Sw-motors.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель как определить провода

Шаговый двигатель как определить провода

Текущее время: Вс авг 29, 2021 05:31:09

Часовой пояс: UTC + 3 часа

Запуск шагового двигателя

Страница 1 из 1[ Сообщений: 6 ]

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

_________________

На базе интеллектуальных силовых ключей верхнего плеча PROFET+2 производства Infineon можно создавать мощные приложения, способные коммутировать значительные токи. Однако миниатюрность их корпусов может стать причиной чрезмерного нагрева. Статья рассказывает о методах проектирования печатных плат для ключей PROFET+2, позволяющих минимизировать этот недостаток.

Спасибо, с 5-ю проводами вроде разобрался. Согласно сопротивлению между проводами, коричневый провод отвод от середины.

Жел. — черн. = 126.2 Ом. Кор. — Кр. = 64.2 Ом. Кр. — Чер. = 64.3 Ом.
Жел. — кр. = 62.4 Ом. Кор. — Чер. = 128.0 Ом. Кр. — Ор. = 62.4 Ом.
Жел. — Ор. = 124.4 Ом. Кор. — Ор. = 126.0 Ом. Чер. — Ор. = 126.2 Ом.
Жел. — Кор. = 126.0 Ом.

Показания где 4 провода:

Ж — Кр. = 3.5 Ом. Кр. — Син. = 3.6 Ом.
Ж — Син. = 3.5 Ом. Кр. — Зел. = 2.0 Ом.
Ж — Зел = 2.0 Ом. Син. — Зел. = 2.0 Ом.

Если там две отдельные обмотки, то они между собой не должны соединятся? И прозваниваться попарно? Или неисправен двигатель?

Как определить, где какая обмотка, где конец и где начало? В обоих двигателях.

Технология компании Analog Devices для импульсных преобразователей, названная Silent Switcher, позволяет на порядок (по напряжению) уменьшить эмиссию электромагнитных волн не за счет доп. фильтров или уменьшения КПД, а за счет правильного размещения элементов. Рассмотрим методы борьбы с электромагнитными помехами при импульсном преобразовании с помощью микросхем Silent Switcher и модулей Silent Switcher 2.

Как проверить работоспособность шагового двигателя wff

Шаговый электродвигатель

— это вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигнала управления [1].

Предшественником шагового двигателя является серводвигатель.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.

Тестер-драйвер шагового двигателя

Когда я начал собирать свой первый самосборный 3D принтер (вариация на тему HyberCube Evolution, но об этом позже), то уже на одном из первых этапов возникла необходимость покрутить шаговые двигатели оси Z, а плата управления еще не пришла. Да и честно сказать, слишком много работы для такой простой задачи. Ведь надо сконфигурировать и залить прошивку, подключить питание, дисплей, двайверы, все это временно подвесить на соплях, сильно повышая шансы на случайное замыкание и досрочный выход из строя самой дорогой запчасти. Да и ждать не охота, вся работа встала из-за того, что мне нечем крутануть туда-сюда один или два движка для подстройки расположения механических компонентов. Руками? Не так быстро, а главное — не точно. Ну как вы крутанете одновременно два мотора, скажем на 100 оборотов (каждый оборот — 200 шагов), не ошибившись ни на шаг, т. к. это вызовет перекос? И вообще, хочется «погонять» ось приближенно к «боевым условиям», чтобы оно само гудело и ездило. Ровно и быстро. В общем, пришлось что-то выдумывать.
Так как у меня уже была горсть дешевейших и надежнейших драйверов А4988, которые суют во все китайские 3D принтеры по-умолчанию, задачу я решил «в лоб». Что там нужно, чтобы этот драйвер крутил вот такой биполярный шаговик (у меня стандартные NEMA 17 48мм)? Всего лишь указать драйверу направление (вывод DIR) логическим уровнем и подать импульсы на вывод STEP. Ну и подключить шаговик и питание, естественно. В итоге образовалась вот такая простая схема, оказавшаяся удобной и практичной. Все есть: «крутилка» скорости, тумблер «туда-сюда», тумблер «крутить/стоять». Джамперами JP1…JP3 можно выставить микрошаг в диапазоне от полного шага до 1/16, хотя на практике оказалось достаточно полношагового режима, но лишняя возможность может пригодиться. Итак, схема.

На популярном таймере 555 собран регулируемый генератор импульсов частотой примерно от 80 до 900 Герц (в режиме полного шага мотор крутится в диапазоне от «едва ползет» до «мчится со свистом»). Импульсы через тумблер SW1 попадают на вход STEP драйвера А4988, это режим «крутить». Если тумблер разомкнуть, драйвер перейдет в режим торможения (удерживания) мотора. Чтобы «отпустить» моторы, надо снять питание с драйвера. Тумблер SW2 переключает направление вращения шагового мотора. Резисторы R6 и R7 «подтягивают» соответствующие входы к «земле», на плате этих резисторов почему-то нет, хотя все прочие входы имеют «подтягивающие» к «земле» внутрисхемные резисторы. Вообще номиналы резисторов могут варьироваться в достаточно широких пределах, плюс-минус процентов 30 точно, схема сохраняет работоспособность. Точно так же не критична емкость конденсаторов, в принципе от 10нФ до 1мкФ пойдет любая керамика. Исключение — конденсатор С1, который желательно использовать пленочный. Значение емкости определяет диапазон частот, вместе с переменным резистором Р1. Номиналы С1 и Р1 можно изменять в широких пределах, сохраняя их произведение, как в исходной схеме. Скажем, можно взять емкость С1 0,47мкФ, но переменник Р1 тогда применить 20кОм. Диапазон частот, конечно, несколько сузится, но работать все будет нормально. Стабилизатор 78L05 можно заменить любым подходящим на напряжение 3.3..5В. Входное напряжение не желательно применять менее 12В и более 24В, драйвер выдерживает ток обмоток мотора 1А длительно, превышать это значение не стоит. Кто не в курсе — на драйвере А4988, как на многих других, установлен миниатюрный подстроечный резистор, которым выставляется максимальный ток шагового двигателя. Выбор максимального тока зависит от типа вашего шагового двигателя, сама же процедура многократно описана в сети, повторяться не вижу смысла. Кто не знает — гуглим «A4988 max current».

Таблица для выставления дробления шагов драйвера А4988 джамперами JP1..JP3

Схему собрал на второпях разведенной двусторонней платке размером 75х35мм, где верхний слой фольги играет роль общего провода (GND). Такой тип плат упрощает разводку, да и одностороннего стеклотекстолита под рукой не было. Все «земляные» выводы компонентов паяются прямо на фольгу, без отверстий, на фото видно. Панелька драйвера сделана из двух половинок распиленной панельки под выводную микросхему DIP16, также видно на фото (кликабельно). Плату в формате LAY прилагаю ниже, как и пару фоток, снятых на тапок. Номиналы деталей появляются при наведении на них курсора в программе Sprint Layout.

Микрошаговый режим

Микрошаги это не магия. Существуют специальные драйверы для микрошагового управления. Это позволяет увеличить точность позиционирования, однако достигается за счет значительного крутящего момента. Кроме того, наличие драйвера, обеспечивающего шаг 1/32, не значит, что ваш электродвигатель сможет это реализовать. После определенного порога (1/10 и иногда 1/16) требуются высококачественные драйверы и двигатели. Даже если ваш шаговый электродвигатель и драйвер смогут реализовать микрошаг в 1/32, возможно ли это интегрировать в общую систему управления?

Рассмотрим следующий пример. Линейное перемещение с 10 шагами на дюйм ходового винта напрямую соединенного с типичным шаговым двигателем, имеющим 200 шагов на оборот. Каждый полный шаг электрической машины будет переведен в 0,0005 дюйма линейного движения. Казалось бы, что, якобы, та же система микрошагов 1/32 сможет уменьшить линейный шаг до 0,000015. Но в реальности реализации данной системы практически не возможна, так как упругость и силы трения не позволят преобразовать настолько миниатюрные шаги к линейному движению.

Микрошаговый режим реально полезен при проверке системы с шаговой электрической машиной на резонанс. Это дает определенные возможности для избегания резонанса. Как известно, любая механическая система имеет резонансную частоту. Для шаговых электродвигателей достижение этой частоты, как правило, происходит на определенной скорости, после чего двигатель начнет сильно шуметь. Эти шумы могут привести к «пропусканию шагов», что чревато серьезными последствиями для определенных систем. В некоторых случаях это может привести к слишком большим вибрациям. В случаях с режущими машинами, такими как токарные станки, этот звук можно спутать с рабочим звуком обработки поверхности заготовки. Микрошаговый режим уменьшает расстояние пройденное валом между шагами (на появление шумов тратится меньше энергии).

Наностенд для проверки шаговых моторов и драйверов.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Продолжаю нанообзоры. Сколько всего интересного появилось то на Али.

Стендик для проверки шаговиков и драйверов. Маст хэв для настоящих репрапперов. Хотя за его цену они принтер соберут.

Пусковая и рабочая обмотка однофазного двигателя: как отличить?

Для определения типа обмотки однофазного двигателя достаточно взглянуть на маркировку на шильдике и схему. Но бывают ситуации, когда любые маркировочные определения отсутствуют, что, в свою очередь, существенно усложняет задачу. К тому же вид обмотки электродвигателя, который уже ремонтировали, лучше определять самостоятельно, во избежание неприятных неожиданностей.

Что такое пусковая обмотка

Несмотря на свое название, однофазные двигатели имеют двухфазную обмотку: основную и вспомогательную, именно последняя делит электрические моторы небольшой мощности на виды. Так, встречаются бифилярные и конденсаторные электродвигатели, и если первые имеют пусковую обмотку, то вторые обладают пусковым конденсатором. И если у второго вида второстепенная обмотка все время находится в рабочем состоянии, то у первого она отключается от сети сразу после того, как мотор наберет нужный разгон. Таким образом, вспомогательная катушка включается на короткий промежуток времени.

Характеристики рабочей обмотки

Основной или рабочей обмоткой является та, которая работает постоянно, создавая магнитное поле. Как следствие, она обладает большим сечением проводника и меньшим активным сопротивлением из-за постоянной нагрузки. Однако, несмотря на всю ее значимость, она не может работать без пускового механизма, которым и является вспомогательная катушка.

Как отличить на однофазном двигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок.

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

По толщине проводов

Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.

Однако не всегда можно определить толщину сечения проводов невооруженным глазом, иногда разница между ними совсем незаметна человеку.

Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.

При помощи мультиметра

Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:

  1. Возьмите мультиметр и выберите нужную функцию.

  1. Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.

  1. Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
  2. Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
  3. Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.

После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.

Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.

На Токе заряженный портал

Датчики Холла: причины выхода из строя, диагностика, замена, видео Электровелосипеды — На токе

  • Статьи об электротранспорте
  • Электротранспорт
  • Электровелосипеды
  • Датчики Холла: причины выхода из строя, диагностика, замена, видео

Датчики Холла: причины выхода из строя, диагностика, замена, видео

В этой теме я хочу рассказать вам о датчиках Холла устанавливаемых на индивидуальный электротранспорт. Поговорим о проблемах с ними и способах их решения.

Датчики Холла – это маленькие электронные устройства, реагирующие на магнитное поле. Именно по ним синхронный двигатель узнает, в каком положении в данный момент времени пребывает ротор, и подает напряжение на определенные фазы. Вот зачем нужны датчики Холла в мотор-колесе – они отвечают за правильное чередование фаз и обеспечивают вращение мотора.

Содержание:

  • Кратко о Датчиках Холла (ДХ) на велогибридах.
  • Причины сбоя ДХ.
  • Проверка исправности ДХ акселератора.
  • Проверка ДХ мотор-колеса.
  • Замена ДХ мотор-колеса.
  • Видео (работа МК с неисправным датчиком Холла, диагностика, замена ДХ).

Кратко о Датчиках Холла (ДХ) на велогибридах

Что касается электровелосипедов, то в их ручках управления скоростью стоят ДХ с маркировкой SS49E (купить), а для мотор-колёс, предназначены изделия с обозначением SS41 (купить можно здесь, кстати аналог — А3144 продается тут). Эти датчики принимают питание в весьма широком диапазоне напряжений. Для первого — это 2,7-6,5 V, для второго — 4,5-24 V.

Основными достоинствами ДХ являются быстрая работа и отсутствие подвижных механических компонентов. Также, эти устройства могут похвастать высокой надёжностью и долговечностью. Кроме того, в распоряжении обсуждаемых ДХ имеется защита от неправильного подключения.

Причины сбоя ДХ

Датчик положения могут подпортить такие факторы:

  • серьёзный перегрев силового агрегата (температура должна перевалить за 150-180 градусов);
  • скачки напряжения;
  • проникновение влаги в корпус электромотора либо ручки акселератора;
  • механические повреждения.

Явный признак неисправности ДХ — подёргивание мотор-колеса при старте в момент воздействия на акселератор. Чтобы диагностировать подобный сбой, нам потребуется лишь вольтметр.

Проверка исправности ДХ акселератора

От контроллера, на орган управления скоростью идёт 3 проводка:

  • чёрный — «ноль»;
  • красный — питание 5 V;
  • зелёный — управляющий сигнал, идущий от ручки скорости к контроллеру (напряжение изменяется в диапазоне 0-4,2 V, на этот показатель влияет угол поворота рукояти акселератора).

Чтобы проверить работоспособность ДХ находящихся в ручке управления скоростью, нужно с помощью вольтметра сделать замеры напряжения проводка красного цвета. Подключаем к нему положительную клемму вольтметра, а отрицательную — к чёрному проводу. Если в диагностируемой цепи не наблюдается напряжение 5 Вольт, значит причина сбоев скрывается не в акселераторе. Может быть сломался контроллер, может до него не доходит ток, а может оборвалась проводка, соединяющая контроллер и рукоять газа.

Если же измерительный прибор демонстрирует подачу тока на рукоятку управления скоростью, но при её прокручивании, напряжения на зелёном проводке нет, то причиной сбоев является, как минимум один сломанный ДХ либо подведённые к нему провода. Отработавшие своё компоненты меняем на новые изделия.

Проверка ДХ мотор-колеса

Прежде чем приступать к ремонту МК, нужно воспользовавшись вольтметром или тестером проверить ДХ. Подсоединяем тестер либо подаём напряжение +5 Вольт, крутим ось двигателя и наблюдаем колебания напряжения на сигнальной ноге. (Также можно проверить ДХ, если у мультиметра есть функция проверки сопротивления. На черный провод ДХ ставим красный щуп, а черным щупом снимаем сопротивление у сигнальных проводов ДХ, значение должно быть где-то 640 и одинаково на всех 3-х ДХ. Стоит заметить что датчик в ручке газа так не проверишь).

Если после разборки силового агрегата вы обнаружите, что обмотки погорели, то восстановить движок уже не получится. Если они целы, проверьте проводки, направляющиеся через ось к трём ДХ.

Замена ДХ мотор-колеса

1. Для вскрытия моторизированного колеса, берём в руки стамеску и молоток. Приспосабливаем первую под крышку и слегка постукиваем по ней молотком. Тут крайне важно следить за тем, чтобы инструмент не проскользнул внутрь движка, так как в этом случае стамеской могут быть нанесены серьёзные повреждения обмотке силового агрегата. Если такое произойдёт, то придётся не слабо раскошелиться на перемотку.

При тугом снятии крышки МК либо застревании её на оси, нужно постучать молотком по торцу оси двигателя с той стороны, где застопорилась крышка.

2. Далее выдавливаем ротор из статора. Для воплощения этого в реальность, нужно держа статор, упереть мотор осью о твёрдую поверхность и нажать не жалея сил. Выдавив, удерживая одной рукой статор, второй, забираем ротор. Здесь нужно соблюдать осторожность, так как неодимовые магниты настолько мощны, что могут вернуть статор на его исходное место, придавив попутно вам пальцы.

3. После выдавливания сердцевины, вашему взору предстанут ДХ в статоре. Прогреваем паяльником железо возле неисправного датчика — это делается для обеспечения более лёгкого извлечения детали. Греем минут 5. Затем подковыриваем датчик с помощью канцелярского ножа или тоненькой отвёрточки и выдвигаем его наружу. Далее выпаиваем. Очищаем место посадки от остатков клея. Устанавливая новые детальки, проклейте их лаком для обеспечения надёжной фиксации.

4. Как разберётесь с датчиками Холла, прозвоните МК посредством тестера. Если измерительного прибора под рукой нет, подключите моторизированное колесо и проверьте его работоспособность. Если всё в порядке, осуществляем герметизацию крышки силиконом и закручиваем болты полностью.

Видео (работа МК с неисправным датчиком Холла, диагностика, замена ДХ)

В приведённом видеоматериале наглядно показано, как функционирует МК со сломанным датчиком Холла. Объясняется, как определить ДХ давший сбой и правильно подвергнуть его замене:

Возможно чуть более подробно, видео с канала Кирилла Холодова

Заключение

Как видим, эти маленькие штучки играют большую роль в адекватном функционировании велогибрида. Продиагностировать их проще простого, да и заменить несложно. Тут главное чтобы при установке, новый датчик, был идентичен предыдущему, иначе могут возникнуть недоразумения.

Ну и конечно, приобрести подобную мелочь можно на том же AliexPress или Яндекс.Маркете.

голоса
Рейтинг статьи
Читать еще:  Датчик оборотов двигателя cummins
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector