Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как функционирует газотурбинный двигатель

Как функционирует газотурбинный двигатель?

Газотурбинный двигатель — представляет собой тепловой силовой агрегат, который осуществляет свою работу по принципу реорганизации тепловой энергии в механическую.

Ниже подробно рассмотрим, как работает газотурбинный двигатель, а также его устройство, разновидности, преимущества и недостатки.

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Агрегат со свободно поршневым генератором

На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

Турбовальный двигатель

Для тех, кто интересуется моторами в целом и их авиационными моделями в частности, турбовальный двигатель в первую очередь ассоциируется с вертолетами, недаром их называют «вертолетными ГТД». Именно здесь ТВаД нашли наибольшее применение и уже не один десяток лет с успехом используются. Но вертолеты – не предел их возможностей, многие другие отрасли машино- и судостроения взяли на вооружение этот тип двигателей, но обо всем по порядку.

Итак, турбовальный двигатель принадлежит славному семейству газотурбинных двигателей (ГТД) наравне с турбореактивными (ТРД) и турбовинтовыми (ТВД). ГТД представляет собой тепловую машину, в упрощенной схеме состоящую из компрессора и турбины, работающей за счет сжигания топлива в камере сгорания. Наиболее простой его разновидностью является турбореактивный двигатель, в котором энергия от сжигания топлива идет только на вращение компрессора через турбину, а излишек энергии выходит через сопло в виде газов под высоким давлением, образуя реактивную тягу. Но эта энергия может не только «вылетать в трубу», но и выполнять полезную работу, вращая воздушный винт (турбовинтовой двигатель) или вал (турбовальный двигатель). Это и является принципиальной разницей между всеми вышеотмеченными видами моторов семейства ГТД – способ использования свободной энергии.

Устройство и принцип работы двигателя

Строение турбовального двигателя в общих чертах напоминает строение ТРД. Основными составляющими являются комрессор, турбина, камера сгорания и вал. В отличие от других газотурбинных двигателей ТВаД совсем не имеет реактивной тяги – вся свободная энергия расходуется на вращение вала, поэтому и сопла, как такового, у него нет, а есть только каналы (своеобразные выхлопные трубы), по которым отводятся отработанные газы. Еще одна особенность ТВаД – наличие не одной, а двух турбин, не связанных между собой механически. Одна турбина приводит в движение компрессор, а вторая – рабочий вал. Между собой они связаны газодинамически. Некоторые модели турбовинтовых двигателей также имеют схожую конструкцию, но не обязательно. В случае с ТВаД турбин всегда две.

Две основные схемы устройства ТВаД с описание расположенных механизмов. Картинки кликабельны.

Принцип работы турбовального двигателя тоже не сильно отличается от ТРД или ТВД. Компрессор, приводимый в движение турбиной, нагнетает воздух в камеру сгорания, где он перемешивается с впрыснутым через форсунки топливом. Топливный заряд воспламеняется и сгорает, в результате чего образуются газы с большим запасом энергии. Расширяясь, они вращают турбины, приводя в движение компрессор и вал, а отработанные газы выводятся наружу.

Читать еще:  Bwt двигатель что это

Компрессор турбовального двигателя имеет несколько ступеней и может быть центробежным, осевым или комбинированным. Комбинированные компрессоры сочетают в себе и центробежные, и осевые ступени.

Обязательным конструктивным элементом ТВаД, как, впрочем, и турбовинтового двигателя, является редуктор, установленный между турбиной и валом. Сама турбина вращается с угловой скоростью, достигающей 20 000 об/мин. Понятно, что винт, закрепленный на валу и создающий тягу, не сможет работать при такой скорости и выполнять свои функции, ведь тогда ему придется вращаться со сверхзвуковой скоростью. Редуктор, установленный перед валом, понижает обороты и увеличивает крутящий момент, так что скорость вращения лопастей винта вертолета значительно меньше скорости вращения турбины.

Если турбовинтовые двигатели, которые используются на самолетах, должны иметь компактные размеры, а вал турбины и вал винта у них устанавливаются параллельно в одном корпусе, то к габаритам турбовальных двигателей таких жестких требований нет. Рабочий вал у них может находиться впереди турбины или за ней, в одном корпусе с ней или отдельно. Это объясняется тем, что мотор спрятан в конструкции кабины, где его можно расположить в любом удобном положении. Различают цельные моторы и модульные, состоящие из отдельных модулей, связанных между собой механически. Часто в одном модуле расположены компрессор и турбины, а в другом – рабочий вал, связанный с валом турбины редуктором.

Легкий американский вертолет AH-6j Little Bird

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт — мощность на валу.
  • 37% — КПД, механический привод.
  • 36% — КПД, электрический (простой цикл).
  • 80% — КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов — полный жизненный цикл
  • выбросы NOx — не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.

В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем

Десантное судно «Зубр»

Преимущества и недостатки

Основным преимуществом турбовального двигателя является то, что по сравнения с поршневыми двигателями он более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера. Вся суть турбовального двигателя и заключается, чтоб максимально использовать энергию сгорающего топлива, по сравнению с поршневыми двигателями это реализуется лучшим образом. Тем самым в одном килограмме двигателя можно реализовать конструкцию, более мощную своих цилиндрических сородичей, которая с каждого килограмма топлива будет забирать тепловую энергию и преобразовывать ее в механическую.

Есть у турбовального двигателя и недостатки. Первый из них – сравнительно большой расход топлива и, соответственно, низкий КПД, несмотря на высокие показатели мощности. Именно этот недостаток объясняет его ограниченное применение на наземном транспорте, где его можно заменить более эффективными силовыми установками. Второй недостаток – чувствительность к загрязнениям. Компрессор, втягивая воздух в камеру сгорания, заодно всасывает и пыль, и посторонние предметы, что сказывается на качестве работы двигателя и на его исправность в целом. На высоких оборотах даже незначительные твердые частички могут повредить лопасти турбины. Поэтому ТВаД нуждается в надежной системе тщательной очистки воздуха, а расходы на нее далеко не всегда оправданы – в большинстве случаев намного проще и дешевле использовать традиционный дизель. Это еще одна причина, по которой эти двигатели в основном используются в воздухе: там и грязи меньше, и птицы летают ниже высоты полета, так что нормальной работе компрессора и турбины ничего не мешает. Зато масса ТВаД намного меньше любого поршневого двигателя, а это в авиации немаловажно.

Турбовальные двигатели – это действительно в первую очередь «сердца» вертолетов, а уж потом все остальное. Именно эти стальные «стрекозы» дают возможность оценить основные преимущества ТВаД, ну а недостатки в этом случае совсем незначительны.

Газотурбинный двигатель самолета. фото. строение. характеристики.

То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.

Основные части реактивного модельного двигателя:

  • Двигатель постоянного тока достаточно сильный и минимум на 12 вольт
  • Источник постоянного тока не менее 12 вольт (в зависимости от того, какой у вас двигатель постоянного тока).
  • Реостат, такой же какой продаётся для настройки яркости лампочек.
  • Коробка передач с маховиком, встречается во многих автомобильных игрушках. Лучше всего, если корпус редуктора сделан из металла, потому что пластик может плавиться на таких высоких скоростях.
  • Металлический лист, который можно разрезать, чтобы сделать лопасти вентилятора.
  • Амперметр или вольтметр.
  • Потенциометр примерно на 50К.
  • Катушка электромагнита из соленоида или любого другого источника.
  • 4 диода.
  • 2 или 4 постоянных магнита.
  • Картон, чтобы собрать корпус, похожий на корпус реактивного двигателя.
  • Наполнитель кузовов для авто, для создания экстерьера.
  • Жесткий провод, чтобы поддерживать все. Обычно я использую провода из дешевых вешалок. Они достаточно сильны и достаточно гибки, чтобы придать им нужную форму.
  • Клей. Для большинства деталей я предпочитаю горячий клей, но сейчас подойдёт практически любой клей.
  • Белая, серебряная и черная краска.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Авиационный ГТД Климов ГТД-350 для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг; — габариты: 1385 х 626 х 760 мм; — номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт); — частота вращения свободной турбины: 24000; — диапазон рабочих температур -60…+60 ºC; — удельный расход топлива 0,5 кг/кВт час; — топливо — керосин; — мощность крейсерская: 265 л.с; — мощность взлётная: 400 л.с.

Читать еще:  Что такое подхват двигателя

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

Турбореактивный двигатель с форсажной камерой

Рис. 2. Схема ТРДФ. 1 – турбокомпрессор; 2 – блок форсажной камеры; 3 – сопло; 4 – форсажная камера; 5 – стабилизаторы пламени.

Турбореактивный двигатель с форсажной камерой (ТРДФ) (рис. 2) широко применяется на скоростных боевых самолётах.

Как и в ТРД, основу внутреннего контура ТРДФ составляет турбокомпрессор (газогенератор), включающий в себя компрессор, камеру сгорания и турбину. Между турбокомпрессором и соплом (обычно регулируемым, т. е. с изменяемой площадью потока) установлена форсажная камера, в которой сжигается дополнительное горючее (керосин), подаваемое через форсунки форсажной камеры. Стабилизаторы пламени обеспечивают устойчивое горение обеднённой кислородом топливной смеси (часть кислорода воздуха использована при горении керосина в камере сгорания турбокомпрессора). За счёт сжигания дополнительного топлива происходит увеличение тяги (форсирование, форсаж – франц. forçage, от forcer – вынуждать, чрезмерно напрягать) на 50% и более, что связано, однако, с резким повышением расхода топлива. Поэтому режим форсажа используется кратковременно на взлёте для сокращения длины разбега и в воздушном бою для увеличения скороподъёмности и скорости полёта. Использование форсажных режимов на крейсерском полёте экономически невыгодно.

Основными характеристиками двигателя любого типа являются: масса двигателя $m_<дв>$ и его габариты; стартовая тяга двигателя $P_<дв0>$; удельная масса двигателя $g_ <дв>= m_<дв>/P_<дв0>$ (кг/Н); удельный расход двигателя $C_р$, показывающий расход массы топлива на создание 1Н тяги в час, [кг/(Н×ч)]; высотно-скоростные характеристики $P = f(H, V)$ и $C_р = f(H,V)$; ресурс двигателя.

Качественный характер высотно-скоростных характеристик ГТД включает тяговые и высотные характеристики, которые определяются главным образом степенью повышения давления в компрессоре, степенью двухконтурности и температурой газа перед турбиной.

Потребная для определённых условий полёта тяга (мощность) обеспечивается выбором соответствующего режима работы силовой установки. Лётчик управляет режимом работы двигателя с помощью рычага управления двигателем (РУД), перемещение которого регулирует, т. е. увеличивает или уменьшает – дросселирует (от нем. drosseln – душить, сокращать), расход топлива.

Большинство современных пассажирских самолётов оборудуются вспомогательной силовой установкой (ВСУ) – небольшим ГТД, вся мощность которого используется не для создания тяги, а для снабжения энергией бортовых систем самолёта. При стоянке на земле ВСУ обеспечивает работу электросистем, радиооборудования, системы кондиционирования самолёта, техническое обслуживание самолёта и его систем, запуск основных двигателей, что делает самолёт независимым от аэродромных источников энергии. ВСУ может применяться и как источник энергии в аварийных ситуациях в полёте.

Разновидность ТРД – турбовентиляторный двигатель.

Двигатель самолёта является основным источником шума в кабине и на местности. Для удовлетворения требований по уровню допустимого шума в конструкции самолёта используют материалы и устройства, изолирующие источник шума или поглощающие шум. Звукоизоляционные прокладочные материалы ограждают источник шума и ослабляют звук при его проникновении через ограждение (см. в статье ).

Минусы турбомоторов

Какие бы хвалебные слова вы не услышали о моторах с турбинами, они имеют свои недочеты. Недочеты турбомоторов не просто малозначительные мелочи и недоделки, доставшиеся после их выпуска с конвейера, а объективные составляющие. К примеру, одним из них является большое потребление горючего.

Но, хотя недочет этот и значительный, всё же он имеет и позитивные моменты. Например, чем больше данный мотор «скушает» горючки, тем он будет мощнее. К примеру, турбодвигатель в 1400 кубиков может развить параметры с показателями (поразительно!) в 1,7 раз больше, чем аналогичный по объему атмосферник.

Особая специфика турбомотора предполагает тщательное наблюдение за качественными показателями масла. Недостатком тут считается необходимость обслуживания масла как в самом моторе, так и в турбине. И суть этого минуса даже не в расходе масла, который не так существенен, а в непрерывном наблюдении за качеством смазки и минимальные периоды между сменой масла.

Очередным минусом будет повышенная чувствительность к качеству заправляемого горючего. Как бензин, так и дизельное топливо (а оно ещё больше) применимы только высочайшего качества. Если по незнанию “подпитать” атмсферный мотор бензином с октановым числом хуже 95, то трагедии не будет. Это и не советуют практиковать часто, но двигатель стерпит и простит.

А вот с турбомотором не всё так хорошо. Такие бездумные действия мгновенно создадут проблему, которая выразится в значительных и больших затратах на восстановление системы. Именно немалостоящее восстановление обуславливает следующий недочет турбомоторов. В России стоимость восстановления достигает 75000 рублей, а это, бесспорно, значительная сумма.

Но, не смотря ни на что, работа турбомотора на порядок лучше работы обычного, потому что показатели эффективности и мощности намного выше. Владельцев машин с таким двигателем можно только поздравить. Следите за двигателем своего автомобиля, и он отблагодарит Вас высокой эффективностью и стабильным режимом работы в любых условиях.

Своими руками — Как сделать самому

Как сделать что-то самому, своими руками — сайт домашнего мастера

Реактивный двигатель из… БУМАГИ своими руками ( + чертеж)

«БУМАЖНЫЙ» РЕАКТИВНЫЙ ДВИГАТЕЛЬ СВОИМИ РУКАМИ + ЧЕРТЕЖ

данный материал – исключение из правил, и мы предлагаем читателям самим поучаствовать в доводке весьма оригинальной идеи, пока еще не сделавшей последнего шага к успеху.

Добившись определенных положительных результатов в освоении техники радиоуправления, я приступил к осуществлению мечты, пожалуй, всей моей жизни, – созданию собственной конструкции радиоуправляемого самолета. Разобравшись по Интернету, насколько возможно, в новой технике, я заказал из Китая двигатель «аутраннер» и регулятор к нему. Но пока мои покупки доставлялись, произошло одно важное событие…

Государственная Дума приняла закон об обязательной регистрации летательных аппаратов массой более 250 граммов! Интересовались ли когда-нибудь эти горе-законодатели правилами соревнований по авиамоделизму, и какие международные органы их устанавливают? Знакомы ли они с техникой разных соревновательных классов? Это все вопросы риторические, конечно, поскольку вес даже учебного кордового «фанероида» гарантировано превышает указанную величину.

Тогда может быть, моделистам стоит действительно начать регистрировать свои модели? Но как быть, если многие из них, особенно у новичков, живут всего один полет.

А что до нынешних «электричек», то с ними может не быть и его, поскольку у приобретенных в случайных источниках моторов, винтов, аккумуляторов просто не окажется достаточной тяги, чтобы оторвать аппарат от земли. Будут ли школьники бегать по инстанциям, чтобы оформить различные бюрократические бумажки? Наверняка за это придется еще и платить. А затем мучительно раздумывать над обломками: снимать их с учета или все-таки попробовать восстановить?

В результате, в сколько-нибудь серьезных классах авиамоделизм в ближайшем будущем законно сможет существовать только как покупка готовых китайских игрушек из легчайших материалов и интегральной радиоаппаратуры. А как техническое творчество, на доступных самоделках из реек и фанеры учащее молодых аэродинамике и конструкциям летательных аппаратов, он оказался фактически под запретом.

Знаю, что защитники закона начнут рассказывать нам сказки: «Вот принесет террорист беспилотник с бомбой на регистрацию, а мы его тут ка-а-ак схватим!» Однако подобные «отмазки» – далеко не новость, и уже более 30 лет, как предусмотрены в очень серьезных международных документах. Кроме того, интересно, как авторы закона представляют себе использование кордовой или резиномоторной модели для совершения теракта. Как говорил Михаил Задорнов: «Очень хочется представить себе сам процесс».

Словом, когда моя посылка пришла на почту, закон уже вступил в силу. Поэтому первым делом полученные мотор и регулятор отправились на весы: 85 граммов! Без винта, и без аккумуляторов, способных дать почти сотню ватт. Это был приговор моей электрической силовой установке… Я даже не стал тратить время, чтобы хотя бы разок запустить покупку, и сразу переключил свое внимание на пульсирующие воздушно-реактивные двигатели.

ПуВРД – вещь в моделизме известная, достаточно вспомнить такие конструкции, как GADO-300 или РАМ-1. Последний даже попал на плакат «От моделей ученических – до кораблей космических!» Времена, правда, были другие.

На первый взгляд, идея использования реактивного двигателя кажется бесполезной в нынешних условиях. Ведь известные конструкции весят около 300 г, требуют сложных станочных работ, сварки, жаропрочных сталей. Плюс необходим источник сжатого воздуха и высокого напряжения для запуска. Тем не менее, мною было сформировано «безумное» техзадание со следующими особенностями.

1. Технологичные прямоугольные формы каналов входной части

2. Основной материал корпуса двигателя… бумага! Ведь всем известна пиротехника с бумажными оболочками, выдерживающими немалые тепловые и механические нагрузки. Да, корпус, скорее всего, окажется одноразовым, но его наиболее сложная деталь – топливный модуль может использоваться многократно.

3. Запуск – прокачкой воздуха обычной резиновой грушей.

4. Доступность материалов, низкие требования к точности изготовления и низкая трудоемкость. Фактически, двигатель большей частью изготавливается из содержимого мусорного ведра!

Читать еще:  Гранта тихо работал двигатель

5. Отсутствие дефицитных и тяжелых заводских свечей зажигания.

6. Масса – не более 50 г.

ОТ СЛОВ – К ДЕЛУ!

Работы над двигателем продолжались более года, свидетельством чему стала эта ни на что не похожая конструкция. Но начну с «телеграфного» напоминания принципов действия ПуВРД. Бензо-воздушная смесь воспламеняется искрой в рабочей камере. Продукты сгорания выбрасываются через длинную выхлопную трубу, создавая реактивную тягу. Инерция потока газа приводит к тому, что он продолжает двигаться назад по трубе и после вспышки. Это создает разрежение в рабочей камере, которое открывает клапаны. Происходит всасывание свежей порции смеси, после чего цикл повторяется. Электрическая система зажигания требуется только при запуске. В камере работающего двигателя быстро появляются раскаленные (а в нашем двигателе – и тлеющие!) части, обеспечивающие дальнейшее зажигание.

Основная часть корпуса предлагаемого двигателя изготавливается из ватмана, после чего она оклеивается в 3-4 слоя обычной газетной бумагой на огнестойком силикатном клее. Конструкция вроде кажется устрашающей с точки зрения безопасности. Однако практика показала, что прочности такого корпуса более чем достаточно, чтобы выдерживать давление вспышки. А бесконтрольное горение в рабочей камере невозможно из-за малого количества находящегося там воздуха.

Остальные части конструкции опишу в порядке уже успешно решенных технических проблем.

СНАБЖЕНИЕ ДВИГАТЕЛЯ ВОЗДУХОМ

Обратное движение клапанов плюс утечки из-за невысокой точности их изготовления приводят к тому, что при вспышке задняя часть каналов карбюраторов заполняется выхлопными газами. Поэтому импульс всасывания должен быть очень мощным, чтобы прокачать эту грязь и далее всосать свежую смесь в достаточном объеме. Поэтому длину выхлопной трубы пришлось сделать даже большей, чем у известных, более мощных конструкций. Зато импульс всасывания оказался настолько сильным, что если бы на входе не было суживающихся каналов карбюратора, то он бы деформировал клапаны (проверено!).

Классические конструкции двигателей используют для клапанов тонкую пружинную сталь, и я очень гордился тем, что нашел ее источник – лезвия для безопасной бритвы. Но такие клапаны, похоже, оказались «туговаты». Поэтому я перешел на их изготовление из стенок алюминиевых банок из-под напитков. При сборке двигателя клапаны сначала «прихватываются» клеем «Момент» за нижнюю поперечину к фанерной клапанной решетке, а затем, при установке клапанной решетки, заливаются там силикатным клеем.

Также довольно скоро я пришел к идее наклонной клапанной решетки. Ведь клапаны – это плоские пружины, а их недостаток – небольшое, по сравнению с длиной, перемещение. Наклонное расположение клапанной решетки также улучшает аэродинамику, как для потоков газа внутри двигателя, так и с точки зрения его внешних форм.

У основания клапанов имеется застойная зона, создающая завихрения и неопределенности в направлении течения смеси. Ее выключение с помощью выемки в корпусе дало благоприятные результаты.

Самодельный реактивный двигатель:
I – бензобак (белая жесть); 2 – распылительная трубка; 3 – заливная горловина; 4 – верх входной части канала (бумага); 5 – канал карбюратора (белая жесть); 6 – клапанная решетка (фанера толщиной 3 мм); 7 – клапан (Al-жесть); 8 – рабочая камера (бумага); 9 – трубка наддува (термоусадочная трубка); 10 – выхлопная труба (бумага);
II – патрубок наддува; 12 – уголок крепления патрубка (бумага); 13 – свеча зажигания; 14 – отражатель (фольга); 15 – выемка; 16 – внешняя стенка канала карбюратора

Топливный модуль:
1 – бензобак; 2 – заправочная горловина; 3 – ка нал карбюратора; 4 – трубка наддува; 5 – монтажная закраина; 6 – распылительная трубка

СНАБЖЕНИЕ РЕКАТИВНОГО ДВИГАТЕЛЯ БЕНЗИНОМ

Теоретически мною рассматривались несколько систем снабжения двигателя топливом, а именно: 1 – простейшие карбюраторы; 2 – естественное испарение бензина с развитой пористой поверхности; 3 – принудительное испарение бензина электрическим нагревателем; 4 – разбрызгивание бензина вращающимся от микромоторчика диском. Эксперименты проводились по первым трем пунктам, и ни один из них не оказался совсем уж безнадежным. Но я все же остановился на первом, так как в известных конструкциях двигателей применяется именно он. Кроме того, только этот вариант увеличивает подачу бензина, когда она нужна – при увеличении мощности и скорости модели.

Примитивных карбюраторов – два. Как я надеялся, это должно было облегчить «схватывание» двигателя после стартовой продувки одного из них. Также это должно было сделать работу двигателя более устойчивой в случае обратной вспышки в одном из карбюраторов.

Стоит отметить, что соприкосновение потока смеси с бумажными или фанерными деталями приводит к впитыванию некоторой части бензина, которая оказывается потерянной для рабочего процесса. Так как наклонные клапаны сильно отклоняют поток смеси вверх, я наклеил на верхнюю часть камеры отражатель из фольги. Это полезно и для ресурса двигателя (когда он заработает, конечно).

С этой же целью концы распылительных трубок загнуты строго горизонтально. А металлические стенки каналов карбюраторов было решено совместить со… стенками топливного бака. Таким образом, имеющая дело с бензином часть двигателя превратилась в компактный топливный модуль, собранный на пайке из белой жести. Распылительные трубки идут от дна бензобака прямо в канал карбюратора.

В известных двигателях каналы карбюратора имеют круглое сечение, что требует токарных работ. В «Саяке» каналы – прямоугольные. Более того, две из четырех стенок канала – еще и плоские. Представляете, как это упрощает технологию! Каналы имеют закраины, вставляющиеся в отверстия клапанной решетки, что фиксирует топливный модуль и уменьшает соприкосновение потока смеси с фанерой. И только верхняя часть каналов карбюраторов перед распылителями сделана из бумаги.

Наружные стенки каналов выполнены из 3-мм фанеры (можно использовать пластик). Благодаря тому, что верхние и нижние стенки каналов плоскопараллельные, наружные стенки можно двигать, изменяя сечение канала, а, следовательно, регулируя и состав смеси.

Обратный заброс некоторой части выхлопных газов через клапаны в карбюратор может привести еще и к вытеснению бензина из распылительных трубок, что дополнительно увеличивает требования к всасываемому объему. В большой авиации в таких двигателях применялись обратные клапаны в топливной системе. Но в наших микроскопических объемах они бесполезны, да и трудновоспроизводимы. Единственный выход – противопоставить давлению прорвавшихся газов… это же самое давление, но со стороны бензобака. Так в двигателе появился патрубок наддува на выходе, соединенный с верхней частью бака. Патрубок приклеивается уголками из бумаги в несколько слоев на силикатном клее.

Задержка давления на удвоенной длине двигателя приводит к тому, что импульс наддува поступает в бак не во время вспышки, а как раз тогда, когда и требуется подача топлива. Именно после этого усовершенствования топливо, наконец-то, стало поступать в достаточных количествах. Дугообразно изогнутые отрезки хорошо паяющихся металлических трубок можно приобрести в магазинах товаров для рукоделия. Для распылительных трубок используются заготовки диаметром 1,5 мм, для системы наддува – диаметром 2,5 мм. Заливной горловиной служит припаянная к отверстию в баке гайка М2,5. Бак заправляется шприцем, после чего в горловину вкручивается винт. Затем включается зажигание, к входу одного из карбюраторов приставляется резиновая груша и подается поток воздуха для запуска. Но, внимание! Не отпускайте грушу, не отведя ее от карбюратора, во избежание всасывания взрывоопасной бензовоздушной смеси.

РЕГУЛИРОВКА ТОПЛИВНОЙ СИСТЕМЫ

Опытным путем мною был подобран диаметр распылителей в 0,4 мм. Делаются они просто – в конец трубки вставляется обмоточный провод соответствующего диаметра и обжимается плоскогубцами. Сечение каналов каждого из карбюраторов для двигателей данной размерности и конструкции не должно быть больше, чем 5×7 мм. иначе не произойдет подсасывания бензина. Наружные стенки каналов удобнее вклеивать на прозрачном «Моменте». Клей этот вязкий и хорошо герметизирует даже большие щели. Но в то же время он не очень прочный, так что переставить стенку будет нетрудно. Конечно, такая регулировка не очень удобна. Но можно использовать также пережатие трубки наддува для уменьшения подачи бензина.

Оптимальная смесь дает очень громкую и звонкую вспышку. Глухая вспышка с выбросом пламени на выходе двигателя – свидетельство переобогащенной смеси. А глухая вспышка без выброса пламени сообщает о том, что смесь нормальная, но плохо перемешанная (такое было характерно для систем с испарением бензина электронагревателем).

Щелчки искр зажигания также несут информацию. Звонкие звуки говорят, что камера двигателя заполнена воздухом. В заполненной смесью или выхлопными газами они глуше.

Судя по максимально достигнутому результату (о нем – ниже), система питания двигателя налажена удовлетворительно.

ЗАЖИГАНИЕ

Основой для системы зажигания послужила батарейная газовая зажигалка. Свечой же служит клинышек из стеклотекстолита, по краю которого проходит U-образная дорожка фольги. На конце его сделан пропил – это искровой промежуток. Экспериментально выявлено, что свеча может быть вставлена только в боковую стенку. Верхняя стенка быстро покрывается копотью или обугливается, что приводит к утечке искры на это углеродистое покрытие. Внизу же возможно попадание бензина с его протечкой наружу через прорезь для свечи и риском пожара.

Работа двигателя сильно зависит от положения свечи. Двинув ее вперед к клапанной решетке, мы увеличиваем вероятность «схватывания» двигателя даже при недостаточном всасывании. Но мощность вспышки уменьшится из-за того, что вспышка произойдет раньше, чем камера в должной мере заполнится смесью.

РЕЗУЛЬТАТЫ

В одной из серий экспериментов мне удалось получить надежные вспышки при каждой прокачке воздуха. Однажды даже была повторная вспышка. Правда, слишком слабая, чтобы вызвать следующие. Но даже при этих одиночных вспышках двигатель ощутимо подавался вперед, что свидетельствует о потенциально высокой тяге. Общий вес же заправленного двигателя без системы зажигания составил феерические 40 граммов! Однако для дальнейшей самостоятельной работы двигатель «не схватывает».

По-видимому, конфигурация факела смеси при стартовой продувке и при самостоятельном всасывании сильно различаются и искровое зажигание в одной точке не обеспечивает работу во всех режимах.

Возможно, я поставил перед собой слишком высокую планку в смысле доступности и технологичности этого мотора, и для получения работоспособной конструкции требуется частичный возврат к более традиционным решениям. Но я надеюсь, что-то из моих идей и наработок пригодится, и авиамоделисты получат силовую установку неслыханной легкости, простоты в изготовлении и дешевизны. Предлагаю читателям, имеющим практический опыт эксплуатации и создания модельных ДВС, подключиться к этой работе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector