и безопасность — основные критерии, которыми я руководствовался, выбирая тип паровой машины. Паровой двигатель с качающимся цилиндром, как показали испытания, при правильном, аккуратном изготовлении модели выдерживает даже двукратные перегрузки.

Но недаром я подчеркнул аккуратность — в ней залог успеха. Постарайтесь в точности выполнить все наши рекомендации.

Теперь поговорим о самой паровой машине. На рисунках I и II показан принцип ее действия и устройство.

На станине 11 шарнирно укреплены цилиндр (детали 1, 2 и 13) с золотниковой пластиной 8. Для входа и выхода пара в цилиндре и золотниковой пластине просверлено отверстие 3. Кроме того, на станине установлена жестко еще одна золотниковая пластина 4. В ней просверлены два отверстия. В процессе работы парового двигателя, когда отверстие цилиндра совмещается с правым отверстием золотниковой пластины 4, пар входит в цилиндр (см. рис. I, фаза А). Расширяющийся пар толкает поршень 13 вниз — до так называемой нижней мертвой точки (фаза Б). Благодаря маховику 9 движение поршня в этой точке не прекратится, увлекаемый инерцией, он поднимается вверх, выталкивая отработанный пар. Как только отверстие цилиндра совпадает с левым отверстием пластины 4, пар станет выходить в атмосферу (фаза В).

Золотниковые пластины, как вы понимаете, должны быть плотно подогнаны друг к другу, иначе пар будет проникать в зазор и эффективность двигателя заметно снизится. Поэтому на оси 7 установлена пружина, поджимающая пластину 4 к пластине 8. Кроме основной функции, этот узел выполняет еще и роль предохранительного клапана. Когда давление в котле по какой-либо причине повысится, пружина сожмется, пластины разойдутся и избыток пара выйдет наружу. Поэтому пружину затягивают гайкой так, чтобы вал двигателя мог сделать несколько оборотов по инерции. Проверьте это, повернув его рукой.

Пар в машину поступает через трубку 5. Один конец ее соединен с отверстием впуска на золотниковой пластине 4, на другой надет шланг 6, соединенный с паровым котлом. Для нашего двигателя пригоден любой резиновый шланг, не содержащий нитяных или проволочных упрочняющих элементов. Но лучше всего от бензопровода автомобиля.

Шланг на паропроводе ничем не закреплен. Это тоже мера безопасности. При увеличении давления пара шланг сорвется с трубки, и давление в котле мгновенно упадет.

Основной рабочий орган машины — цилиндр 1. Сверху он запаян жестяной шайбой 2, снизу закрыт поршнем 13.

В поршень впаян шток-кусочек вязальной спицы с шайбой на конце. Через ее отверстие проходит палец кривошипа 14, припаянного к валу 10 гребного винта, тоже изготовленного из спицы. На вал установлен маховик 9. Вал паровой машины вращается в подшипнике скольжения 12, который впаян в станину.

Изготовление паровой машины советуем начать с самых трудоёмких деталей — цилиндра, поршня, парораспределительного устройства.

Для цилиндра подберите латунную трубку диаметром 12-16 мм. Внутреннюю поверхность ее следует тщательно отполировать. Желательно сделать это на токарном станке стержнем с марлевым тампоном, натертым пастой ГОИ или любой другой для полировки металлов. В результате обработки диаметр трубки по концам может оказаться больше, чем в середине. Поэтому для цилиндра используют только среднюю часть, соответственно увеличивая длину заготовки.

К готовому цилиндру припаяйте жестяную крышку, промойте собранную деталь керосином и принимайтесь за поршень. Он состоит из собственно поршня, штока и шайбы.

Поршень желательно изготовить из бронзы или чугуна. Проточите на токарном станке заготовку до такого диаметра, чтобы она туго входила в цилиндр. Примерьте, не вынимая из патрона, а затем просверлите отверстие для штока. Теперь отрежьте заготовку нужной длины и впаяйте в нее шток. К штоку припаяйте шайбу.

Если диаметр поршня оказался больше, чем нужно, его стачивают напильником с мелкой насечкой и наждачной бумагой, а потом полируют. Делается это на токарном станке с помощью байковой полоски и полировочной пасты.

Золотниковые пластины желательно вырезать из латуни толщиной 2-3 мм. Для более плотного прилегания к цилиндру в золотниковой пластине 8 сделайте выемку. А потом просверлите отверстие под ось 7 — винт диаметром 3 мм с потайной головкой (на рисунке показана разметка пластины).

На золотниковой пластине 4 при помощи циркуля и керна наметьте места для впускного и выпускного отверстий. Просверлите их и приступайте к шлифовке обеих пластин наждачной бумагой. Затем их также полируют.

Золотниковую пластину 8 нужно припаять к цилиндру. Сначала вставьте в нее ось, тонкой проволокой привяжите пластину к цилиндру, смажьте места пайки флюсом, обложите их кусочками припоя и прогрейте на газовой горелке. Припой растечется по поверхности, смазанной флюсом, и схватит детали. Если при нагревании отпаяется крышка цилиндра, не беда — ее легко припаять вновь.

Читать еще:  Двигатель 6g72 расход топлива

В цилиндре нужно просверлить отверстия для пара. Кондуктором для них может служить парораспределительное отверстие 3 в пластине В.

Собранный узел крепится на станине 11, согнутой из жести. Изготавливая ее, постарайтесь точно выдержать расстояние между осью 7 и осью подшипника 12.

К готовой станине припаяйте золотниковую пластину 4, трубку 5 паропровода 6, подшипник 12. Отверстие для вала 10 сверлится по месту, а расстояние между деталями станины выбирается в зависимости от размеров маховика 9.

Маховиком может служить любая стальная или бронзовая, деталь, размеры которой не меньше указанных на нашем рисунке. Подшипник 12 лучше всего выточить из бронзы.

Теперь расскажем об изготовлении парового котла (рис. III).

Обечайку 1 (боковую поверхность) котла согните из жести. В торцовые ее части впаяйте два слегка вогнутых жестяных донышка 2. Обечайка изготавливается следующим образом. Полоску жести от консервной банки шириной 80 мм и длиною около 200 мм несколько раз протяните вокруг толстого стержня — заготовка примет форму правильного кольца. Вырежьте из него полосу нужной длины и спаяйте цилиндр диаметром 40 мм. Донышки 2 делаются по форме уже спаянного котла. Обычное плоское донышко противостоять давлению пара не сможет. Поэтому придайте заготовке сферическую форму. Делается это легкими ударами молотка с выпуклым бойком на толстой деревянной плите (можно использовать и мягкий металл, например, свинец).

Донышки впаяйте выпуклой стороной внутрь, края загните и пропаяйте.

Для заливки воды предусмотрен на котле специальный штуцер. Он состоит из гайки МЗ-М4 длиною 10- 12 мм (деталь 3) и соответствующего винта, выполняющего функцию пробки. Заправляют котел с помощью медицинского шприца.

Образовавшийся в котле пар выходит через отверстие 4 (его диаметр 6 мм). Вместе с паром обычно вылетают и капельки воды, что мешает работе паровой машины. Поэтому над выходным отверстием нужно установить специальный колпак-уловитель 5, а к нему припаять патрубок 6 паропровода. Тогда вылетающие из котла капельки будут оседать на стенках колпака, а в патрубок попадет лишь сухой пар.

Готовый котел проверьте на герметичность. Все запаянные швы смажьте мыльной пеной и через паропровод подуйте в котел. В тех местах, где появятся мыльные пузыри, нужна повторная пайка.

К котлу припаяйте ножки 7 и согните из жести горелку для сухого горючего.

Паровая машина готова.

Мы уже говорили, что при правильном обращении наша паровая машина совершенно безопасна. Однако меры предосторожности при испытании не лишни. Прежде всего помните, что образующийся в котле пар должен постоянно выходить из него: расходоваться на работу поршня, а затем вытекать через отверстие в золотниковой пластине. Если этого не происходит, нужно немедленно погасить огонь, дождаться, когда котел полностью остынет, найти и устранить неисправность. Это правило техники безопасности надо неукоснительно соблюдать. И советуем пригласить кого-нибудь из знающих взрослых, прежде чем начать испытания.

Шлангом соедините паровую машину с котлом. Концы шланга на патрубках не закрепляйте. Чтобы пламя горелки не испортило шланг, оберните его фольгой. Залейте в паровой котел 30-40 мл кипяченой воды и зажгите горелку с двумя (не более) таблетками сухого горючего. Потихоньку начинайте проворачивать вал паровой машины. Примерно через 30 — 40 с вода в котле зашумит, а из выхлопного отверстия машины станет капать горячая вода. Потом из щели золотникового устройства пойдет и пар.

Правильно сделанная паровая машина начинает работать через 1-2 мин. Следите, чтобы вода в котле не выкипала, иначе он распаяется.

Проверенную в работе паровую машину установите на модель. Она может быть готовая, покупная или сделанная своими руками из жести или полистирола.

Альтернативная и малая энергетика на паровом двигателе

NEW BUSINESS THEME

Свежие записи

  • Привет, мир!

Свежие комментарии

Архивы

  • Февраль 2016

Рубрики

  • Без рубрики
  • Войти
  • Лента записей
  • Лента комментариев
  • WordPress.org

Паровой двигатель в малой энергетике

ПАРОВОЙ РОТОРНЫЙ ДВИГАТЕЛЬ и ПАРОВОЙ АКСИАЛЬНО- ПОРШНЕВОЙ ДВИГАТЕЛЬ

Паровой роторный двигатель (паровая машина роторного типа) является уникальной силовой машиной, развитие производства которой до настоящего времени не получило должного развития.

С одной стороны- разнообразные конструкции роторных двигателей существовали ещё в последней трети 19-го века и даже неплохо работали, в том числе и для привода динамо-машин с целью выработки электрической энергии и электроснабжения всяких объектов. Но качество и точность изготовления таких паровых двигателей (паровых машин) было весьма примитивным, поэтому они имели малый КПД и невысокую мощность. С тех пор малые паровые машины ушли в прошлое, но вместе с действительно малоэффективными и бесперспективными поршневыми паровыми машинами в прошлое ушли и имеющие хорошую перспективу паровые роторные двигатели.

Главная причина- на уровне технологий конца 19-го века сделать действительно качественный, мощный и долговечный роторный двигатель не представлялось возможным.
Поэтому из всего многообразия паровых двигателей и паровых машин до нашего времени благополучно и активно дожили лишь паровые турбины огромной мощности (от 20 мВт и выше), на которых сегодня осуществляется около 75% выработки электроэнергии в нашей стране. Еще паровые турбины большой мощности дают энергию от атомных реакторов в боевых подводных лодках-ракетоносцах и на больших арктических ледоколах. Но это все огромные машины. Паровые турбины резко теряют всю свою эффективность при уменьшении их размеров.

…. Именно поэтому силовых паровых машин и паровых двигателей мощности ниже 2000 — 1500 кВт (2 — 1,5 мВт), которые бы эффективно работали на паре, получаемом от сжигания дешевого твердого топлива и различных бесплатных горючих отходов, сейчас в мире нет.
Вот в этой –то пустой сегодня области техники (и абсолютно голой, но очень нуждающейся в товарном предложении коммерческой нише), в этой рыночной нише силовых машин небольшой мощности, могут и должны занять своё очень достойное место паровые роторные двигатели. И потребность в них только в нашей стране — на десятки и десятки тысяч… Особенно такие малые и средние по мощности силовые машины для автономное электрогенерации и независимого электроснабжения нуждаются малые и средние предприятия в отдаленных от больших городов и крупных электростанций местностях: — на малых лесопилках, отдаленных приисках, на полевых станах и лесных делянках, и пр. и др.
…..

..
Давайте рассмотрим показатели, из-за которых паровые роторные двигатели оказываются лучше, чем их ближайшие сородичи — паровые машины в образе поршневых паровых двигателей и паровых турбин.
… — 1)
Роторные двигатели являются силовыми машинами объемного расширения – как поршневые двигатели. Т.е. они обладают небольшим потреблением пара на единицу мощности, потому что пар подается в их рабочие полости время от времени, и строго дозированными порциями, а не постоянным обильным потоком, как в паровых турбинах. Именно поэтому паровые роторные двигатели гораздо экономичнее паровых турбин на единицу выдаваемой мощности.
— 2) Роторные паровые двигатели имеют плечо приложения действующих газовых сил (плечо крутящего момента) значительно (в разы) больше, чем поршневые паровые двигатели. Поэтому развиваемая ими мощность гораздо выше, чем у паровых поршневых машин.
— 3) Паровые роторные двигатели имеют гораздо большее рабочий ход, чем поршневые паровые двигатели, т.е. имеют возможность переводить большую часть внутренней энергии пара в полезную работу.
— 4) Паровые роторные двигатели могут эффективно работать на насыщенном (влажном) паре, без затруднений допускать конденсацию значительной части пара с переходом её в воду прямо в рабочих секциях парового роторного двигателя. Это так же повышает КПД работы паросиловой установки с использованием парового роторного двигателя.
— 5 ) Паровые роторные двигатели работают на оборотах в 2-3 тыс. оборотов в минуту, что является оптимальной частотой вращения для выработки электричества, в отличие от слишком тихоходных поршневых двигателей (200-600 оборотов в минуту) традиционных паровых машин паровозного типа, или от слишком быстроходных турбин (10-20 тыс. оборотов в минуту).

При этом технологически паровые роторные двигатели относительно просты в изготовлении, что делает затраты на их изготовление относительно невысокими. В отличие от крайне дорогостоящих в производстве паровых турбин.

Читать еще:  Горячий двигатель работает неустойчиво

ИТАК, КРАТКИЙ ИТОГ ЭТОЙ СТАТЬИ — паровой роторный двигатель является весьма эффективной паровой силовой машиной для преобразования давления пара от тепла сгорающего твердого топлива и горючих отходов в механическую мощность и в электрическую энергию.

Автором настоящего сайта, уже получены более 5 патентов на изобретения по разным аспектам конструкций паровых роторных двигателей. А так же произведено некоторое количество небольших роторных двигателей мощностью от 3 до 7 кВт. Сейчас идет проектирование паровых роторных двигателей мощностью от 100 до 200 кВт.
Но у роторных двигателей есть «родовой недостаток» — сложная система уплотнений, которые для маленьких по размерам двигателей оказываются слишком сложными, миниатюрными и дорогими в изготовлении.

В 2016-18 гг я сделал и испытал несколько моделей поршневых опозитных и аксиально поршневых моторов.. Данные компоновки представлялись наиболее энерго — производительной по мощности вариацией из всех возможных схем применения поршневой системы. Внизу размещено видео использования маленького аксиально-поршневого оппозитного двигателя с встречным движением поршней.

Но по итогам работы сделан вывод- что общий итог работы с поршневыми двигателями- неудовлетворителен. Почему такой вывод-для этого нужно писать целую большую почти научную работу, с материалами на несколько кандидатский диссертаций…. Главное- что поршневые двигатели не могут работать без смазки. А настоящий паровой двигатель (как паровая турбина) должен работать без смазки. Ибо при температуре перегретого пара в 350-380 град- любая смазка тут же обуглится. И такой плохой результат был получен на материалах высокого качества — так пара трения «поршень- цилиндр» — подвергнута ионно -плазменному азотированию в вакуумной среде и твердость поверхностей трения составляет 62-64 ед по HRC. Подробно о процессе упрочения поверхности методом азотирования смотри ТУТ.

http://www.youtube.com/watch?v=W0wolj41ods
Вот анимация принципа работы похожего по компоновке такого аксиально- поршневого оппозитного двигателя с встречным движением поршней

Первые пуски малого парового роторного двигателя

….. Многие посетители моего сайта спрашивают — а каково потребление твердого топлива в таких малых паро-силовых установках а единицу мощности?
…. Отвечаю — на угле на 1 квт-час выработки электричества идет расход примерно 1,2 — 1,3 кг угля, или 1,6 — 2 кг дров, щепы, опила — в зависимости от их влажности.

. МАТЕРИАЛЫ — МАЙ 2020 г.

Видео ролик с работой парового роторного двигателя.
https://www.youtube.com/watch?v=bFi8CgLLfok

На моем небольшом предприятии в Краснодаре налажено штучное производство под заказ малых паро -силовых установок с роторным двигателем мощностью от 1 до 5 квт. В перспективе можно делать установки до 30 квт мощности.

Заказы присылайте на почту igg-iss@yandex.ru
либо связь по Скайп iggiss2

Вот пример такой малой установки

Кому интересны подробности работы малой паро-силовой техники — смотрите тут:
маневры котлом и работа двигателя в разных режимах:

БЛИЖАЙШАЯ ПЕРСПЕКТИВА

Так же- ближайшая перспектива: сейчас разрабатывается микро установка на 0,25 квт.
Для пеших туристов, геологов, охотников, военных и проч. Она будет переносится в 2-х рюкзаках за спиной. Кипятильник- котел будет раскладываться над костром. Вся система делается из дюрали с поверхностным керамическим покрытием. Вся установка весом примерно 15 -16 кг. Плюс вес небольшого аккумулятора — 2 кг.
Установка будет делиться на 2 части и переносится в 2-х рюкзаках. Время сборки до запуска примерно 7- 8 минут. Время запуска от установки над костром до пуска генератора- 2- 3 минуты. Стремлюсь получить по вес 5 —6.5 кг одно место. Мощность электрогенератора 0,25- 0.4 квт.

Первые испытания натурного макета такой установки показали реальность создания такого изделия.

Приходит много писем — сколько стоят такие малые паросиловые установки с электрогенераторами.

Отвечаю: самая дешевая мобильная походно- туристическая установка мощностью по электричеству 0,4 — 0,5квт стоит 80 тыс руб ( с выхлопом водяного пара в воздух).

Самая дорогая и мощная установка на 18 квт (двухконтурная на легкокипящей жидкости) — стоит от 470 до 650 тыс. рублей.

Срок изготовления больших установок- 3-4 месяца от предоплаты.
Малые установки могут быть в наличии.

Адрес электронной почты для связи: i gg-iss@yandex.ru
Ник в мессенджере Telegram: Igor Iss

Следующая страница — «Паровые Машины Прошлого».

Перейти страница о «Твердом Топливе»

Паровые установки для выработки электро- и тепловой энергии

Исторически под паровой машиной понимали работающий на водяном паре тепловой двигатель поршневого типа, а когда были изобретены паровые турбины, подобные двигатели часто стали называть турбомашинами.

Дешевые виды местного твердого топлива из биомассы (дрова, древесные пеллеты, брикеты, щепа, опилки) используются для генерации электроэнергии или когенерации, для чего разработаны несколько технологий. Основные:

  • газификация — получение низкокалорийного горючего (генераторного) газа с его последующим использованием в газопоршневом двигателе, приводящем в действие электрогенератор;
  • сжигание твердого топлива в паровом котле и использование полученного пара для работы паровой турбины;
  • сжигание твердого топлива в паровом котле и использование пара для работы поршневого парового двигателя (классической паровой машины или парового поршневого двигателя).


Паровой двигатель Spilling


Газовый детандер Spilling

Главным достоинством современных паровых поршневых двигателей (машин) по сравнению с маломощными (особенно одноступенчатыми) паровыми турбинами является меньший удельный расход пара при равных параметрах давления и температуры пара на входе и выходе и при одинаковой мощности паровой машины и паровой турбины. К плюсам классических паровых машин также надо отнести, по сути, постоянный удельный расход пара при изменении нагрузки в широких пределах (в отличие от двигателей внутреннего сгорания — ДВС) при постоянной частоте вращения (работе на синхронный электрогенератор).

А теперь сравним паропоршневые установки (ППУ) с газопоршневыми (ГПУ). Для работы ГПУ в качестве топлива используется не только природный газ, но и с недавнего времени биогаз и генераторный газ, полученный в результате газификации биомассы. При работе классического поршневого двигателя на генераторном газе мощность двигателя падает до 60%. Но если сравнивать с классической паровой машиной, для работы которой используется водяной пар, то, согласно термодинамическому циклу Карно, его экономичность выше за счет того, что температура продуктов сгорания в ГПУ выше температуры пара, ограниченной теплостойкостью материалов парового котла. Однако при работе ГПУ горючий газ высокой температуры необходимо охлаждать перед подачей в цилиндр газопоршневого двигателя, а это приводит к сбросу во внешнюю среду около 20% теплоты сгорания твердого топлива и делает ГПУ неконкурентоспособным классической паровой машине. Принципиальным отличием паропоршневых двигателей от газопоршневых является наличие у первых накопителя энергии — парогенератора (парового котла), который играет роль пароводяного аккумулятора. Большое значение имеет и стабильность рабочего тела (пара). Отсюда следует, что кратковременные остановки котла не приведут к немедленной остановке самой паровой машины. Чего не скажешь о газопоршневом двигателе, в котором при загрузке газогенератора топливом возможно изменение состава газа, а это может привести к остановке двигателя. Существенное преимущество паровых двигателей заключается также в том, что для работы специализированных паровых котлов можно использовать биомассу (щепу или дрова) естественной влажности, а для газогенераторных установок влажность сырья, как правило, не должна превышать 20%. К тому же ГПУ требует более тщательного ухода, в отличие от паропоршневого двигателя. Преимуществами ППУ перед ГПУ и ДВС являются высокая выносливость и долговечность, простота обслуживания и ремонта и возможность работы, по сути, на любом виде дешевого местного твердого топлива. Последнее условие важно, потому что обеспечивает возможность широкого использования топливных ресурсов на местах и независимость от привозного топлива (к примеру, от топлива так называемого северного завоза в России).

Выше мы сравнивали паровые машины с газопоршневыми двигателями, которые работают на газифицированной биомассе. Понятно, что при работе ГПУ на природном газе при генерации только электроэнергии их преимущество неоспоримо. Однако при когенерации расклад не в пользу ГПУ; утилизировать тепловую энергию выхлопных газов значительно сложнее, чем тепловую энергию выхлопа паровой машины, т. к. коэффициент теплоотдачи конденсирующегося пара в теплообменнике в десятки раз выше коэффициента выхлопного газа ГПУ. Паровая машина экологичнее за счет меньшего объема выбросов NO и CO. Работающие паровые двигатели замкнутого цикла менее шумные, чем ГПУ и ДВС. Паровая машина вполне может конкурировать и с паровой турбиной мощностью 1000-2500 л. с. Конечно, по размерам и весу паровые машины больше в сравнении и превосходят паровые турбины, но за счет меньшей частоты вращения вала ППУ нет необходимости устанавливать редуктор. Ведутся и разработки компактных поршневых паровых двигателей. Например, компания из США Cyclone Power Technologies Inc. разработала паропоршневой двигатель со звездообразным расположением цилиндров мощностью 75 кВт, КПД 31,5% — по аналогии с бензиновыми авиационными моторами, которые используются до сих пор на труженике советской и российской авиации — знаменитом биплане Ан-2.

Читать еще:  Что такое помпаж дизельного двигателя

Использование паровых машин

За рубежом в малой энергетике (мини-ТЭС) вместо малых паровых турбин успешно используются паровые машины, или, как сегодня принято говорить, паропоршневые (паровые) моторы или двигатели. Основной отличительный признак паропоршневых моторов от паровых машин — иной тип парораспределения. Паропоршневые моторы предназначены для работы с однократным расширением пара: пар из котла поступает параллельно во все цилиндры, подобно тому как поступает топливно-воздушная смесь в цилиндры ДВС. А в классических паровых машинах пар проходит через все цилиндры последовательно и расширяется многократно.

Мировую известность получили немецкие паровые моторы фирмы Spilling. Это одноступенчатые поршневые паровые машины противодавленческого типа с системой золотникового расширения пара, отличающиеся от других современных паровых машин, которые работают по многоступенчатому принципу. К сожалению, у модельного ряда паровых машин Spilling очень узкий диапазон мощности: от 100 кВт до 1,2 мВт. Но ресурс у них довольно большой, и в последние годы компания-производитель предлагает их на российском рынке для установки на мини-ТЭС, работающих на биотопливе, на производствах, где есть возможность и необходимость редуцирования пара с расходом от 2,5 т/ч и на установках для утилизации отходов (ТБО, ТКО и др.). Компания Spilling поставляет паропоршневой двигатель в сборе с электрогенератором как готовый к работе агрегат с системой управления, автоматизации и программным обеспечением. Такой двигатель может также работать на природном газе либо биогазе в качестве детандера. Стоимость 1 кВт установочной электрической мощности при расчетах можно принять от 1500 евро FCA. Основные технические данные паропоршневых двигателей Spilling: электрическая мощность 100-1200 кВт; частота вращения — 750, 900 и 1000 об/мин; давление пара на входе — 4-60 бар, на выхлопе — 0,2-15 бар; температура насыщения пара — до 480°С. Для многих двигателей Spilling в качестве топлива используют биомассу, в первую очередь древесную. Например, на одном из деревообрабатывающих предприятий в Африке установлен трехцилиндровый одноступенчатый паропоршневой двигатель Spilling электрической мощностью 437 кВт с давлением пара на входе 9 бар и на выхлопе 0,5 бар. Отходящий пар используется для обеспечения работы сушильной камеры. После ввода в эксплуатацию этого двигателя предприятие обеспечило себя дешевой электро- и тепловой энергией и, что особенно важно, обрело независимость от поставок электроэнергии из общей сети.

В числе других европейских производителей паропоршневых двигателей можно назвать чешскую компанию Tenza s. a., которая предлагает паровые двигатели мощностью от 10 до 120 кВт, и шведскую компанию Energiprojekt i Sverige AB, которая производит паровые двигатели мощностью от 500 до 1000 кВт с давлением пара на входе 30-60 бар и с заявленным КПД 25-30% (машины работают по термодинамическому циклу Ренкина с регенерацией и полезным использованием теплоты конденсации пара). Австрийская компания Foerdertechnik GmbH производит когенерационные паровые машины электрической мощностью 150 и 300 кВт и тепловой — 110 и 220 кВт соответственно, в топках паровых котлов которых можно сжигать биомассу, в частности щепу. Максимальная температура пара — 350°С, давление — 32 бар, паропроизводительность 200 кг/ч. Но стоимость этих машин, конечно, очень высокая — 280 тыс. и 480 тыс. евро. При такой стоимости эти «золотые» машины можно использовать только в некоторых европейских странах (Австрии, ФРГ и др.), где реализуются масштабные программы поддержки и субсидий ВИЭ и гарантируется оплата генерируемой электроэнергии по «зеленому» тарифу в течение продолжительного времени (до 20 лет). Поскольку в России о таких тепличных условиях можно только мечтать, то ориентироваться нужно в первую очередь на отечественных и азиатских (КНР, Тайвань, Вьетнам и др.) производителей и разработчиков оборудования. В мире производят сегодня и так называемые паровинтовые машины, которые в большей степени можно отнести к категории турбин, только ротор у этих машин не с лопатками, как у классических турбин, а в виде винта Архимеда — в основном цилиндрической или конусно-винтовой формы.

Первый отечественный паропоршневой мотор был спроектирован в Московском авиационном институте (МАИ) в 1936 году и предназначался для силовой установки экспериментального самолета. Двигатель работал на перегретом паре с давлением 6 МПа и температурой 380°С и на оборотах до 1800 об/мин.

В современной России нужно выделить научную группу «Промтеплоэнергетика» МАИ, которая предлагает довольно оригинальное решение вопроса экономически целесообразного применения паропоршневых машин в малой и децентрализованной энергетике России. Разработчики предлагают создавать паропоршневые двигатели на базе серийно выпускаемых дизельных поршневых двигателей. В конструкции ДВС сохраняется почти весь механизм газораспределения, который в ППУ становится механизмом парораспределения, также сохраняется кривошипно-шатунный механизм. Подобный подход обеспечивает низкую стоимость парового двигателя, в отличие от зарубежных аналогов, благодаря тому, что в производстве используются серийные автомобильные двигатели и запчасти к ним. Кстати, понятие «паропоршневые двигатели» впервые было введено в 2003 году именно научной группой «Промтеплоэнергетика» МАИ.

Где использовать паровые машины эффективно?

В качестве объектов, энергетическую эффективность которых можно повысить при использовании современных паровых машин, могут выступать:

  • промышленные и муниципальные котельные с паровыми котлами (паровая машина для привода электрогенератора);
  • паросиловые мини-теплоэлектроцентрали (мини-ТЭЦ), где паровую машину целесообразно устанавливать вместо маломощных паровых лопаточных и винтовых турбин, особенно если электрическая мощность последних до 1,2 МВт и они изготовлены в одноступенчатом варианте или же в многоступенчатом, но без промежуточного отбора пара;
  • технологические производственные установки на предприятиях, где по условиям реализации основных процессов выпуска продукции есть возможность с помощью парового котла-утилизатора использовать сбросное тепло (например, в металлургии подобными установками могут выступать крупные сталеплавильные печи, а в стекольной промышленности — печи для варки стекла, на цементных, консервных и маслоэкстракционных, ликероводочных заводах и во многих других отраслях промышленности). Использование для этого технологии ORC (органического цикла Ренкина) — более дорогое решение, учитывая и то, что модули ORC в России не производятся.

Технологические решения для мини-ТЭС — конденсационных мини-электростанций (мини-КЭС) и мини-ТЭЦ — с использованием современных паровых машин принципиально схожи с известными, реализуемыми на паротурбинных мини-ТЭС. Это комбинированное производство электрической и тепловой энергии (когенерация на мини-ТЭЦ, в т. ч. создаваемых на базе котельных с паровыми котлами) либо так называемая тригенерация (см. рис. 1), т. е. выработка одновременно трех видов энергии (электрической, тепловой и холодильной). В качестве холодопроизводящего оборудования при тригенерации на паросиловых мини-ТЭС используются абсорбционные холодильные машины, для работы которых вполне достаточно отработавшего в паровом двигателе водяного пара. Такой вариант значительно экономичнее, чем выработка холода с помощью электрических кондиционеров.

В качестве заключения

Паропоршневые мини-ТЭЦ, работающие на биомассе, энергоэффективнее паротурбинных, газопоршневых (при работе на генераторном газе, полученном путем газификации биомассы) и дизельных. В паропоршневых мини-ТЭЦ удельный расход пара на выработку электроэнергии в 1,3-1,5 раза меньше, чем в паротурбинных мини-ТЭЦ, особенно при мощности 1200-1500 кВт. Современные паровые поршневые машины вполне могут использоваться в децентрализованной энергетике России. Применяя местные альтернативные виды топлива, в основном древесную биомассу, можно успешно заменить во многих регионах дизель-генераторы паровыми машинами (паропоршневыми установками) и дополнительно получать тепловую энергию, в результате отказаться от северных завозов угля и дизтоплива. Применение ППУ может способствовать энергосбережению при эксплуатации технологических и энергетических установок, в частности тех, у которых при работе выделяется сбросное тепло в виде выхлопных или дымовых газов.

Сергей ПЕРЕДЕРИЙ, Германия,
s.perederi@eko-pellethandel.de

В статье использованы некоторые материалы научной группы «Промтеплоэнергетика» МАИ и кафедры «Атомная и тепловая энергетика» Санкт-Петербургского политехнического университета им. Петра Великого

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector