Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель em 142 схема

Чебоксары

Шаговые двигатели достаточны распространены в устройствах, в которых необходимо добиться точного перемещения механизмов. Существует много типов шаговых двигателей, но самыми дружелюбными в плане управления являются 2-х фазные униполярные двигатели.

Этот тип двигателей имеет две независимые обмотки с выводами от середины. Их можно встретить преимущественно в старой технике: принтерах, копирах, дисководах (5-и дюймовых) и еще много где.

В зависимости от от того как соединены средние обмотки внутри, из двигателя могут выходить 5 или 6 проводов. Разницы никакой нет, все равно средние выводы обмоток соединяются вместе, ниже на фотографии разобран двигатель марки 17PM-H005-P2VA.

Характерной особенностью шаговых двигателей является дискретность поворота ротора, тоесть если взять и покрутить вал двигателя можно ощутить как он фиксируется в определенных моментах. Это и есть шаги двигателя.

При запитывании одной из половины обмоток происходит фиксирование вала двигателя в определенном положении. Если снять напряжение с этой обмотки и запитать другую, ротор повернется и зафиксируется в другом положении. Таким образом, если запитывать обмотки в определенной последовательности можно добиться вращения вала двигателя.

Схема контроллера ШД:

схему в большем разрешении.

Схема собрана на микроконтроллере ATtiny2313 и имеет две кнопки, при нажатии на одну вал двигателя будет крутиться в одну сторону, при нажатии другой — в другую. Красный светодиод загорается при нажатии одной из кнопок. В качестве ключевых транзисторов выбраны КТ829, их можно заменить на КТ972 — правда эти слабее и будут греться сильнее.

К клемме Udvig подключаются выводы от середин обмоток и туда же подводится напряжение для питания обмоток. Величина напряжения зависит от самого двигателя, для моего например по документации максимальный ток в обмотках 1,5 Ампера, измерив сопротивление обмоток получил 2 Ома, отсюда вывод что напряжение питания не должно превышать 3 В ну или немного больше, учитывая что запитываться будет индуктивная нагрузка. Кстати диоды D2-D5 стоят для того, чтобы гасить скачки обратного напряжения после закрытия транзистора. Иначе есть вероятность что ЭДС самоиндукции возникающая во время выключения питания обмотки пробъет транзистор.

Изменяя величину задержки между шагами, можно в больших пределах регулировать скорость вращения вала. При выбранной мной задержке в 1000 мкс с шаговиком имеющем 200 шагов на оборот (400 полушагов) скорость вращения получается примерно 2,5 оборота в секунду.

По материалам сайта

файлы проекта и файл печатной платы.
видео с демонстрацией работы схемы (

iОнлайн

Решение проблемы с Linear Advanced на драйверах шаговых двигателей TMC2208. Замена на драйвер TMC2209

Всем привет! Это снова я. Внимательные читатели моего сайта/блога помнят о проблеме с Linear Advanced, с которой я столкнулся при замене драйверов шаговых двигателей A4988 на TMC2208 у 3Д принтера Anycubic 4max. Для тех кто не в теме, рекомендую к прочтению статью “Дневник 3Д печатника. Устанавливаем тихие драйверы TMC2208. Часть 3. Решение проблем с Linear Advanced“.

Коротко, о сути проблемы, для тех кто не хочет вдаваться в подробности:

Если установить на двигатель экструдера драйвер TMC2208, то в какой-то момент драйвер зависает, подача пластика останавливается и принтер начинает печатать в воздухе.

Проблема эта известная и задокументирована как баг на сайте марлина.

Я уже предлагал несколько решений данной проблемы:

  1. Оставить на моторе экструдера драйвер A4988
  2. Изменить режим работы драйвера TMC2208 путем прошивки драйвера с помощью OTP (подробности описаны в статье “Решение проблемы с Linear Advanced на драйверах шаговых двигателей TMC2208 с помощью OTP. Меняем режим работы драйвера TMC2208“

Однако, каждый из этих вариантов имеет свои недостатки.

В первом случае, при большом количестве микро ретрактов мотор экструдера начинает мерзко пищать, что сильно раздражает и начинает бесить.

Во втором, процесс перепрошивки необратим и вернуть драйвер в исходное состояние не получится. Плюс ко всему, при пайке перемычек есть шанс ошибиться и сломать драйвер. Кроме этого, риск спалить драйвер остается и в процессе его подключения и прошивки.

Прогресс не стоит на месте и разработчики оборудования предложили усовершенствованную версию драйверов TMC2208, это новые драйверы TMC2209.

Документации по этим драйверам не так уж и много, но по большому счету нам это и не нужно. Достаточно отметить 2 самые существенные ключевые особенности драйверов TMC2209:

  • Драйверы TMC2209 поддерживают больший ток, чем TMC2208
  • Драйверы TMC2209 без проблем работают с Linear Advanced

Таким образом появляется третий вариант решения проблемы – установка на мотор экструдера драйвера TMC2209.

Читать еще:  Большие обороты двигателя матиза

ранее на моторе экструдера был установлен драйвер A4988

Установил на мотор экструдера драйвер TMC2209

Я рискнул и заказал драйверы TMC2209 и проверил это утверждение. Тесты показали, что TMC2209 работают с Linear Advanced без проблем! тестирование проводилось на 3Д принтере Anycubic 4max, а это означает, что все точно так же будет отлично работать и на большинстве 3D принтеров от компании Anycubic, но и от других производителей.

Само собой, для тестов пришлось переписать прошивку и прошить принтер, однако это другая история и материал для отдельной статьи.

И так, давайте подытожим и закроем тему проблемы TMC2208 и Linear Advanced.

Если очень хочется прошивку Marlin 1.1.9 с включенной технологией Linear Advanced, то существует 3 варианта:

  1. Оставить на моторе экструдера драйвер A4988
  2. Перепрограммировать драйвер TMC2208 с помощью OTP
  3. Использовать на моторе экструдера драйвер TMC2209

Поясню третий пункт. Если очень хочется тихий принтер, то я рекомендую на моторы осей X Y и Z установить тихие драйверы TMC2208, а на мотор экструдера – драйвер TMC2209.

Например, для 3Д принтера anycubic 4 max требуется 3 драйвера TMC2208 и 1 драйвер TMC2209, а для принтера Anycubic i3 mega или Anycubic Mega-S требуется 4 драйвера TMC2208 и 1 драйвер TMC2209.

Если смотреть правде в глаза, то разница в стоимости драйверов TMC2208 и TMC2209 небольшая, я бы установил одинаковые драйверы на все моторы, по купонам и распродажам, TMC2209 бывают даже дешевле TMC2208

Само собой, мы знаем, что на алиэкспресс есть как хорошие, так и не очень продавцы, да и товары по качеству у них бывают разные, ниже я приведу ссылки на те драйверы, которые покупал я и которые тестировал.

На этом, тему драйверов шаговых двигателей и Linear Advanced я буду считать закрытой. Отличной вам печати 🙂

Товары, ссылки на которые я выложил в этой статье я покупал сам для данной модернизации у проверенных продавцов.

Если вы еще не обзавелись 3Д принтером и думаете какую модель выбрать, могу порекомендовать следующие модели:

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

КРЕН, «кренка» — бытовое название интегральных стабилизаторов напряжения серии 142. Размеры её корпуса не позволяют нанести полную маркировку серии (КР142ЕН5А и т.п.), поэтому разработчики ограничились кратким вариантом – КРЕН5А. «Кренки» получили широкое распространение как в промышленности, так и в любительской практике.

Что из себя представляют стабилизаторы напряжения КРЕН 142

Микросхемы серии 142 завоевали популярность из-за простоты получения стабильного напряжения – несложная обвязка, отсутствие регулировок и настроек. Достаточно подать питание на вход, и получить стабилизированное напряжение на выходе. Наибольшую известность и распространение получили нерегулируемые интегральные стабилизаторы в корпусах ТО-220 на напряжение до 15 вольт:

  • КР142ЕН5А, В – 5 вольт;
  • КР142ЕН5Б, Г – 6 вольт;
  • КР142ЕН8А, Г – 9 вольт;
  • КР142ЕН8Б, Д – 12 вольт;
  • КР142 ЕН8В, Е – 15 вольт;
  • КР142 ЕН8Ж, И – 12,8 вольт.

В случаях, когда надо получить более высокое стабильное напряжение, применяются приборы:

  • КР142ЕН9А – 20 вольт;
  • КР42ЕН9Б – 24 вольта;
  • КР142ЕН9В – 27 вольт.

Эти микросхемы также выпускаются в планарном исполнении с несколько отличающимися электрическими характеристиками.

Серия 142 включает в себя и другие интегральные стабилизаторы. К микросхемам с регулируемым выходным напряжением относятся:

  • КР142ЕН1А, Б – с пределами регулирования от 3 до 12 вольт;
  • КР142ЕН2Б – с пределами 12…30 вольт.

Эти приборы выпускаются в корпусах с 14 выводами. Также в эту категорию входят трехвыводные стабилизаторы с одинаковым выходным диапазоном 1,2 – 37 вольт:

  • КР142ЕН12 положительной полярности;
  • КР142ЕН18 отрицательной полярности.

В серию входит микросхема КР142ЕН6 – двуполярный стабилизатор с возможностью регулировки выходного напряжения от 5 до 15 вольт, а также включение в качестве нерегулируемого источника ±15 вольт.

Все элементы серии имеют встроенную защиту от перегрева и короткого замыкания на выходе. А переполюсовку по входу и подачу внешнего напряжения на выход они не любят – время жизни в таких случаях исчисляется секундами.

Модификации микросхемы

Модификации микросхем, входящих в серию, отличаются корпусом. Большинство однополярных нерегулируемых стабилизаторов выполнено в «транзисторном» корпусе TO-220. Он имеет три вывода, этого хватает не во всех случаях. Поэтому часть микросхем выпускались в многовыводных корпусах:

  • DIP-14;
  • 4-2 – то же самое, но в керамической оболочке;
  • 16-15.01 – планарный корпус для монтажа на поверхность (SMD).
Читать еще:  Что такое импульсно детонационный двигатель

В таких исполнениях выпускаются, в основном, регулируемые и двуполярные стабилизаторы.

Основные технические характеристики

Кроме выходного напряжения, для стабилизатора важен ток, который он может обеспечить под нагрузкой.

Тип микросхемыНоминальный ток, А
К(Р)142ЕН1(2)0,15
К142ЕН5А, 142ЕН5А3
КР142ЕН5А2
К142ЕН5Б, 142ЕН5Б3
КР142ЕН5А2
К142ЕН5В, 142ЕН5В, КР142ЕН5В2
К142ЕН5Г, 142ЕН5Г, КР142ЕН5Г2
К142ЕН8А, 142ЕН8А, КР142ЕН8А1,5
К142ЕН8Б, 142ЕН8Б, КР142ЕН8Б1,5
К142ЕН8В, 142ЕН8В, КР142ЕН8В1,5
КР142ЕН8Г1
КР142ЕН8Д1
КР142ЕН8Е1
КР142ЕН8Ж1,5
КР142ЕН8И1
К142ЕН9А, 142ЕН9А1,5
К142ЕН9Б, 142ЕН9Б1,5
К142ЕН9В, 142ЕН9В1,5
КР142ЕН181,5
КР142ЕН121,5

Этих данных достаточно для предварительного решения о возможности применения того или иного стабилизатора. Если нужны дополнительные характеристики, их можно найти в справочниках или в интернете.

Назначение выводов и принцип работы

По принципу работы все микросхемы серии относятся к линейным регуляторам. Это означает, что входное напряжение распределяется между регулирующим элементом (транзистором) стабилизатора и нагрузкой так, что на нагрузке падает напряжение, которое задается внутренними элементами микросхемы или внешними цепями.

Если входное напряжение увеличивается, транзистор прикрывается, если уменьшается – приоткрывается таким образом, чтобы на выходе напряжение оставалось постоянным. При изменении тока нагрузки стабилизатор отрабатывает так же, поддерживая неизменным напряжение нагрузки.

У этой схемы есть недостатки:

  1. Через регулирующий элемент постоянно протекает ток нагрузки, поэтому на нём постоянно рассеивается мощность P=Uрегулятора⋅Iнагрузки. Эта мощность расходуется впустую, и ограничивает КПД системы – он не может быть выше Uнагрузки/ Uрегулятора.
  2. Напряжение на входе должно превышать напряжение стабилизации.

Но простота применения, дешевизна прибора перевешивают недостатки, и в диапазоне рабочих токов до 3 А (и даже выше) что-то более сложное применять бессмысленно.

У регуляторов напряжения с фиксированным напряжением, а также у регулируемых стабилизаторов новых разработок (К142ЕН12, К142ЕН18) в трех- и четырехвыводном исполнении выводы обозначаются цифрами 17,8,2. Такое нелогичное сочетание выбрано, очевидно, для соответствия выводов с микросхемами в корпусах DIP. На самом деле такая «дремучая» маркировка сохранилась только в технической документации, а на схемах пользуются обозначениями выводов, соответствующим зарубежным аналогам.

Обозначение по технической документацииОбозначение на схемахНазначение вывода
Стабилизатор с фиксированным напряжениемСтабилизатор с регулируемым напряжениемСтабилизатор с фиксированным напряжениемСтабилизатор с регулируемым напряжением
17InВход
8GNDADJОбщий проводОпорное напряжение
2OutВыход

Микросхемы старой разработки К142ЕН1(2) в 16-выводных планарных корпусах имеют следующее назначение выводов:

НазначениеНомер выводаНомер выводаНазначение
Не используется116Вход 2
Фильтр шума215Не используется
Не используется314Выход
Вход413Выход
Не используется512Регулировка напряжения
Опорное напряжение611Токовая защита
Не используется710Токовая защита
Общий89Выключение

Недостатком планарного исполнения служит большое количество излишних выводов прибора.
Стабилизаторы КР142ЕН1(2) в корпусах DIP14 имеют другое назначение выводов.

НазначениеНомер выводаНомер выводаНазначение
Токовая защита114Выключение
Токовая защита213Цепи коррекции
Обратная связь312Вход 1
Вход411Вход 2
Опорное напряжение510Выход 2
Не используется69Не используется
Общий78Выход 1

У микросхем К142ЕН6 и КР142ЕН6, выпускаемых в разных вариантах корпуса с теплоотводом и однорядным расположением выводов, цоколёвка следующая:

Номер выводаНазначение
1Вход сигнала регулировки обоих плеч
2Выход «-»
3Вход «-»
4Общий
5Коррекция «+»
6Не используется
7Выход «+»
8Вход «+»
9Коррекция «-»

Пример типовой схемы подключения

Для всех нерегулируемых однополярных стабилизаторов типовая схема одинакова:

С1 должен иметь ёмкость от 0,33 мкФ, С2 – от 0,1. В качестве С1 может быть использован фильтрующий конденсатор выпрямителя, если проводники от него до входа стабилизатора имеют длину не более 70 мм.

Двуполярный стабилизатор К142ЕН6 обычно включается так:

Для микросхем К142ЕН12 и ЕН18 напряжение на выходе устанавливается резисторами R1 и R2.

Для К142ЕН1(2) типовая схема включения выглядит сложнее:

Кроме типовых схем включения интегральные для стабилизаторов серии 142 существуют и другие варианты, позволяющие расширить область применения микросхем.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Микросхема К142Зарубежный аналог
КРЕН12LM317
КРЕН18LM337
КРЕН5А(LM)7805C
КРЕН5Б(LM)7805C
КРЕН8А(LM)7806C
КРЕН8Б(LM)7809C
КРЕН8В(LM)78012C
КРЕН6(LM)78015C
КРЕН2БUA723C

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

Как проверить работоспособность микросхем КРЕН

Микросхемы серии 142 имеют достаточно сложное устройство, поэтому мультиметром однозначно проверить её работоспособность невозможно. Единственный способ – собрать макет реального включения (на плате или навесным монтажом), который включает в себя, как минимум, входную и выходные ёмкости, подать на вход питание и проверить напряжение на выходе. Оно должно соответствовать паспортному.

Несмотря на доминирование на рынке микросхем зарубежного производства, приборы серии 142 удерживают свои позиции за счет качества изготовления и других потребительских свойств.

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Что такое диодный мост, принцип его работы и схема подключения

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Защита от перенапряжения: что лучше стабилизатор или реле контроля напряжения?

ВЫБОР КОМПРЕССОРА ДЛЯ ХОЛОДИЛЬНИКОВ

Информация о взаимозаменяемости компрессоров, выпускаемых различными производителями, необходима для подбора компрессора при ремонте холодильного оборудования.

Ниже приведены сведения о совместимости компрессоров различных моделей и торговых марок, сгруппированные по типу хладагента: в табл. П5.1 даны параметры компрессоров, работающих на хладагенте R134a, в табл. П5.2 — на хладагенте R12, и в табл. П5.3 — на хладагенте R600a. Для удобства подбора компрессора указан тип и приблизительный литраж холодильника или морозильника, в котором применяется агрегат данной модели.

Герметичные компрессоры Embraco

Основанный в 1971 г. бразильский концерн Embraco — один из крупнейших мировых производителей компрессоров. В спектр его продукции входят герметичные компрессоры для бытового и торгового холодильного оборудования, а также для систем кондиционирования воздуха. В 1994 г. в состав концерна вошел итальянский завод компрессоров Aspera. Кроме заводов в Бразилии и Италии, концерн имеет производственные мощности в Словакии и Китае.

В табл. П5.4 и П5.5 приведены технические характеристики некоторых моделей герметичных компрессоров Embraco, работающих на хладагентах R134a и R600a соответственно. Все указанные в таблицах модели относятся к категории компрессоров с низким давлением всасывания (англ. LBP — low back pressure) и предназначены для применения в бытовом холодильном оборудовании. В таблицах указан тип электрической схемы компрессора (1, 2 или 3). Эти схемы приведены на рис. П5.1, П5.2 и П5.3 соответственно.

В компрессорах Embraco применяются электродвигатели со следующими режимами пуска и работы:

RSIR (Resistant Start Induction Run) — запуск через пускозащитное реле и резистор, работа через обмотку (индуктивность);

RSCR (Resistant Start Capacitor Run) — запуск через пускозащитное реле и резистор, работа через конденсатор;

CSIR (Capacitor Start Induction Run) — запуск через конденсатор, работа через обмотку (индуктивность).

Все приведенные в таблицах модели компрессоров охлаждаются естественным образом и не требуют дополнительного охлаждения. В компрессорах, работающих на хладагенте R134a, применяется полиэфирное смазочное масло, а в компрессорах, работающих на хладагенте R600a — минеральное масло.

Срезы соединительных трубок компрессоров Embraco закрыты резиновыми пробками, препятствующими проникновению в полость компрессора влаги и загрязнений. Производители заполняют полость компрессора осушенным азотом. Материал пробок химически инертен и не взаимодействует с азотом, смазочным маслом и металлом соединительных трубок (медью или омедненной сталью). Удаление пробок необходимо производить непосредственно перед подсоединением компрессора к контуру циркуляции хладагента. Для удаления пробок рекомендуется использовать инструмент с закругленными губками и действовать осторожно, чтобы не повредить соединительные трубки. Направление усилия должно совпадать с осью трубки, чтобы не разрушить удаляемую пробку (рис. П5.4).

Для проверки наличия утечки тока на корпус компрессора замеряют мегомметром сопротивление между клеммой С электрического контактного разъема и клеммой заземления на корпусе; в исправном компрессоре оно должно быть не менее 2 МОм.

Таблица П5.1 Параметры компрессоров, работающих на хладагенте R134a

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector