Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

График мощности и крутящего момента

График мощности и крутящего момента

На написание данной статьи подвигла частая путаница между такими понятиями как мощность и крутящий момент.

График мощности и крутящего момента — о чем он говорит?

Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.

Где

  • ω — угловая скорость вращения вала
  • M — крутящий момент
  • π — число

3.1416

  • n — частота вращения, измеряемая в оборотах в единицу времени (в данном случае одна минута).
  • Важно отметить что мощность в этой формуле получается в ваттах, для получения результата в лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.

    КРУТЯЩИЙ МОМЕНТ (TORQUE) — это произведение силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо) длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга на определённые углы, тем большие, чем больше приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.

    ОБОРОТЫ (RPM — Revolutions Per Minute) — здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.

    Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.

    Например к нам часто приходят запросы «Нам нужно измерить параметры двигателя мощностью 200л.с.» или «какой гидротормоз вы посоветуете на 140 кВт?»

    Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.

    Почему это важно?

    При выборе нагружающего устройства это критически важно, так как одну и ту же мощность двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном вращения вала.

    Что это означает на практике?

    Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!

    При движении в горку двигатель выдает большую мощность при тех же оборотах.
    (при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.

    Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.

    А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.

    Зачем измерять мощность и крутящий момент?

    Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.

    Во-вторых эти данные помогут при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.

    В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.

    Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.

    Шим регулятор оборотов двигателя постоянного тока

    • На складе Много
    • Вес: 0 кг.
    • Описание
    • Комментарии

    Мощный ШИМ регулятор скорости вращения электродвигателя постоянного тока (10-60 В, 60 А макс) с плавным ручным управлением.
    Данный DC ШИМ регулятор подходит для регулирования мощности ламп накаливания, нагревателей и других потребителей постоянного напряжения с максимальным током потребления до 60А. Выносной переменный резистор имеет встроенный выключатель, в крайнем левом положении отключает регулятор.
    Регулирование осуществляется по минусовому проводнику, защита от переполюсовки по входу и КЗ по выходу отсутствуют.

    Технические характерисики:
    Модель XY-L-1240:

    Входное напряжение 10-50 В,
    Максимальный рабочий ток 40 А.
    Диапазон регулировки вых. мощности 5-100 %,
    Холостой ток потребления 40 мА,
    Частота ШИМ 15 кГц,
    Размеры печатной платы 90 x 51 мм,
    Размер корпуса 123 x 55 x 40 мм.
    При входном напряжении 50 В выходная мощность регулятора составляет 2000 Вт.

    Модель XY-1260:
    Входное напряжение 10-60 В,
    Максимальный рабочий ток 60 А,
    Диапазон регулировки вых. мощности 5-100 %,
    Холостой ток потребления 50 мА,
    Частота ШИМ 15 кГц,
    Размеры печатной платы 122 x 87 x 32 мм,
    Размер корпуса 145 x 90 x 40 мм.
    При входном напряжении 60 В выходная мощность регулятора составляет 3500 Вт.

    Схема ШИМ регулятора XY-L-1240

    Расчeт и подбор серводвигателя для шарико-винтовой пары

    Сервопривод, на базе синхронного двигателя с датчиком обратной связи (энкодером), стал неотъемлемой частью большинства станков, в которых необходима прецизионность, высокая динамика процессов и надежность. О достоинствах сервопривода в сравнении с другими типами электроприводов (асинхронного, синхронного реактивного, постоянного тока) используемых в станкостроении написано множество литературы. Основной особенностью сервопривода на базе синхронного двигателя с постоянными магнитами (рассматриваемого в этой статье), является то, что он может кратковременно обеспечивать момент до 350% от номинального, что позволяет обеспечить высокую динамику и выбирать двигатель с меньшим номинальным моментом, чем в случаях с другими типами двигателей. Содержание этой статьи будет актуально для специалистов уже определившихся с типом оборудования, но не знающих как подобрать серводвигатель.


    Сервоприводы YASKAWA Sigma-5 и Sigma-7

    Очень часто инженеры сталкиваются с проблемой подбора серводвигателя для того или иного типа применения. Выбор номинальных характеристик двигателя не должен носить эмпирический характер, так как существует единственный проверенный способ – расчёт параметров двигателя. Этот расчёт производится исходя из условий функционирования системы и требований к ней. В статье приведены схема (рис.1) и пример расчета серводвигателя YASKAWA серии SIGMA 5 в применении с шарико-винтовой парой (ШВП) – преобразователем вращательного движения в поступательное линейное.

    Рисунок 1. Кинематическая схема механизма серводвигатель – ШВП.

    Зададим исходные параметры:

    • Скорость нагрузки: ϑL=15 м/мин;
    • Масса элементов поступательного движения: m=250 кг;
    • Длина винта: lB=1,0 м;
    • Диаметр винта: dB=0,02 м;
    • Шаг резьбы винта: PB=0,01 м ;
    • Плотность шарика: ρ=7,87×〖10〗^3 кг/м3;
    • Передаточное число редуктора: i=2;
    • Суммарный момент инерции редуктора и соединительной муфты: JG=0,40×〖10〗^(-4) кг*м2;
    • Частота подач (перемещений): n=40 мин-1;
    • Дистанция перемещения (позиционирования): l=0,275 м;
    • Максимальное время перемещения (позиционирования): tm=1,2 с;
    • Точность остановки: δ=±0,01 мм;
    • Коэффициент трения скольжения: μ=0,2;
    • КПД механики: η=0,9 (90%).

    1. Расчёт времени при помощи циклограммы линейного перемещения

    Для точного расчёта параметров мотора под требуемую задачу, нужно составить циклограмму движения механизма (рабочего органа). В данном случае движение рабочего органа будет циклическим.

    Рисунок 2. Циклограмма линейной скорости.

    t=60/n=60/40=1,5 c;

    Из циклограммы видно, что время ускорения и торможения имеют равные значения, следовательно, мы получаем:

    ta=td=tm-60l/ϑL =1,2-(60×0,275)/15=0,1 c;

    tc=tm-2×ta=1,2-0,1×2=1,0 c.

    2. Расчёт скорости вращения вала серводвигателя

    Скорость вращения винта ШВП: nLL/PB =15/0,01=1500 об/мин;

    Скорость вращения вала двигателя: nM=nL×i=1500×2=3000 об/мин.

    3. Расчёт момента, прикладываемого к валу серводвигателя

    4. Расчёт приведенного момента инерции к валу серводвигателя

    Момент инерции подшипников:

    JB=π/32 ρ×lB×〖d_B〗^4×1/i^2 =π/32×7,87×103×1,0×〖0,02〗^4×1/2^2 =0,31×〖10〗^(-4) кг*м2;

    Суммарный момент инерции муфты и редуктора:

    Что такое шаг винта лодочного мотора?

    27 Фев 2019 | 17:33

    Важно! Если вам нужен новый гребной винт, вы можете приобрести его в нашем интернет-магазине Лодки Деда Мазая, с быстрой доставкой и консультацией по всем вопросам.

    Шаг винта — что это?

    Разберемся, что собой представляет такой показатель, как шаг винта. Под шагом винта стоит понимать определенное расстояние, которое способен пройти винт, совершая полноценный оборот. Измеряется этот показатель в дюймах. Винт, который имеет большой шаг, способен развивать значительную скорость, а лодки с внушительной грузоподъемностью имеет меньший шаг.

    К примеру, если коленвал двигателя совершит одинаковое количество оборотов, винт лодки может пройти меньшее расстояние. Если сравнивать с автомобилем, это все равно что проехать путь на низкой передаче – скорость авто будет меньше, а тяга при этом станет выше. Среди характеристик, более важная отведена именно скорости винта. Важно, чтобы лодка удачно выходила на глиссирование, тогда мотор сможет достичь максимально возможных оборотов. То есть, в этом случае скорость лодки достигнет своего максимума.

    Как определить шаг винта лодочного мотора

    Внимательно посмотрите на грань лопасти, и вы заметите, что это не прямая плоскость, а выгнутая по определенному алгоритму. К примеру, если подвижно закрепить горизонтально расположенную деревянную планку на вертикальном упоре, раскрутить ее при этом поднимая с не изменяющейся скоростью вверх, то любая точка планки будет двигаться по винтовой траектории, а их множество образует винтовую поверхность. Конец планки будет двигаться при этом по поверхность цилиндра с радиусом, равным длине планки, образуя направляющую винтовой поверхности. Подобную форму и имеет каждая лопасть гребного винта.

    Если сделать развертку цилиндра на бумаге, то направляющая будет выглядеть, как наклонная прямая. Таким образом, расстояние от точки А до точки В (см рис) и называется шагом винта. А угол V называется шаговым углом.

    Вернемся к эксперименту с планкой. Не подлежит сомнению, что, если вращать и поднимать ее с одной и той же скоростью, то каждая точка планки будет подниматься на одну и ту же величину. Но при этом шаговый угол для двух разных точек будет разным. Чем дальше от оси вращения, тем меньше будет угол.

    Чтобы замерить шаг винта самостоятельно, можно также воспользоваться цилиндриком с иголкой, листом бумаги и угольником. Установив острие на листе, нужно циркулем прочертить часть окружности с радиусом, равным 0,6 R, где R — наибольший радиус винта. Теперь необходимо в центр прочерченной дуги установить иглу цилиндрика, с каждой стороны лопасти приставляют угольники так, чтобы они пересекали начерченную дугу. Точки пересечения отмечают карандашом, одновременно замеряют, на какой высоте от поверхности листа находятся соответствующие точки на лопасти. Теперь можно убрать винт, он больше не понадобится.

    Как измерить шаг винта лодочного мотора

    Диаметр винта.

    Вот первое определение: диаметр гребного винта — это диаметр окружности, которую проходит точка на лопасти, максимально удаленная от оси.

    Чтобы узнать этот размер, нужно установить деревянный цилиндрик с диаметром, подходящим под посадочное место вала, найти центр цилиндра и установить острый наконечник (иголка от циркуля, обломок гвоздя и т. д.). Далее следует перенести винт на плотную бумагу, воткнуть в нее острие цилиндра.

    После необходимо вооружиться металлическим или обычным чертежным угольником. Уперев в лист прямой угол, перенесите проекцию нескольких точек лопасти, наиболее отставленных от оси, на лист. Теперь снимите винт с бумаги и определите, какая из точек находится на самом удаленном от оси расстоянии. Для этого удобно использовать циркуль. Раствор циркуля показывает радиус винта, соответственно, чтобы найти диаметр, необходимо удвоить его значение.

    Если вам необходимо замерить диаметр побывавшего в употреблении, то описанную операцию стоит провести для каждой лопасти, потому что возможен неравномерный износ или сколы по краям элементов.

    Подбор гребного винта для лодочного мотора.

    Для переключения передач недостаточно использовать только редуктор подвесного мотора. Если вы хотите использовать на полную мощность мотор лодки, необходимо внимательно подойти к выбору гребного винта, который позволит достигнуть:

    • оптимального выхода на глиссирование;

    • максимальных оборотов, которые возможны для данного типа мотора;

    • максимально возможной скорости или грузоподъемности (зависит от конкретной цели).

    Правильно подобранный винт, позволяет сэкономить топливо, снизить шум, создаваемый мотором, а также способствует увеличению его ресурса.

    Как правильно подобрать винт.

    Прежде всего, стоит определить, какая перед вами стоит задача – хотите ли вы увеличить скорость и улучшить выход в глиссер, или же вас интересует возможность большей грузоподъемности для лодки. Одновременно максимально увеличить все эти показатели за счет одного лишь винта не представляется возможным, однако вы можете выбрать такой винт, который позволит удачно сбалансировать все важные показатели. Можно подобрать один винт с оптимальными показателями или же купить несколько винтов и возить их с собой. Однако, как показывает практика, менять винты в процессе не всегда удобно. Существуют также винты, которые способны изменять свой шаг, в зависимости от требований. Но сегодня мы разберем другие варианты винтов, которые отличаются по своим показателям.

    Итак, какой винт лучше приобрести – из стали или из алюминия? Давайте разбираться.

    Преимущества винтов из стали.

    Стальные детали отличаются лучшим КПД, если сравнивать с алюминиевыми – это связано с тем, что стальные лопасти имеют меньшую толщину, а крыльчатка имеет более сложное строение. Винты из стали менее подвержены кавитации, что непосредственным образом сказывается на их скорости – в сравнении с алюминиевыми агрегатами, они развивают большую скорость (примерно на 5-7%).

    Стальной винт имеет высокий уровень прочности, поэтому он не стирается и не повреждается при контакте с песчаным дном. Винт не деформируется даже при ударе об дно, он не подвергается коррозийным процессам из-за длительного нахождения в воде.

    Недостатки винтов из стали.

    Основной минус – высокая стоимость. Винты из стали обойдутся вам несколько дороже, чем их алюминиевые аналоги. Также важный недостаток – при сильном ударе возможно повреждение и деформация редуктора, несмотря на то, что сам винт может остаться без повреждений.

    Преимущества алюминиевых винтов.

    Винты из алюминия стоят сравнительно недорого, особенно это касается неоригинальных деталей для моторов Suzuki, Yamaha, Honda и многих других. В случае повреждения винты из алюминия можно отремонтировать. Алюминиевый винт весь удар возьмет на себя, зато сохранит более важные и дорогостоящие части двигателя.

    Недостатки винтов из алюминия.

    По сравнению со сталью, алюминий – более мягкий материал, который при ударе о песчаное дно деформируется, на поверхности винта появляются выщерблены, что мешает набирать скорость и существенно уменьшает КПД. В результате столкновения с небольшими препятствиями лопасти винта могут погнуться.

    Принципы подбора винтов для лодок.

    Шаг винта – одна из важнейших технических показателей, которая оказывает влияние на развитие скорости лодки. Шаг винта показывает расстояние, которое способен пройти винт, совершая один полный оборот, измеряется этот показатель в дюймах.

    Чем большим будет шаг, тем большим будет упор, создаваемый вращающимися лопастями, а он, в свою очередь, перейдет в энергию движения лодки. Такой показатель, как шаг винта, имеет непосредственное влияние на обороты лодочного мотора. Если шаг мотора меньше, то максимальные обороты будут больше.

    Очень важно подобрать винт, чтобы обеспечить максимальные обороты, хорошую скорость и удачный выход на глиссирование. При этом важно, чтобы показатели находились в том диапазоне, который предусмотрен производителем мотора. Таким образом, можно обеспечить оптимальную производительность и избежать преждевременного износа двигателя.

    голоса
    Рейтинг статьи
    Читать еще:  Двигатель вентиляции кондиционера схема
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector