Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Онлайн помощник домашнего мастера

Онлайн помощник домашнего мастера

Щетки для электродвигателей: советы по выбору нужной модели, инструкция по замене и ремонту своими урками

  • Электродвигатели

В бытовых условиях мы очень часто используем электроинструмент. А что говорить о профессионалах, деятельность которых напрямую связана с применением разнообразных приборов с электродвигателем. В процессе интенсивной эксплуатации такие агрегаты очень часто изнашиваются, что приводит к поломке.

Часто причиной может выступать неисправность щеток. Для чего нужны щетки в электродвигателе, как они устроены, и что нужно сделать для замены, мы расскажем в данной статье.

Краткое содержимое статьи:

В чем состоит назначение

Передача электроэнергии на якорные обмотки в электродвигателе производится при помощи коллекторного узла. Из-за вращения якоря в процессе работы электроинструмента для передачи нужен контакт. Причем он должен быть подвижным, а поэтому использование металла не допустимо. Ведь число оборотов значительно, что сопровождается сильным трением.

В таком случае при контакте металла с металлом происходил бы перегрев поверхностей. Коллектор достаточно быстро вышел бы из строя. Решить проблему удалось при помощи изготовления контакта из угля или графита.

Щетки в электродвигателе создают контакт скользящего типа. Они выступают элементом механизма, который позволяет перевести механическую энергию в электрическую.

Главное назначение щеток для электродвигателей состоит в снятии и подведении электротока на коллекторах, в том числе и от контактных колец.

Основные характеристики устройств

Щетки могут выпускаться вместе с проводниками. Их изготавливают из металла. Но существуют модификации и без проводников. Чтобы закрепить провод на конструкции щетки используется несколько разных вариантов – развальцовкой, впрессовкой, пайкой.

При этом сами тоководы различаются марками. Они могут быть многожильными из медной проволоки (МПЩ), гибкими, отличающимися плетением из аналогичной проволоки (ПЩ), универсальными с повышенной степенью гибкости (ПЩС).

Рассматривая описание щеток для двигателей, нужно отметить наличие наконечников контактного типа на проводе. Они необходимы для более качественного крепления болтами держателей, расположенных на щетках. Для удобства такие наконечники различаются по форме – вилочные, флажковые, двойные и пластинчатые.

Электрощетки должны обеспечивать заданный режим функционирования основного и вспомогательного электрооборудования с минимальными расходами на ремонтно-обслуживающие работы.

Поэтому к ним предъявляются определенные требования:

  • безопасность и надежность коммутационного контакта без искрения и риска замыкания на обмотках;
  • недопущение нарушений контактного прилегания с движущимися компонентами агрегата;
  • устранение потерь электроэнергии в контакте скользящего типа;
  • прочность к механическим воздействиям, сопротивление трению;
  • износоустойчивость материала.

Разновидности изделий

Для использования в промышленности и быту изготавливаются различные виды щеток для электродвигателей:

  • графитовые – производятся из графита с наполнителями, например сажей, обеспечивают легкую коммутацию в двигателях;
  • угольно-графитовые – они не слишком прочные, поэтому применяются в устройствах с минимальной нагрузкой механического типа;
  • электрографитовые – отличаются высокой прочностью, гарантируют контакт среднего уровня с повышенными токонагрузками;
  • медно-графитовые с медным, оловянным или графитовым порошком и наполнителями. Отличительными свойствами являются повышенная прочность, защищенность от проникновения газов и жидкостей, работа со сложными контактами.

Особенности подбора

Планируя покупку, следует подробно изучить, как выбрать щетки для электродвигателя. Если установленные щетки износились, то целесообразно определить их основные параметры, что поможет в последующем правильно заменить устройства. Важны также геометрические формы, размер, марка графита.

Не следует забывать и о типе провода, а также его сечении. Если подобрать точное совпадение по марке не удастся – не отчаивайтесь. Следует взять аналог с тем же уровнем твердости и допустимым режимом работы. А вот по сечению имеются определенные нюансы – толщина проводника должна быть равной оригиналу и соотноситься по степени гибкости.

Если вы выбираете графитовые щетки, то учитывайте, что они могут быть жесткими и мягкими. При этом медь на коллекторе также отличается по жесткости. Когда вы выбираете несовпадающие варианты, то один из элементов будет выходить из строя быстрее из-за высокой силы трения и износа.

Щетки различаются и по уровню активного сопротивления. Это важно знать для расчета параметров обмоток и характеристик ПРУ. Щеточный узел должен работать согласованно. Поэтому следует учесть особенности прижимного блока, характеристики направляющих и контактных групп.

От степени прижима зависит надежность работы. Если прижатие чрезмерное, то коллектор и щеточный блок могут перегреваться, а при недостаточной степени прижима возможно искрение.

На фото щеток для электродвигателей представлены разные их модификации. Однако не все из них могут применяться в конкретных условиях. Например, не рекомендуется монтировать в электроинструменте генераторные модификации медно-графитовых изделий. Чрезмерный перегрев и высокие токи приведут к проблемам с работоспособностью обмоток.

Причины неисправностей и замены

Роль щеток в электродвигателе неоспорима. Поэтому целесообразно минимизировать действие факторов, которые приводят к их неисправности.

В частности, опасность вызывает такое явление, как искрение щеток. Оно проявляется по таким причинам:

  • Нагар и грязь на коллекторе. Требуется произвести очистку при помощи наждачки-нулевки.
  • Накопление графитовой пыли или медного порошка, приводящее к замыканию контактов. При помощи ножа или другой острой детали все перемычки целесообразно оперативно удалить.
  • Если контакты различаются по уровню сопротивления, неверно подобраны щетки по основным параметрам, то это способно вызвать искрение. В таком случае потребуется замена щеток для электродвигателей своими руками или обращение в сервисный центр.
  • Полная выработка ресурса. Это также потребует замены щеток.
  • Замыкание на межвитковом участке обмоток якоря – для исправления ситуации необходимо проверить работоспособность якоря и поменять его при необходимости.
Читать еще:  Что такое проточка поршня двигателя

Даже если щетки подобраны правильно, рекомендуется выделить время на их притирку. Для этого целесообразно запускать мотор вхолостую, не нагружая его. Также коллектор должен регулярно очищаться, а использование специальных смазок поможет продлить срок службы всей конструкции.

Работа коллекторного электродвигателя переменного тока

В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.

Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.

Принцип работ и конструктивные особенности

Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.

Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.

Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.

Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.

Видео: Универсальный коллекторный двигатель

Из чего состоит конструкция?

Устройство электродвигателя переменного тока включает помимо ротора и статора:

  • тахогенератор;
  • щеточно-коллекторный механизм.

Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.

Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.

Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.

Схема подключения (упрощенная)

Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.

Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей. В итоге, направление момента всегда одинаково.

Рекомендуем:

  • Dji phantom 3 standard: инструкция, описание, достоинства
  • Как называется электродоска без руля
  • Классификация электродвигателей

Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.

Видео: Подключение и регулировка оборотов двигателя от стиральной машины

Управление двигателем

На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.

В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.

Упрощенно этот принцип можно описать такими пунктами:

  • на затвор симистора подается сигнал от электронной схемы;
  • затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
  • мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
  • как следствие, вращение ротора при любых нагрузках, остается равномерным;
  • с помощью реле R и R1 осуществляется реверс мотора.

Другая схема – тиристорана фазоимпульсная.

Преимущества машин и недостатки

К достоинствам относят:

  • небольшие размеры;
  • универсальность, т.е. работу на напряжении постоянном и переменном;
  • большой пусковой момент;
  • независимость от сетевой частоты;
  • быстроту;
  • мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.

Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:

  • уменьшение срока службы механизма;
  • возникновение между щетками и коллектором искры;
  • высокий уровень шума;
  • большое число коллекторных элементов.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

Автор и редактор обзоров по гаджетам и новой техники. Ведет работы по написанию свежих рейтингов к публикациям, проверки достоверности и актуальности информации уже опубликованных статей. Отвечает на вопросы в комментариях, пишет на авто темы.

Отличие щеточного мотор-колеса от бесщеточного

Опубликовано в Тех. характеристики Просмотров: 33609

Читать еще:  Электронный датчик температуры масла двигателя

Попробуем разобраться в различиях щеточных и бесщеточных электродвигателей, чтобы суметь должным образом оценить преимущества, собственно, бесщеточных мотор-колес.

Бесколлекторный электродвигатель постоянного тока – наиболее распространенная разновидность двигательного механизма в электровелосипедах. Мотор-колесо такого типа позволяет переоборудовать практически любой городской велосипед на электрический, практически не нарушая его функционального предназначения, но значительно расширяя его возможности.

Подобного рода двигатели нашли широкое применение также и среди скутеров, мотоциклов, автомобилей, произвев настоящую революцию в области электротранспортной индустрии и вывев её на кардинально новый уровень возможностей. Надежность, высокий КПД, небольшая стоимость, отличная удельная мощность – малая часть преимуществ электродвигателей данного типа.

Основная задача коллекторно-щеточного механизма состоит в подаче напряжения от аккумуляторов на обмотки электродвигателя. Главным же недостатком коллекторного механизма является его быстрый износ, более того – уровень этого износа в значительной степени определяется мощностью электромотора. Разрушению элементов щеточного мотор-колеса способствуют: повышенная температура эксплуатации, электроэрозионные процессы, загрязнение продуктами износа щеток.

Коллекторно-щеточный узел является одной из причин снижения КПД электромотора, посредством потребления значительного количества энергии. С целью повышения уровня эффективности работы мотор-колеса было решено передать функцию управления его работой контроллеру. В самом же электрическом моторе поменяли местами обмотки и постоянные магниты. Помимо этого в статор встроили три датчика положения ротора (датчика Холла). Специальный электронный контроллер, воспринимая цифровую информацию от магнитных датчиков Холла, обеспечил выполнение поставленных задач, подавая тяговое напряжение на обмотки статора, и тем самым формируя магнитное поле в двигателе путем переключения его обмоток с регулируемой частотой. От частоты этих переключений прямо зависит скорость вращения мотор-колеса. Обращаем Ваше внимание на то, что контроллеры для щеточных и бесщеточных моторов являются несколько разными устройства, и по этой причине не могут быть взаимозаменяемыми, поскольку выполняют они несколько разных функций. Датчики Холла

Использование в мотор-колесах сильных постоянных магнитов из сплавов редкоземельных металлов позволило отказаться от щеточного механизма и повысить таким образом КПД двигателя до рекордных 95%. Магниты из редкоземельных элементов сделали возможным получение высокого уровня магнитной индукции и уменьшение размеров ротора.

В целом, принцип работы бесколлекторного электродвигателя основывается на коммутировании управляющим электронным контроллером обмоток статора так, чтобы вектор магнитного роля статора всегда оставался перпендикулярным вектору магнитного поля ротора. Управление током, проходящим через обмотки статора, и, следовательно, вектором его магнитного поля, со стороны контроллера производится при помощи широтно-импульсной модуляции (ШИП): информация о положении ротора обрабатывается «микропроцессором», который и вырабатывает управляющие ШИП-сигналы. Обычно мотор-колеса данного типа имеют трехфазную обмотку. Самым распространенным способом подачи напряжения является поступления питания на две из них благодаря работе датчиков Холла.

Коллекторный электродвигатель – двигатель, в котором датчиком положения ротора и переключателем тока в обмотках выступает щеточно-коллекторный узел. В коллекторных двигателях используются стационарные металлические контакты (щетки) для передачи электрической энергии на катушки обмоток ротора. Как известно, вращение магнитного поля – это основа работы электрического мотора. В отличии от бесколлекторных двигателей, в которых магнитное поле изменяется импульсно, в коллекторных двигателях оно меняется механически при помощи якоря и щеток, скользящих по коллектору. При этом наблюдается циклическое изменении тока, протекающего через область электромагнитных колец, с обратного на прямой и наоборот. Изменение направление магнитного поля происходит каждый раз при смене направления тока.

Основными достоинствами коллекторных электродвигателей является простота их изготовления, эксплуатации и ремонта. В двигателях этого типа контроль за скоростью вращения может производится при помощи простейшего переменного резистора. Конструктивно двигатель без датчиков Холла конечно проще, чем с ними, но данная система имеет целый ряд недостатков. Электрические моторы такого плана плохо стартуют, не развивают с места высокого показателя вращающего момента, имеют низкий показатель КПД, требуют регулярного обслуживания из-за постоянного трения и износа щеток, к тому же, система определения положения ротора без датчиков функционирует довольно ненадежно.

В коллекторном двигателе контроллер используется лишь для регулировки напряжения, в бесколлекторном же его предназначением является как регулировка напряжения, так и переключение фаз (тут на помощь ему приходят уже известные нам датчики Холла). Бесщеточные мотор-колеса несколько отличаются от щеточных своим конструктивным исполнением, к тому же, эти двигатели значительно более надежны и долговечны по той простой причине, что в них нет щеточного-контактного узла, нет трансмиссии, подверженным быстрому износу и загрязнению.

Достоинства бесщеточных мотор-колес:

отсутствие узлов требующих частого техобслуживания и быстро поддающихся износу: нет щеточного узла, который постоянно трется и создает искры;

высокие показатели КПД (выше 90%);

широкий диапазон изменения частоты вращения;

большая перегрузочная способность по моменту;

быстродействие и динамика;

высокая надежность и большой срок службы за счёт отсутствия коллекторно-щеточного механизма;

малый уровень нагрева мотора при работе в режимах перегрузок.

Недостатки бесщеточных мотор-колес:

более высокая стоимость по сравнению с щеточными, обусловленная использованием дорогостоящих редкоземельных магнитов и более совершенной конструкцией ротора;

значительно более сложная система управляющего работой электромотора механизма.

Недостатки щёточных электродвигателей:

быстрый износ щеток и коммутатора;

необходимость проведения периодического технического обслуживания: чистки щеток и коммутатора;

низкий показатель вращающего момента с места;

снижение КПД моторов, уменьшение срока службы аккумуляторных батарей, замедление работы электродвигателей по причине трения щеток;

Читать еще:  Что такое апекс роторный двигатель

меньший показатель соотношения мощности к весу моторов.

Бесщеточные мотор-колеса можно рассматривать как обратную версию щеточных электродвигателей, однако данный тип двигателя является более совершенным: в нем нет щеток, нет коллекторов. Бесколлекторные моторы более мощны, надежны, эффективны, со значительно более высокими показателями коэффициента полезного действия.

Работа бесщеточного электрического мотор-колеса основывается на вращении магнитного поля при помощи электронного контроллера. При вращении магнитное поле притягивается либо же отталкивает постоянные магниты. Электрический двигатель приводится в движении воздействием поступающего от аккумуляторных батарей тока, но при его вращении также генерируется ток и обратное электромагнитное поле. Максимальная скорость вращения мотор-колеса в значительной степени определяется напряжением и создаваемым обратным электромагнитным полем. Увеличение скорости движения магнитов происходит путем простого увеличения силы магнитного поля. При увеличении продолжительности подаваемых импульсов (широтно-импульсная модуляция) магнитное поле становится в значительной степени сильнее. Ротор вращается быстрее по причине роста показателя вращательного момента. Исходя из этого, можно утверждать, что единственное, что физически может испортится в этом типе двигателя – это магнит (что очень маловероятно) и датчики Холла. В общем-то, бесколлекторное мотор-колесо практически вечно!

Устройство, принцип работы и подключения электродвигателей переменного тока

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector