Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Самодельный ветряк с генератором из коллекторного двигателя

Самодельный ветряк с генератором из коллекторного двигателя

Когда случилась перестройка, многим пришлось менять профессию и болезненно искать новое приложение рукам и уму. Среди многих других попыток были у меня и ветряки.

Я добросовестно посвятил этому год с лишним. Довольно быстро понял, что без основательной учебы ничего путного не выйдет. Много было непонятного, но постепенно прояснялось. Наконец, седьмой по счету экземпляр заработал более-менее в соответствии с расчетными характеристиками.

Ветряк задумывался, как источник энергии для дачи с посещением неполную неделю. Замышлялся, как коммерческий продукт. Отсюда и размеры.

Диаметр турбины 1.15 — 1.17м, трехлопастная. Наиболее дискутируемый вопрос количества лопастей решился между двух и трех в пользу трех из-за того, что хотелось, чтобы турбина увереннее работала при слабом ветре. Расчетная скорость 600 — 700 об/мин.

Генератор — коллекторный двигатель 36В с постоянными магнитами болгарского производства. Кажется, эти двигатели массово применялись в ЭВМ семейства ЕС.

Диаметр двигателя 80мм, длина что-то около 140мм?

Старательно снял его характеристики на стенде, используя тахометр, калиброванные нагрузки и прочее. Получил зависимость напряжения от скорости (2.22В*об/с), внутреннее сопротивление (2.5Ом) и вентиляторные потери (механические на трение и перемешивание воздуха).

Оптимальное передаточное число мультипликатора планировалось 4, но из-за желания выполнить его компактно в одну ступень, остановился на 3.33. (Хотя и 4 пробовал). Шестерни нарезал косозубые, меньше шумят. Картер сделать не получилось, хотя для серии это, наверно, нужно. Мазать пару раз в месяц солидолом — несолидно.

Поворотный механизм — свободный ход на резьбе. Угол поворота после 2 — 3 оборотов ограничивался упругостью кабеля. Это оказалось самым простым и надежным решением. Головка вращается на длинной резьбе по полудюймовой трубе через муфту. Конечно, небольшой люфт в этом месте есть. Первоначально муфта делалась длиннее (60 — 70мм) и для облегчения хода на резьбе делалась проточка, оставлялись только верхние и нижние витки ( по 2 — 2.5 нитки). Потом оказалось, что люфт не так уж и страшен и узел был упрощен.

Кабель от генератора пропускался в отрезок вертикальной трубы (что-то около 500мм) и выходил через тройник в месте крепления головки к мачте. Упругости полуметрового толстого отрезка кабеля и хватало, чтобы не давать головке поворачиваться в горизонтальной плоскости более, чем на 1.5 — 2 оборота.

Пробовал и безхвостовой вариант, с набегом потока на турбину сзади, но все-таки остановился на классике — с хвостовым флюгером приблизительно 200х400мм, вынесенным на 70-сантиметровом отрезке полудюймовой трубы. Хвостовая труба уравновешивает генераторную головку в горизонтальной плоскости. Вся конструкция закрыта пластиковой канализационной трубой 100(106) мм. Сзади генератора — вертикальный узел поворота и 400мм отрезок полудюймовой трубы для крепления к мачте стандартной муфтой. Там же расположены выходные клеммы генератора. Провод снижения идет далее по мачте снаружи, хотя, можно до самой земли провести его в трубе.

Кожухом отлично работал отрезок канализационной пластиковой трубы 100 ( 106?) мм. Стопорился одним саморезом снизу. Впереди и сзади кожух был открытым. В приблизительно 8 — 10мм зазор меж кожухом и передним обтекателем заходил воздух для охлаждения генератора, сзади кожух нависал над креплением хвостовой балки на 20 — 25мм, чтобы вода на резьбу не капала.

Хвост на трубе полдюйма пластиковой с хвостовой лопастью ( приблизительно 200х400мм) утерян. Стыковался с небольшим грузиком и регулировался по длине, чтобы уравновесить головку на мачте в целом.

При массе генератора 2.5кг вся головка без турбины имеет массу порядка 5кг. Мне показалось, что это неплохой результат.

Особо стоит упомянуть турбину. Пожалуй, технологически самый непростой узел. Вся попавшая под руки литература была написана людьми совершенно далекими от аэродинамики. Большинство советчиков приводили популярные авиационные профили CLARK Y, BC2 и прочее. Методы расчета самолетных винтов и больших турбин совершенно не годились для маленькой тихоходной турбины, ориентированной на работу при слабых и средних ветрах (3-6м/с). Стандартная же технология изготовления лопастей тоже была достаточно трудоемка и , главное, не гарантировала высокой точности и повторяемости профиля.

Что касаемо профиля, то при данных числах Рейнольдса 40 000 — 60 000 самым лучшим оказался профиль типа Купфер, Гетинген 420 и тому подобное. Это знают авиамоделисты. Грубо говоря, это просто дужка, профиль крыла «Фармана» или «Ньюпора» времен первой мировой. При слабых ветрах он дает момент, почти в 1.5 раза больше, чем традиционные, каплевидные. При больших скоростях начинается срыв потока и турбина отчасти саморегулируется .

Профиль потянул за собой и технологию.

Выстругивалась по теоретическому чертежу и лекалам болванка с поверхностью нижней части лопасти. Далее на нее через слой полиэтилена накладывались слои дубового шпона на клею. У комля до 10, у конца — 3 — 4 слоя . Весь пирог тщательно уматывался резиновой лентой и оставлялся на сутки — двое.

После схватывания клея, полуфабрикат лопасти снимался с болванки и сравнительно просто дорабатывался в концевой части и по кромкам шлифовкой. В конце, если требовалась долговечность, все это можно еще оклеить одним слоем стеклоткани на эпоксидке.

На снимке справа — болванка для выклейки лопастей. К ней плотно приматывается резиновой лентой проклеенный пакет дубового шпона. У комля 8 — 10 слоев, у самого конца лопасти 3 — 4. Потом ступенчатость слоев убирается шлифовкой и подшлифовываются кромки. Ну, и форма в плане корректируется по шаблону. Лопасти получаются легкими, жесткими и достаточно одинаковыми, легко балансируются. Впрочем, дуб — слишком серьезно. Можно вполне и что-то полегче. Вообще я без ума от липы. Ну, и оклеить это стеклотканью тоже не мешает, если нужна долговечность.

Слева лежат две оклееные стеклопластиком цельноструганные лопасти из липы от другой, более ранней модели с заклеенными кулачками механизма изменения шага винта. При всей неказистости 2000об/мин как-то вполне выдержали..

Один сезон выдержит и тщательно прогрунтованная и выкрашенная ПФ115 деревяшка. После зимнего хранения в неотапливаемом помещении особого коробления не отмечено. Но хранить турбину нужно подвешенной за ось. Ставить к стене на лопасть — нельзя.

Турбина одевалась на резьбе на вал и сама докручивалась до упора.

Все это в сборе устанавливалось на 5-метровой высоте на мачте из отрезков труб полдюйма, три четверти, дюйм, соединенных муфтами-переходниками. Мачта имела поворотное крепление у земли и четырехтросовую одноярусную систему растяжек из капронового шнура порядка 5мм. Такая конструкция позволяет поднимать/опускать мачту одному человеку.

Нагрузкой служил 12- вольтовой щелочной аккумулятор 55Ач, подключенный просто через 10А диод. Плюс вольтметр и амперметр..

Разрабатывался замысловатый контроллер, как развитие и дополнение. Рабочее напряжение генератора для съема максимума мощности должно меняться. Наивыгоднейший в этом смысле режим — фиксированный ток при меняющемся напряжении. Работа же через диод просто на аккумулятор дает как раз, наоборот — относительно постоянное напряжение при меняющемся токе заряда.

И, пока контроллер периодически привозился, примерялся и увозился домой, обнаружилось, что без контроллера турбина имеет некоторые интересные качества.

Запуск очень легкий, при менее 3м/c. Далее, турбина быстро набирает обороты до начала зарядки ( порядка 13 — 14В). После этого рост оборотов идет очень медленно, растет только момент на валу турбины и зарядный ток. Растут, конечно, и потери в самом генераторе и проводах снижения. Но генератор на сильном ветру эффективно охлаждается самим ветром через специально предусмотренные каналы. Характерно, что шумит турбина при разгоне, как только появляется зарядный ток, шум резко уменьшается. В общем, шумит довольно слабо. Когда спишь на даче при сильном ветре, вполне маскируется шумом деревьев, если не знаешь, что турбина установлена.

Я очень опасался, что во время какого-нибудь шквала генератор просто сгорит. Потом посчитал все возможные потери и пришел к выводу, что при теплоемкости конструкции ему нужно минут сорок, чтобы нагреться просто, как болванка, до градусов 70 — 80.

Ветряк все лето проработал под присмотром. оставлять его нельзя было из-за нравов нашего народа и еще: я опять-таки боялся шквала, бури. Однажды, ветер поднялся до 30 — 35м/c. Точного анемометра под руками не было, но я тогда уже прекрасно ориентировался по самой турбине. Достаточно однажды сделать 2 — 3 замера напряжения на эталонную нагрузку по анемометру и сделать таблицу — ветряк сам себе анемометр. Турбина давала 900об/мин , генератор выдавал порядка 150 — 170Вт при 5 — 7А ( половина мощности пропадала в слишком тонких проводах снижения порядка 20м) мачту и меня самого ветер при порывах шатал. Я опасался, что все это разлетится вдребезги, но испытания есть испытания.

Я раз десять уверенно останавливал турбину «на полном скаку», замыкая выход генератора накоротко. Ток при этом падал до 2 — 3А и обороты до 1 — 2 в с. Потом, все-таки где-то срезало шплинт и все это засвистело вразнос, пришлось срочно мачту опускать.

Читать еще:  Что происходит при переохлаждении двигателя

Основной вывод из этого эксперимента — маломощную турбину можно уверенно стопорить генератором при сильном ветре. Дополнительные тормоза не нужны. Это потом легко поясняется и в теории.

Я опустил тут многие эксперименты. Работал два сезона плотно. Опробовал и Савониусы, и вертикальные лопасти и еще несколько конструкций. Турбины от 2 до 12 лопастей, автоматы увода из-под ветра и прочее. Делал и генератор на постоянных магнитах, делал сервопривод изменяемого шага лопастей турбины и прочее. Не успел только однолопастник построить.

Могу сказать с уверенностью

1. Ветряк — весьма дорогое удовольствие, если речь идет не о игрушке. В моем случае это только освещение, небольшой электроинструмент (8 — 12 квт*ч в месяц). Для тех, кто на даче привык утюгом фуфайки гладить — бензоагрегат много дешевле.

2. Ничего лучше, чем классическая пропеллерная турбина, просчитанная еше в 20-е годы прошлого века в ветроэнергетике нет и быть не может. Изобретения тут делаются ради самих изобретений.

3. Ветряк — не дело одиночек. Ветряк — СИСТЕМА. Без глубокого понимания всех процессов, без знания основ механики, аэродинамики, электротехники — лучше не связываться с работой такой сложности. Это не для любителей, если хочется что-то в конце получить реально работающее.

Была попытка сделать более тихоходную турбину с двухступенчатым мультипликатором где-то 1 к 5. И бесхвостый вариант с ориентацией за счет парусности самой турбины («спиной к ветру», уравновешивающей трубой вперед).

Но мультипликатор оказался сложным, а турбина не хотела при слабом ветре разворачиваться. Я тут еще и винт изменяемого шага с сервоприводом реализовал (где-то ранее на снимке лопасти от него). Но сервопривод оказался слишком медлительным, чтобы оперативно реагировать на порывы ветра. И жужжал бесконечно. Потом, по мере продвижения понял, что для такой блохи это лишнее.

Работа была интересной, но пришлось уйти к реалиям. Коммерческий проект такой ВЭС еще нуждался в доработке, собственные ресурсы начинали таять, а тут подвернулось то, что мне было хорошо знакомо — импульсные источники. Вот этим сейчас и занимаюсь уже пятый год.

На сегодня, как мне представляется, мечты о ветряке, подогревающем пол и питающем утюги с водонагревателем пока нужно отставить. Это технически возможно, но стоит столько, что фантазия обывателя не выдерживает.

А вот такие маленькие для дачи могли бы иметь определенный успех. Это тоже недешево, но кому нужен свет, маленький телевизор, мобилка и ноутбук — вполне. Это порядка 10 — 15кВт.час в месяц.

Для питания болле мощной аппаратуры нужен уже более мощный генератор, например ветрогенератор с асинхронным двигателем или же установка на солнечных панелях.

Автор: Владимир Мищенко

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!

  • Ветряная электростанция на базе асинхронного электродвигателя
  • Ветряная электростанция на базе асинхронного двигателя
  • Походная электростанция на постоянное напряжение 12В
  • Самодельный генератор из постоянных магнитов на 12В

В Интернете повсеместно обсуждается тема изготовления ветряка своими руками. Я могу помочь в приобретении коллекторных двигателей постоянного тока, который можно применить в качестве генератора для ветряка. Имеется один болгарского производства на 36 вольт, 1600 оборотов в минуту(3000 рублей), и один немецкого производства напряжением 48 вольт, 1200 оборотов в минуту(5000 рублей). Оба двигателя имеют мощные постоянные магниты. Фото и дополнительная информация по почте kir.ser83@yandex.ru

Делал похожий ветряной генератор на маленьком двигателе постоянного тока, через стабилизатор и простой фильтр с конденсаторами он у меня питал на даче китайский радиоприемник правда только когда был ветер.

Принцип работы и устройство современного автомобильного генератора

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

  1. Функции генератора
  2. Виды генераторов
  3. Устройство генератора переменного тока
  4. Корпус
  5. Привод
  6. Ротор
  7. Статор
  8. Выпрямительный блок или диодный мост
  9. Регулятор напряжения
  10. Щеточный узел
  11. Принцип работы
  12. Параметры генератора
  13. Мощность автогенератора
  14. Основные неисправности
  15. Механические неисправности
  16. Электрические неисправности

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

Устройство генератора

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

Ротор генератора

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

Диодный мост

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

Читать еще:  Что означает двигатель плита

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

Регулятор напряжения и щеточный узел

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

Характеристика генератора

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

Схема подключения генератора

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Как сделать генератор из двигателя стиральной машины

  • Подготовительные работы
  • Как из двигателя СМА сделать генератор
  • Испытания самодельного устройства
  • Рекомендации по применению самодельного генератора
  • Заключение

Проблемы с электрической энергией, возникающие, как правило, неожиданно, вынуждают многих потребителей подумывать об устройстве автономного источника электропитания. Тем более, что к этому также подталкивают непомерные счета за пользование промышленной сетью. Установить в доме источник автономного питания считается выгодным делом. Данный прибор способен прийти на помощь, когда отключается промышленная электросеть.

Показатель мощности его относительно мал, но этого вполне достаточно, чтобы выступить в качестве резервного источника питания. Специально приобретать генератор – удовольствие дорогое, а вот изготовить его самостоятельно вполне реально. Сегодня рассмотрим, как сделать генератор из двигателя стиральной машины своими руками.

Подготовительные работы

Многим кажется, что изготовить самодельный электрический генератор из двигателя стиральной машины – дело несложное. Отбросьте все иллюзии, потому что быстро справиться с такой задачей не получится. В первую очередь следует разобраться с тремя главными проблемными вопросами:

  • каким образом убрать часть сердечника электромотора от стиральной машины, устроить на нем специальные пазы, предназначенные для магнитов;
  • где достать неодимовые магниты в генераторный ротор;
  • какой материал использовать для изготовления шаблона, чтобы закрепить магниты.
  1. Первый вопрос решается следующим образом: из асинхронного двигателя отработавшей свое стиральной машины извлекается сердечник, который с помощью токарного станка подрезается на два миллиметра в глубину. После такой доработки двигатель откладываем в сторону – придется искать неодимовые магниты, и лучше всего воспользоваться помощью интернета. Найдя магазин, следует подать заявку на приобретение и ждать, пока доставят нужный товар, так как без магнитов устройство не изготовить.
  2. На станке готовим пазы в сердечнике мотора для магнитов, глубина их должна быть не менее пяти миллиметров. Потребуются хорошие навыки владения токарным станком, или обратитесь за помощью к специалисту.
  3. Проведя подготовительные работы на сердечнике, готовим крепежные шаблоны под магниты. Можно воспользоваться куском жести, подойдут и другие материалы с подобными свойствами. Полоска вырезается соответствующей длины и ширины, чтобы могла точно накладываться на сердечник.
  4. Крепежную полоску придется тоже готовить, для чего по всей ее длине устраивается разметка, чтобы получилось разместить магниты в два ряда таким образом, что расстояние между этими магнитами будет одинаковым.
  5. В качестве дополнительных материалов для работы по переделке двигателя стиральной машины в генераторное устройство нам потребуются суперклей, эпоксидная смола или холодная сварка, бумага наждачная.
Читать еще:  Dohc 16v двигатель схема

Как из двигателя СМА сделать генератор

Подготовив все необходимое, можем приступать к выполнению работ. Сразу предупреждаем, что для изготовления нужного элемента из двигателя стиральной машины понадобится много терпения. Магниты будут постоянно соскакивать и прилипать друг к другу, клеем перемажете все, что можно, так что рекомендуем соблюдать осторожность и требования правил безопасности, работая с потенциально вредными химическими составами.

Алгоритм действий следующий:

  • изготавливаем магнитный ротор электромотора, чтобы переделать его в генератор. Поперек двигателя наклеиваем жестяные шаблоны под размещение магнитов;
  • по нанесенной предварительно разметке с помощью суперклея крепим два ряда магнитов;
  • все свободное пространство, оставшееся между магнитами, осторожно заполняется холодной сваркой, предварительно размятой руками до пластилиновой консистенции;
  • шлифуем устройство наждачной бумагой. Чтобы работать было удобней, корпус рекомендуется закрепить в сверлильный станок.

Испытания самодельного устройства

Процесс изготовления генератора из двигателя стиральной машины завершен, остается испытать его в деле. Для выполнения проверки понадобятся:

  • выпрямитель;
  • мультиметр;
  • контролер зарядки;
  • аккумуляторная батарея от мотоцикла;
  • самодельный электрический генератор.

Продумайте, каким образом будет осуществляться вращение. Пальцами это делать не получится, так как не сможете создать нужное количество оборотов. Рекомендуем использовать электрическую дрель либо шуруповерт.

Определяем на подготовленном приборе пару рабочих проводов, остальные отрезаем. Провода подсоединяем через выпрямительное устройство к контроллеру зарядки, и далее – к аккумулятору. Фиксируем крепления мультиметра на аккумуляторные клеммы – генератор к испытаниям подготовлен.

Генераторный шкив заряжаем в патрон электроинструмента, с помощью которого будет выполняться раскрутка, и даем обороты в пределах 800 – 1000 вращений. В результате, при умеренном залипании магнитов, должно получиться 270 Вольт, что окажется вполне приемлемым показателем.

Рекомендации по применению самодельного генератора

Как лучше всего использовать такое устройство? Если установить генератор на бензопилу, получится маленькая электростанция, энергии которой окажется достаточно, чтобы осветить две небольшие комнаты, запустить компьютер и даже посмотреть телевизор.

Некоторые устанавливают ветрогенераторы, и из полученной механической энергии вырабатывают электрическую. Для этого подходят генераторы не только из асинхронного, но и коллекторного двигателя. Альтернативный источник питания вполне безопасен, способен запуститься при скорости ветра, равной двум – трем метрам в секунду. А вот при десятиметровых порывах ветра такой генератор достигнет максимального показателя КПД, хотя для домашнего потребления будет достаточно и четырех метров, позволяющих вырабатывать 0.15 – 0.20 кВт, чего окажется вполне достаточно, чтобы осветить помещение и смотреть телевизор.

Лучше всего, если установленный вами ветряк окажется трехлопостным – так как он является наиболее результативным в работе. В качестве его основы используйте стальной прут, на который закрепите генератор, лопасти и ротор. Продумайте защиту для генератора, чтобы он не страдал от неблагоприятных погодных условий. Для подвижной части ветроустановки предусмотрите шарнирное крепление. От генератора по длине мачты прокладываем провод, выводим его на щиток, подсоединяем контроллер, инвертор и аккумуляторное устройство. Как видите, схема подключения проста.

Заключение

Проявив терпение, вы сможете из электрического мотора старой стиральной машины самостоятельно изготовить генератор электрической энергии, который в трудную минуту придет к вам на помощь. Кроме того, с такой самодельной установкой можно начать неплохо экономить на оплате коммунальных услуг.

Замена щеток генератора

Автомобильный генератор предназначен для преобразования механической энергии вращения коленчатого вала двигателя в электрическую. Он выполняет две основные функции: подзарядки аккумулятора и питания выработанной электроэнергией систем электроснабжения автомобиля. В корпусе генератора переменного тока наряду с ротором и статором также размещены щеточный узел, регулятор напряжения и выпрямительный блок.

Щетки – наиболее уязвимый элемент генератора. В момент их контакта с токосъемными кольцами скорость вращения вала генератора достигает 12-14 тыс. об/мин, из‐за чего возникает ускоренный износ контактирующих поверхностей. Своевременная замена щеток генератора позволяет предупредить поломку щеточного узла и обеспечить бесперебойное электроснабжение автомобиля в процессе движения.

Щётки генератора: какую функцию выполняют?

При контакте с расположенными на валу вращающегося ротора токосъемными кольцами щетки генератора передают ток от аккумуляторной батареи на обмотки возбуждения ротора. Так создаётся электромагнитное поле.

Под воздействием переменного магнитного поля вращающегося ротора в катушках обмоток статора наводится электродвижущая силаи создается переменный электрический ток. Ток, проходя через диодный мост (выпрямительный блок генератора) преобразуется в постоянный. Именно такой необходим для подпитки аккумулятора и обеспечения функциональности электрооборудования автомобиля.

Когда нужно менять щётки: основные признаки

Замену рекомендуется выполнять по мере их износа, но не реже 1 раза в 4 года (или по достижении пробега в 50 тыс. км). Однако в сложных условиях эксплуатации критический износ щеточных стержней, изготовленных из графита или его соединений с медью (бронзой, алюминием), может наступить раньше названного срока. Щётки должны выступать не менее чем на 5 мм (норма – 8-10 мм). Именно этот показатель является самым важным — замерив длину, можно понять, есть ли проблема.

На то, что нужна замена щеток, может указывать появление некоторых симптомов, в том числе:

  • отсутствие реакции стартера при повороте ключа зажигания в положение ON — это может произойти, если стержни перекошены, отсутствует их достаточное прилегание к поверхности токосъемных колец;
  • медленное вращение маховика двигателя стартером;
  • снижение мощности освещения салона, слабый или мигающий свет фар, габаритных огней;
  • внезапное отключение электроприборов;
  • быстрая разрядка аккумуляторной батареи, после которой зарядить ее становится практически невозможно.

Чтобы определить причину нарушений в работе генератора, необходимо провести точную диагностику неисправностей генератора и, в частности, щеточного узла.

Как проверить щётки генератора?

Щеточный узел, как правило, объединен с регулятором напряжения. Контакт с токосъемными кольцами ротора осуществляется за счет усилия пружин. Неисправность щеток генератора легко определить при визуальном осмотре (признак — длина выступающих концов менее 5 мм). Также нужно проверить диаметр токосъемных колец (норма – 14,2-14,4 мм, минимум – 12,8 мм). Не допускается наличие выработок на контактных поверхностях. Изношенные токосъемные кольца нужно менять.

Проблемы с генератором могут возникнуть также из‐за повышенного сопротивления щеток, которое должно составлять не более 0,5 ом. Заменить щетки придется, если при проверке мультиметр показывает увеличенное сопротивление.

Однако, учитывая, что в большинстве современных автомобилей щеточный узел совмещен с регулятором напряжения, проблемы генератора бывают связаны с неисправностью реле‐регулятора, рассчитанного на напряжение 15 В и ток до 5 А. Для диагностики используются замеры мультиметром. При заведенном двигателе величина напряжения на клеммах АКБ или на выходах генератора должна быть в пределах 14–14,2 В. Допускается изменение напряжения не более чем на 0,5 В. Если колебания оказываются более значительными, это признак того, что реле‐регулятор неисправен и подлежит замене.

Полезно также проверить регулятор напряжения.

Для этого собирают схему, объединяющую при помощи проводов регулируемый блок питания, лампочку, регулятор напряжения со щеточным узлом и мультиметр (вольтметр). Блок питания и мультиметр подключают с соблюдением полярности к контактам регулятора напряжения. Провода лампочки крепят к щеткам. Путем включения блока питания подается напряжение (от 3 В), лампочка загорается. При постепенном увеличении напряжения и по достижении 14 В лампочка должна погаснуть — это говорит о нормальной работе регулятора.

Как поменять щётки на генераторе?

Выполнить замену можно, не снимая генератор – достаточно снять регулятор напряжения вместе со щеточным узлом. Перед этим следует отключить генератор от питания (отсоединить минусовую клемму от АКБ). После этого открутить зажимную гайку, снять регулятор напряжения со щеткодержателем. При критическом значении износа (вынос менее 5 мм) понадобится замена щеток (графитовых стержней). Вот как это делают:

  • отсоединить контакты (отпаять провода) и вытащить старые щетки, выполнить очистку места пайки, проверить упругость пружин;
  • установить новый комплект в щеткодержатель, припаять контакты;
  • проверить свободное перемещение щеток в щеткодержателе;
  • установить щеточный узел на место и закрепить его гайкой.

Иногда решение может быть проще: возможно, контакт между щетками и кольцами ротора был нарушен из‐за залипания первых. Причина может быть в грязевых или графитовых отложениях, которые легко удалить путём продувки загрязненных мест сжатым воздухом.

Важно: перед установкой новой детали следует внимательно проверить их на отсутствие заводских дефектов.

Можно ли восстановить щётки?

В экстренных ситуациях, когда на помощь рассчитывать не приходится, можно воспользоваться советами мастеров по аварийному восстановлению щеточного узла. Однако в полной мере обеспечить надежное функционирование щеточного узла можно только с использованием качественных запчастей, рекомендуемых производителями. Восстановление — всегда временное решение; как только появляется возможность, нужно ехать в сервис.

Процедура замены щеток, несмотря на кажущуюся простоту, требует определенных навыков и специальных знаний. Поэтому лучше поехать в автосервис, где диагностику и техобслуживание электрооборудования вашего автомобиля выполнят быстро и с гарантией качества.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector