Sw-motors.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема и принцип действия газотурбинного двигателя

Схема и принцип действия газотурбинного двигателя

Газотурбинным двигателем (ГТД) согласно стандарту 23851-79 (Авиационные газотурбинные двигатели. М.:Изд-во стандартов,1979.) называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина(рис.3.1).

Рис.3.1. Принципиальная схема газотурбинного двигателя:

к – компрессор; кс – камера сгорания; т – газовая турбина;

п – потребитель механической работы; Gт – расход топлива;

В-В – обозначение проходного сечения для воздуха на входе в

компрессор; К-К – то же на выходе из компрессора;

Г-Г – то же для газов на входе в турбину; Т-Т – то же для выхода из

Принцип действия ГТД следующий.

1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный (трение и теплообмен отсутствуют), то сжатие воздуха осуществляется в адиабатном процессе ( ), показатель адиабаты к=1.4.

Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре: .

2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе: .

3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.

В процессе расширения газа в турбине тепловая энергия преобразуется в механическую работу на валу, примерно 2/3 которой направляется для вращения компрессора, а 1/3 направляется потребителю (воздушному винту, для вращения дополнительного компрессора, для вращения электрогенератора и т.п.).

4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона (рис.2.11, 2.12).

3.2. Схема и принцип действия турбореактивного двигателя.

Турбореактивным двигателем (или двигателем прямой реакции) в соответствии с ГОСТ 23851-79 называют ГТД, в котором преобладающая часть энергии сгорания топлива преобразуется в кинетическую энергию струи (рис.3.2). ТРД имеет следующие основные элементы: входное устройство, компрессор, камеру сгорания, турбину и выходное устройство.

Во входном устройстве ТРД в полете воздушного судна (ВС) происходит предварительное сжатие набегающего на двигатель воздушного потока (скорость уменьшается, плотность, давление и температура возрастают). В зависимости от скорости полета ВС входные устройства разделяются на дозвуковые ( ), трансзвуковые ( ) и сверхзвуковые ( ).

Рабочий процесс в компрессоре и камере сгорания ТРД совпадает с таким для ГТД. Расширение газа в турбине происходит до давления больше атмосферного , уровень которого определяется приближенно из

равенства развиваемой турбиной мощности ( ) и необходимой для вращения компрессора мощности ( ). Здесь расход газа в турбине и расход воздуха в компрессоре; механическая работа на валу турбины и на валу компрессора. Механическая работа на валу турбины

используется также для привода вспомогательных агрегатов обслуживающих двигатель систем.

В выходном устройстве ТРД осуществляется дальнейшее расширение газа (плотность, давление и температура уменьшаются, а скорость увеличивается). В зависимости от величины скорости истечения газа из реактивного сопла этого элемента ТРД они разделяются на дозвуковые ( ) и сверхзвуковые ( ).

Для иллюстрации рабочего процесса ТРД используются диаграммы «давление – удельный объём» и «энтальпия – энтропия» (рис.3.3).

Рис.3.2. Схема турбореактивного двигателя:

1 – входное устройство (воздухозаборник); 2 – компрессор;

3 – камера сгорания; 4 – турбина; 5 – выходное устройство

вх,в,к,г,т,с – обозначения контрольных сечений проточной

Рис.3.3. Изображение рабочего процесса ТРД в (а) и (б)

диаграмма позволяет показать площади фигур, соответствующих механическим работам. Например, площадь фигуры на рис.3.3(а) эквивалентна работе предварительного сжатия во входном устройстве двигателя

, площадь фигуры на этом же рисунке соответствует работе сжатия в компрессоре , где степень повышения давления во входном устройстве и в компрессоре.

Площадь фигуры эквивалентна работе расширения газа в турбине , площадь фигуры эквивалентна работе расширения газа в реактивном сопле выходного устройства , где степень понижения (расширения) давления газа в турбине и в реактивном сопле выходного устройства.

диаграмма представляет те же написанные выше механические работы в виде разности энтальпий (теплосодержаний) или отрезков на рис.3.3(б). Например, количество теплоты, подведенное к потоку воздуха в камере сгорания; количество теплоты, отведенной в атмосферу с выхлопными газами.

При истечении газа в атмосферу согласно третьему закону Ньютона образуется реактивная сила, называемая тягой ТРД – равнодействующая сил

давления и трения, действующих на внутренние поверхности двигателя. Величина тяги определяется по формуле Б.С. Стечкина:

(3.1)

где тяга ТРД, Н; расход воздуха через двигатель, кг/с; средняя скорость истечения газа из реактивного сопла, м/с; скорость полета ВС.

Малый авиационный газотурбинный двигатель

Экспериментальные образцы газотурбинных двигателей (ГТД) впервые появились в преддверии Второй мировой войны. Разработки воплотились в жизнь в начале пятидесятых годов: газотурбинные двигатели активно использовались в военном и гражданском самолетостроении. На третьем этапе внедрения в промышленность малые газотурбинные двигатели, представленные микротурбинными электростанциями, начали широко применяться во всех сферах промышленности.

Общие сведения о ГТД

Принцип функционирования общий для всех ГТД и заключается в трансформации энергии сжатого нагретого воздуха в механическую работу вала газовой турбины. Воздух, попадая в направляющий аппарат и компрессор, сжимается и в таком виде попадает в камеру сгорания, где производится впрыскивание топлива и поджег рабочей смеси. Газы, образовавшиеся в результате сгорания, под высоким давлением проходят сквозь турбину и вращают ее лопатки. Часть энергии вращения расходуется на вращение вала компрессора, но большая часть энергии сжатого газа преобразуется в полезную механическую работу вращения вала турбины. Среди всех двигателей внутреннего сгорания (ДВС), газотурбинные установки обладают наибольшей мощностью: до 6 кВт/кг.

Читать еще:  Ваз 2107 улучшаем работу двигателя

Работают ГТД на большинстве видов диспергированного топлива, чем выгодно отличаются от прочих ДВС.

Проблемы разработки малых ТГД

При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.

Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата. Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.

Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.

Авиационный ГТД «Климов ГТД-350» для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг;
— габариты: 1385 х 626 х 760 мм;
— номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт);
— частота вращения свободной турбины: 24000;
— диапазон рабочих температур -60…+60 ºC;
— удельный расход топлива 0,5 кг/кВт час;
— топливо — керосин;
— мощность крейсерская: 265 л.с;
— мощность взлётная: 400 л.с.

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

Малые ГТД: области применения

Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии.
— Мощность микротурбин составляет 30-1000 кВт;
— объем не превышает 4 кубических метра.

Среди преимуществ малых ГТД можно выделить:
— широкий диапазон нагрузок;
— низкая вибрация и уровень шума;
— работа на различных видах топлива;
— небольшие габариты;
— низкий уровень эмиссии выхлопов.

Отрицательные моменты:
— сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием);
— силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

Коротенькое видео, использования турбовального двигателя для электрогенератора.

За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

Читать еще:  Шаговые двигатели устройство принцип работы

Автомобильная промышленность

Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

По иному дела обстоят в оборонной промышленности. Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков. И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

Малая авиация

На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД завода «Климов» такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.

Схема и принцип действия газотурбинного двигателя.

Газотурбинным двигателем (ГТД) согласно стандарту 23851-79 (Авиационные газотурбинные двигатели. М.:Изд-во стандартов,1979.) называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина(рис.3.1).

Рис.3.1. Принципиальная схема газотурбинного двигателя:

к – компрессор; кс – камера сгорания; т – газовая турбина;

п – потребитель механической работы; Gт – расход топлива;

В-В – обозначение проходного сечения для воздуха на входе в

компрессор; К-К – то же на выходе из компрессора;

Г-Г – то же для газов на входе в турбину; Т-Т – то же для выхода из

Принцип действия ГТД следующий.

1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный (трение и теплообмен отсутствуют), то сжатие воздуха осуществляется в адиабатном процессе ( ), показатель адиабаты к=1.4.

Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре: .

2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе: .

3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.

В процессе расширения газа в турбине тепловая энергия преобразуется в механическую работу на валу, примерно 2/3 которой направляется для вращения компрессора, а 1/3 направляется потребителю (воздушному винту, для вращения дополнительного компрессора, для вращения электрогенератора и т.п.).

4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона (рис.2.11, 2.12).

3.2. Схема и принцип действия турбореактивного двигателя.

Турбореактивным двигателем (или двигателем прямой реакции) в соответствии с ГОСТ 23851-79 называют ГТД, в котором преобладающая часть энергии сгорания топлива преобразуется в кинетическую энергию струи (рис.3.2). ТРД имеет следующие основные элементы: входное устройство, компрессор, камеру сгорания, турбину и выходное устройство.

Во входном устройстве ТРД в полете воздушного судна (ВС) происходит предварительное сжатие набегающего на двигатель воздушного потока (скорость уменьшается, плотность, давление и температура возрастают). В зависимости от скорости полета ВС входные устройства разделяются на дозвуковые ( ), трансзвуковые ( ) и сверхзвуковые ( ).

Рабочий процесс в компрессоре и камере сгорания ТРД совпадает с таким для ГТД. Расширение газа в турбине происходит до давления больше атмосферного , уровень которого определяется приближенно из

равенства развиваемой турбиной мощности ( ) и необходимой для вращения компрессора мощности ( ). Здесь расход газа в турбине и расход воздуха в компрессоре; механическая работа на валу турбины и на валу компрессора. Механическая работа на валу турбины

используется также для привода вспомогательных агрегатов обслуживающих двигатель систем.

В выходном устройстве ТРД осуществляется дальнейшее расширение газа (плотность, давление и температура уменьшаются, а скорость увеличивается). В зависимости от величины скорости истечения газа из реактивного сопла этого элемента ТРД они разделяются на дозвуковые ( ) и сверхзвуковые ( ).

Читать еще:  Двигатель alf тех характеристики

Для иллюстрации рабочего процесса ТРД используются диаграммы «давление – удельный объём» и «энтальпия – энтропия» (рис.3.3).

Рис.3.2. Схема турбореактивного двигателя:

1 – входное устройство (воздухозаборник); 2 – компрессор;

3 – камера сгорания; 4 – турбина; 5 – выходное устройство

вх,в,к,г,т,с – обозначения контрольных сечений проточной

Рис.3.3. Изображение рабочего процесса ТРД в (а) и (б)

диаграмма позволяет показать площади фигур, соответствующих механическим работам. Например, площадь фигуры на рис.3.3(а) эквивалентна работе предварительного сжатия во входном устройстве двигателя

, площадь фигуры на этом же рисунке соответствует работе сжатия в компрессоре , где степень повышения давления во входном устройстве и в компрессоре.

Площадь фигуры эквивалентна работе расширения газа в турбине , площадь фигуры эквивалентна работе расширения газа в реактивном сопле выходного устройства , где степень понижения (расширения) давления газа в турбине и в реактивном сопле выходного устройства.

диаграмма представляет те же написанные выше механические работы в виде разности энтальпий (теплосодержаний) или отрезков на рис.3.3(б). Например, количество теплоты, подведенное к потоку воздуха в камере сгорания; количество теплоты, отведенной в атмосферу с выхлопными газами.

При истечении газа в атмосферу согласно третьему закону Ньютона образуется реактивная сила, называемая тягой ТРД – равнодействующая сил

давления и трения, действующих на внутренние поверхности двигателя. Величина тяги определяется по формуле Б.С. Стечкина:

(3.1)

где тяга ТРД, Н; расход воздуха через двигатель, кг/с; средняя скорость истечения газа из реактивного сопла, м/с; скорость полета ВС.

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Смотреть что такое ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ в других словарях:

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ (ГТД), тепловой двигатель, в к-ром газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в мех. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

(ГТД) — тепловой двигатель, в к-ром газ сначала подвергается сжатию и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механич. ра. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Газотурбинный двигатель (ГТД) — тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной стру. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Газотурби́нный дви́гатель (ГТД) — тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи . смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

двигатель, представляющий совокупность газовой турбины, компрессора и камеры сгорания, конструктивно объединенных в единое целое. В составе Газотурбинного Двигателя может использоваться несколько турбин и компрессоров. Впервые проект Газотурбинного Двигателя осуществлен инженером-механиком русского флота П. Д. Кузьминским в 1886 — 1892 гг. Основателем современной школы газотурбостроения является профессор В. М. Маковский. Принцип работы наиболее распространенных Газотурбинных Двигателей, в которых сгорание топлива происходит при постоянном давлении, следующий: воздух засасывается в компрессор, там сжимается и поступает в камеру сгорания, куда вместе с воздухом подается топливо, которое сгорает при постоянном давлении. Нагретый газ направляется в газовую турбину высокого давления, которая вращает компрессор. Отработавший в турбине высокого давления газ поступает в турбину низкого давления, где энергия газа превращается в механическую работу на валу. Полезная работа равна разности работ турбин и компрессора. Возможно создание Газотурбинного Двигателя с КПД 35 %. Наиболее перспективным путем совершенствования Газотурбинного Двигателя является повышение параметров газа (темпеатуры и давления), чего можно достичь с помощью применения наиболее жаропрочных материалов и современных систем охлаждения в турбинах. С целью улучшения отдельных характеристик Газотурбинного Двигателя в судовых энергетических установках могут быть использованы регенерация и утилизация тепла, промежуточное охлаждение и т. п. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

(ГТД), тепловой двигатель, преобразующий тепловую энергию предварительно сжатого и нагретого газа в механич. работу на валу газовой турбины или (и) в к. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

«. Газотурбинный двигатель; ГТД: машина, предназначенная для преобразования тепловой энергии в механическую.Примечание — ГТД может состоять из одного . смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

ГАЗОТУРБИННЫЙ двигатель (ГТД), тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на теплоэлектроцентралях для привода электрогенераторов, в качестве двигателей летательных аппаратов, судов и других транспортных машин, компрессорных станций газопроводов.
. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

(ГТД), тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на теплоэлектроцентралях для привода электрогенераторов, в качестве двигателей летательных аппаратов, судов и других транспортных машин, компрессорных станций газопроводов. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ (ГТД), тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на ТЭЦ для привода электрогенераторов, в качестве двигателей транспортных машин, силовых установок судов.

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

ГАЗОТУРБИННЫЙ двигатель (ГТД) — тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на ТЭЦ для привода электрогенераторов, в качестве двигателей транспортных машин, силовых установок судов.
. смотреть

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

gas turbine engine, turbine engine* * *gas-turbine engine

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

turbine àcombustion, turbomachine, turbomoteur, turbopropulseur

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector