Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Опыт изучения Arduino

Опыт изучения Arduino. Подключение шагового двигателя. Часть аппаратная.

Идея подключить шаговый двигатель (ШД) к ардуино и заставить его работать появилась у меня достаточно спонтанно, когда я случайно купил два нерабочих DVD-RW привода за 100 р. на Юноне. После того как один из приводов был раскурочен, в руках у меня оказался вот такой шаговый двигатель.

Чем же отличается шаговый двигатель от обычного коллекторного или асинхронного? Если не вдаваться в детали, то задача обычного двигателя — вращать вал в определенную сторону с определенной частотой, а задача шагового двигателя — повернуть вал в определенную сторону на определенный угол и удерживать его в таком положении.

Покурив интернеты стало ясно, что просто подав питание на его обмотки, многого от него добиться не получится. Минимум что нужно, чтобы заставить ШД хоть как-то функционировать — это плата управления и источник питания. Забегая немного вперед отмечу, что источников питания понадобится два: для питания логической части и АЦП (3-5 В) и для питания силовой части (8-35 В). Кстати, плата очень боится пониженного напряжения в цепях питания двигателя. Я сначала подал 6 В. Пока разобрался в чем дело, спалил две платы. Данные приведены для платы управления на базе распространенного чипа 4988. Вот её схема подключения:

Тут ещё одно замечание. Выводов «в воздухе» быть не должно — все выводы должны быть подключены. Они имеют очень большую чувствительность к помехам.
Как видно на схеме, у двигателя две обмотки, чтобы подключить его к плате, надо определить какой вывод к какой обмотке относится. Я напаял 4 разноцветных провода поверх заводского шлейфа.

Делать нужно именно так. Сам шлейф можно обрезать или просто заизолировать, но отпаивать от выводов обмоток нельзя — выводы провалятся внутрь двигателя и он придёт в негодность.
Когда провода напаяны, приступаю к определению принадлежности выводов к той или иной обмотке. Проще всего это сделать мультиметром в режиме омметра.

В моем случае синий и зеленый провод это выводы одной обмотки, а оранжевый и белый — другой. Где начало и конец обмотки непринципиально — если двигатель пойдёт не в ту сторону, достаточно поменять местами выводы на любой обмотке.
Теперь проверяю двигатель на отсутствие замыканий между обмотками:

Тут тоже всё в порядке.
Для питания логической части собрал простейший стабилизатор на микросхеме LM7805 по такой схеме:

На выход добавил конденсатор 40 мкФ на 16 В. Стабилизатор и плату управления разместил на макетной плате.
В следующей записи опишу процесс настройки платы и программирование платы ардуино. На следующем фото небольшая превьюшка следующей части)

Что выбрать: сервопривод или шаговый двигатель?

Шаговые двигатели представляют собой электромеханические устройства, задача которых состоит в преобразовании сигналов управления в линейное или угловое перемещение ротора, при этом фиксируя ротор в требуемом положении без использования специальных устройств обратной связи. По большому счету шаговый двигатель — это синхронный двигатель, но его отличительной чертой является подход управления. Ниже будет приведено описание самых распространенных шаговых двигателей.

Одним из типов шаговых двигателей являются шаговые двигатели с постоянными магнитами. В их состав входят: статор, который обладает обмотками, и ротор, который и содержит постоянные магниты. Полюса ротора чередуются и обладают прямолинейной формой. Полюсы располагаются относительно оси двигателя параллельно. В связи с присутствующей намагниченностью ротора в шаговых двигателях рассматриваемого типа становится возможным обеспечить больший магнитный поток. А, соответственно, и больший момент, если проводить сравнение с двигателями с переменным магнитным сопротивлением. Двигатель шагового типа с постоянными магнитами обладает шагом, величина которого составляет 30°. Когда происходит включение тока в какой-либо одной из катушек, тогда ротор начинает пытаться занять определенное такое положение, при котором бы разноименные полюса статора и ротора стали бы находиться напротив друг друга. Для того, чтобы осуществить постоянное непрерывное вращение, требуется включать фазы попеременно. На практике рассматриваемые двигатели, как правило, имеют от 24 до 48 шагов на один оборот, при этом угол шага составляет от 7,5° до 15°. Максимальная скорость ограничивается обратной электродвижущей силй со стороны ротора, влиянию которой подвержены шаговые двигатели с постоянными магнитами.

Гибридный тип двигателей является более дорогим, нежели двигатели с постоянными магнитами. Но они способны обеспечить большую скорость, больший момент и меньший размер шага. Характерное число шагов для гибридных двигателей на один оборот составляет 100-400 шагов, при этом угол шага равен от 0,9° до 3,6°. У гибридных же двигателей ротор имеет зубцы, которые расположены в осевом направлении. Ротор подразделяется на две части таким образом, что между этими частями располагается цилиндрический постоянный магнит. Иными словами, получается, что зубцы верхней половинки ротора выступают как северный полюс, зубцы же нижней половинки — как южный. Наряду с этим, нижняя и верхняя половинки ротора повернуты таким образом, что поворот друг относительно друга равен половине от угла шага зубцов. Количество пар полюсов ротора такое же, как и число зубцов на одной из его половинок. Полюсные зубчатые наконечники ротора, впрочем, как и статор, состоят из отдельных пластин. Такая конструкция способствует уменьшению потерь на вихревые токи. Статор у гибридного двигателя тоже имеет зубцы. Благодаря этому обеспечивается достаточно большое число эквивалентных полюсов, что нельзя сказать об основных полюсах, на которых расположены обмотки. Как правило, на практике используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 0,9°-1,8° двигателей. В некоторых определенных положениях ротора его зубцы обеспечивают меньшее сопротивление магнитной цепи. Это ведет к улучшению динамического и статического момента. Это свойство удалось обеспечить за счет особо соответствующего расположения зубцов. А именно за счет положения, при котором одна часть зубцов ротора располагается строго напротив зубцов статора, а другая часть между ними.

Читать еще:  Что такое комплектный двигатель

Сервоприводом обобщенно называют привод, асинхронного, синхронного либо какого-либо другого типа, который имеет отрицательную обратную связь по моменту, положению и другим параметрам. Благодаря такому приводу можно осуществлять точное управление всеми параметрами движения. Итак, сервопривод представляет собой целый комплекс специальных технических средств. Ниже приведен состав сервопривода в виде списка. В него входит:

  • привод, к примеру, электромотор;
  • датчик обратной связи, к примеру, датчик угла поворота выходного вала редуктора — энкодер;
  • блок управления и питания. Он же выступает в роли сервоусилителя.

Мощностная характеристика двигателей составляет от 0,05 кВт до 15 кВт.

Часто применяется такое понятие, как «вентильный двигатель». Следует понимать, что под этим названием понимается всего-навсего двигатель, который управляется посредством «вентилей» – специальных переключателей, ключей и разнообразные аналогичные коммутационные элементы. В роли современных «вентилей» могут также выступать и IGBT-транзисторы, которые применяются в блоках управления приводами. При этом никакого конструктивного отличия не наблюдается.

К главному достоинству сервоприводов относится наличие обратной связи. С ее помощью такая система вполне может поддерживать высокую точность позиционирования на достаточно больших скоростях и больших моментах. Кроме этого система имеет такие отличительные особенности, как низкоинерционность и высокие динамические характеристики. К примеру, время, которое необходимо для переключения от скорости -3000 об/мин до того момента, когда скорость достигнет значения в 3000 об/мин, будет равняться всего-навсего 0,1 с. Блоки управления, которые используются на сегодняшний день, можно назвать высокотехнологическими изделиями с достаточно сложной системой управления. Эти блоки способны обеспечивать выполнение практически любой задачи.

Сервопривод обеспечивает линейное поддержание момента на всем диапазоне изменения скоростей. Это свойство получилась достигнуть благодаря применению двигателя синхронного типа в высококачественном исполнении. Разрешающая способность датчика обратной связи, энкодера, а так же блок управления определяют величину шага перемещения. Традиционные стандартные сервоприводы вполне способны обеспечивать шаг в 0,036°, то есть 1/10000 часть от одного оборота, и это на скоростях до 5000 об/мин. Наиболее современные на сегодняшний момент сервоприводы отрабатывают шаг в 1/2500000 от одного оборота.

Итак, подытожим. Шаговый привод и сервопривод нельзя рассматривать как конкурентов, так как каждый из них занимает свою конкретную нишу на современном рынке. Выполним сравнение сервопривода и шагового привода, основываясь на рынке станков с числовым программным управлением (ЧПУ). Использование шаговых двигателей полностью целесообразно для применения в относительно недорогих станках с ЧПУ, которые предназначены для обработки легких металлов, дерева, древесно-стружечных плит (ДСП), пластиков, древесноволокнистых плит (МДФ) и других различных материалов средней скорости.

Использование высококачественных сервоприводов целесообразно в высокопроизводительном оборудовании, в котором основным критерием выступает уровень производительности. Единственным «недостатком» хорошего сервопривода является его достаточно высокая стоимость. Однако, сервоприводы обладаю рядом превосходных характеристик, которые достаточно часто играют решающую роль при выборе сервоприводов. К таким характеристикам можно отнести следующие:

  • возможность получения точного и высокостабильного управления;
  • наличие достаточно широкого диапазона регулирования скоростей;
  • высокий уровень помехоустойчивости;
  • компактные размеры;
  • маленький вес.

Если добиться одинаковых качественных характеристик от шагового привода и сервопривода, то их стоимости начнут быть соизмеримыми, но при этом, безусловно, лидером окажется сервопривод.

Шаговый двигатель

Итак, мы уже рассказали, как устроен серво мотор и сегодня начнем разбирать шаговый двигатель, его схему, драйверы управления и то, где его лучше всего использовать!

Начнем мы с того, что «на пальцах» рассмотрим принцип функционирования данной железяки. Каждый шаговик имеет внутри себя несколько электромагнитов, расположенных вокруг вала. Подавая питание в нужной последовательности на каждую из них, вращающийся элемент двигателя стремится примагнититься катушке. Быстрым переключением питания между электромагнитами можно добиться большой скорости вращения вала мотора и перемещать его в любое положение с большой точностью. Однако для обеспечения этой точности используются различные вспомогательные устройства, так как такой тип двигателя имеет крайне неприятной эффект вибрации. О таких нюансах мы и расскажем далее!

Любой шаговый двигатель имеет два основных элемента: ротор (вал мотора) и статор (неподвижный корпус). Первый состоит из обычных магнитов, а второй — из электрических, управляемых катушек. Стоит отметить, что как раз за счет шагов от одной катушке к другой в шаговиках присутствует вибрация, вызванная инерцией вала мотора. Профили магнитов, принципы управления электромагнитами — все это разделяет шаговики на типы и наделяет их своими плюсами и минусами.

Разделим шаговики на 3 основных класса:

  • Переменный шаговый двигатель
    Ротор не имеет постоянных магнитов, а оснащен ферромагнитной шестерней. Это материал, который крайне эффективно магнититься, но не так сильно по сравнению с постоянным. Это приводит к проигрышу в крутящем моменте. Зато отсутствует стопорящая сила, возникающая за счет магнитного поля между корпусом мотора и ротором с постоянным магнитом, которую легко почувствовать, покрутив шаговик в выключенном состоянии (характерные щелчки).
    Движок оснащен большим количеством катушек, которые включаются попарно. Величина шага варьируется от 5 до 15 градусов.
  • Шаговый двигатель с постоянным магнитом
    Ротор такого устройства состоит из нескольких разнополюсных магнитов. Принцип разбирали в самом начале. Характерный шаг от 45 до 90 градусов.

  • Гибридный шаговый двигатель
    Как можно догадаться, данный тип совместил в себе первые два и унаследовал все плюсы. Отличительными характеристиками данного шаговика являются высокая точность (1-5 градуса), малая вибрация и приличная скорость вращения. Все хорошо, но такие штуки отличаются от своих собратьев еще и ценой! Это связано со сложностью изготовки. Но производители пошли на технологическую хитрость. Практически невозможно создать многозубцовую (скажем, 100) шестеренку, где соседние зубья будут разных полюсов.

    Но достаточно просто создать два таких диска, имеющих противоположные полюса. Затем их сдвигают так, что если посмотреть сбоку, получится то, что мы и хотели. Осталось правильным образом расположить обмотки и включать их по оптимальной логике, обеспечивающей наибольшую эффективность!
Читать еще:  Два двигателя как генератор

Теперь давайте пробежимся по методам управления шаговыми двигателями. Их также можно разделить на несколько пунктов:

  • Полношаговое управление одной обмоткой
    Это самый простой вариант. Последовательно включается только одна катушка и к ней притягивается вал мотора. В таком случае крутящий момент будет меньше чем в следующем способе.
  • Полношаговое управление двумя обмотками
    Принцип такой же, как и в предыдущем случае, но теперь управление идет парой электромагнитов. Это обеспечивает максимальный крутящий момент мотора, но требует в два раза больше тока или напряжения (зависит от метода подключения катушек друг к другу).
  • Полушаговое управление
    Данная логика включения катушек позволит увеличить число шагов, а, следовательно, и точность в 2 раза! Аналогично предыдущим пунктам, можно управлять одной катушкой или парой. Вся фишка в том, что в данном случае переход на следующую катушку происходит не при полном выключении предыдущей. То есть, при работе двух соседних катушек вал мотора встает в промежуточное состояние.
  • Сверхточное управление
    Наверное, у многих после предыдущего пункта появилась мысль: а что если мы будем подавать разную мощность на две соседние катушки, меняющуюся по определенному закону, и получим еще больше промежуточных шагов? Именно так и устроены современные двигатели в сверхточных ЧПУ и прочих подобных устройствах. Хитрое управление обмотками позволяет значительно повысить точность позиционирования подобных моторов. В таких случаях используют специальные драйверы для шаговых двигателей, позволяющих осуществлять подобный режим управления.

В качестве примера в данной статье рассмотрим подключения двух шаговых двигателей к плате Arduino. Для начала рассмотрим мотор 17hs4401, которой используется в 3D принтерах. Данная модель является биполярной, то есть у нас есть две пары обмоток от которых идет 4 кабеля.

Шаговый двигатель 17hs4401 обладает большим крутящим моментом и может питаться от сети 12 V. Чтобы не перегружать нашу плату управления большими мощностями, шаговик подключается к ней с помощью специального драйвера А4988, который способен работать в жестких условиях (до 35 V и 2 А).

Слабые управляющие сигналы с Arduino идут на драйвер, а тот уже взаимодействует с 17hs4401 с более мощными параметрами по току и напряжению. К ножкам A4988 VDD и GND подводится питание логического уровня (3 — 5,5 В), к VMOT и GND — питание двигателя (8 — 35 В). Стоит отметить, что в данной системе бывают скачки напряжения, которые могут привести к поломке оборудования. Поэтому (на 3D принтерах всегда) ставят большие конденсаторы (более 47 мкФ). Драйвер имеет болт, который регулирует силу тока. Работая на предельных значениях, вы рискуете сжечь его, особенно если не наклеен радиатор, идущий в комплекте с устройством.

Шаговик 17hs4401 за полный оборот совершает 200 шагов. Это весьма неплохо, но для лучшего позиционирования (крайне важно для ЧПУ) используют схему управления с микрошагами, которую мы изучили ранее. A4988 позволяет осуществлять такую процедуру с коэффициентами 1/2, 1/4, 1/8 и 1/16 шага (комбинируя управление через выходы MS1, MS2, и MS3).

MS1MS2MS3Step
LowLowLowFull
HighLowLow1/2
LowHighLow1/4
HighHighLow1/8
HighHighHigh1/16

Пин STEP отвечает за микрошаг шаговика, DIRECTION — за направление вращения. Выводы STEP и DIRECTION не подтянуты к какому-либо конкретному внутреннему напряжению, поэтому их не стоит оставлять плавающими при создании приложений. Если требуется вращать двигатель в одном направлении,коннектим DIR с VCC или GND. Драйвер имеет три различных входа для управления состоянием питания: RESET, SLEEP и ENABLE. Вывод RESET плавает, если его не нужно использовать, то следует подключить его к SLEEP, чтобы подать на него высокий уровень и включить плату.

Теперь давайте перейдем непосредственно к подключению данного мотора к микрокомпьютеру. Соединяем контакты согласно указанной ниже схеме:

Обычно, такие моторы используются любителями при сборке 3d принтеров своими руками. Для этого используют Arduino MEGA и шилд ramps 1.4, о котором мы говорили в этой статье. Удобство использования данного комплекта состоит в том, что не нужно соединять кучу проводов — за вас уже все разведено. Таким образом, легко подключить сразу до 5 шаговиков!

Более простым и дешевым вариантом шагового мотора является модель 28byj-48. Его подключение немного запутанное, но несмотря на это он пользуется большой популярностью у любителей собирать роботов! Поэтому мы немного расскажем о том, как 28byj-48 подключить к Arduino. В первую очередь нам понадобиться драйвер ULN2003APG. Это очень дешевая железяка, встречается как готовая плата с разъемами, так и просто чип с голыми ножками. Сначала посмотрим, как подключать второй вариант.

На данной картинке покано подключение двух шаговых двигателей к плате Arduino Nano. C обратной стороны драйвера все ножки соединяем с цифровыми пинами, кроме крайней правой — ее ведем к GND. При программировании вам потребуется осуществить настройку моторов к пинам и в этом случае необходимо указать правильную последовательность: оранжевый, синий, желтый, розовый. Именно в таком порядке необходимо будет подавать управляющий сигнал с ножек микропроцессора. Как видно на рисунке, красный провод левого коннектора не попадает на ULN2003APG — его необходимо соединить с выходом 5V или VIN.

Читать еще:  Двигатель ваз 2131 плохо заводится

Есть более простой способ подключения шаговика 28byj-48 через готовую плату с коннектором:

На всякий случай приведем распиновку драйвера:

На этом у нас все, если будут вопросы — всегда готовы ответить!

Мини-ЧПУ из DVD-приводов и степлера



В этой статье мастер-самодельщик расскажет нам, как он сделал ЧПУ из DVD-приводов для рисования. Сборка проста, дешева и не занимает много времени. Для изготовления станка мастер использовал следующие

Инструменты и материалы:
-Плата расширения CNC Shield V4;
-Arduino Nano;
-DVD приводы — 2 шт;
-Серводвигатель SG90;
-Провода;
-Алюминиевый уголок 20 x 20 x 1,4 мм — длина 120 мм;
-Степлер канцелярский;
-Блок питания 12 В;
-Алюминиевая муфта с гибким валом, размер внутреннего отверстия: 5 мм x 8 мм (или 8 мм x 8 мм);
-Латунная соединительная гайка L-10мм 2 шт;
-Латунная соединительная гайка L-5мм 2 шт;
-Болта + гайки + шайбы M4 x 50 мм 2 шт;
-Болта + гайки + шайбы M4 x 25 мм 3 шт;
-Болта + гайки + шайбы M4 x 20 мм 2 шт;
-Болты + гайки + шайбы M2 x 40 мм 1 шт;
-Болты + гайки + шайбы M2 x 5 мм 2 шт;
-Кабельные стяжки;
-Ножовка;
-Сверлильный станок;
-Ручная шлифовальная машина;
-Клеевой пистолет;
-Паяльное оборудование;

Шаг первый: шаговые двигатели DVD / CD привода
В интернете мастер нашел характеристики шагового двигателя DVD / CD -привода.
Параметр двигателя: Угол шага: 18 °
Напряжение: 5 В
Сопротивление: 14 Ом
Фаза: 2-2
Режим привода: биполярный
Макс. Частота пуска: 900pps
Макс. Скорость вращения: 1200pps
Удерживающий момент; 40
Диаметр ходового винта: Φ3
Шаг ходового винта: 3
Размер внешнего диаметра двигателя: 15 мм
Так выглядит двигатель в разобранном виде.

Шаговый двигатель работает при напряжении 5 В постоянного тока. Нужно измерить сопротивление двух катушек с помощью мультиметра, чтобы проверить, в хорошем ли он состоянии.

В проекте использовалось два разных типа DVD / CD-плееров, один использовался для оси X с сопротивлением катушки шагового двигателя 14 Ом, а другой использовался для оси Y с сопротивлением катушки 10 Ом.

Шаг второй: плата расширения CNC Shield V4
CNC Shield V4.0 имеет 3 слота на печатной плате для модулей привода шаговых двигателей и один слот для Arduino Nano. Т.е он может управлять 3 шаговыми двигателями по команде Arduino Nano. CNC Shield V4.0 имеет несколько контактов GPIO, доступных для подключения к другим модулям, таким как концевой выключатель, а также к интерфейсу I2C или последовательной связи. Питание для 3 модулей привода шагового двигателя и платы Nano подается через разъем внешнего питания (12 В постоянного тока).

Плату нужно настроить для дальнейшей работы. Нужно настроить как аппаратное, так и программное обеспечение, чтобы использовать прошивку GRBL и настроить режим микрошагов для A4988. Как это сделать, можно посмотреть здесь.
Нужно установить перемычки.


Контакты, подключенные к входам «STEP» и «DIRECTION» драйверов шагового двигателя, неверны по сравнению с исходными определениями GRBL. CNC Shield V4.0 работает Arduino Nano, поэтому можно исправить определения контактов «STEP» и «DIRECTION» в файле «cpu_map_atmega328p.h», расположенном в папке grbl , следующим образом:

Шаг третий: драйвер A4988
A4988 — это микрошаговый драйвер двигателя со встроенным переводчиком для упрощения работы. Он предназначен для работы биполярных шаговых двигателей в полно-шаговых, полу-шаговых, четверть-шаговых, восьмых и шестнадцати-шаговых режимах с выходной мощностью до 35 В и ± 2 А.

Можно управлять шаговым двигателем с помощью всего 2 контактов контроллера: один для управления направлением вращения, а другой — для управления шагами.

Во многих приложениях микрошаговый режим может повысить производительность системы, а также снизить сложность и стоимость системы по сравнению с полно-шаговыми и полу-шаговыми методами. Микрошаговый режим может использоваться для решения всех проблем с резонансом, вибрацией и шумом в системе шагового двигателя, а также для повышения точности и разрешения шага.

По правилам, чем больше микрошагов, тем плавней движения, но ниже крутящий момент, и наоборот. Мастер пробовал режим 1/16 микрошагов, но в конце концов выбрал 1/8 микрошагов, что является хорошим сочетанием плавного движения и крутящего момента.

Каждый поворот шагового двигателя DVD / CD изначально разделен на 20 шагов с углом 18 ° / шаг (1 поворот = 360 градусов | 360/20 = 18 °). При установке режима с разрешением 1/8 шага на A4988, каждое вращение шагового двигателя DVD / CD будет разделено на 160 шагов с углом 2,25 ° / шаг, что сделает вращение шагового двигателя намного более плавным.

ОГРАНИЧЕНИЕ ТОКА
Подстроечный потенциометр на плате A4988 можно использовать для установки ограничения тока шагового двигателя. Следует обратить внимание на следующее:
В платах шаговых драйверов A4988 используются различные резисторы RCS, в зависимости от производителя. Обычно RCS может быть 0,05 Ом (с маркировкой «R050»), 0,1 Ом (с маркировкой «R100») или 0,2 Ом (с маркировкой «R200»). RCS на данной плате управления A4988: 0,1 Ом.

Шаг четвертый: установка оси X И Y
В этом проекте мастер в основном использовал болты для соединения деталей.
Первый шаг к созданию этого мини-плоттера с ЧПУ — это разобрать два привода DVD / CD.
Далее мастер припаял 4-х проводные кабели к 2-м шаговым двигателям, определив их обмотки и клеммы.
Он измерил длину привода — ось X, которая будет расположена горизонтально, затем вырезал алюминиевый уголок 20 x 20 x 1,4 мм по длине. В данном случае — 120 мм.

Дальше просверлил в алюминиевом уголке 6 отверстий:
— Два отверстия для крепления оси Y с помощью M4x50.
— Два отверстия для крепления оси X с помощью M4x25.
— Два оставшихся отверстия для крепления CNC Shield V4.0 через латунные соединительные гайки L-10 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector