Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Режимы работы асинхронных двигателей

Режимы работы асинхронных двигателей

Реферат выполнил ст-т 6-ого куса, 12 гр., спец. 1801, Полукаров А.Н.

Самарский Государственный Технический Университет

Кафедра «Электромеханика и нетрадиционная энергетика»

1. Введение.

Общие сведения об асинхронных машинах.

Асинхронной машиной называется двухобмоточная электрическая машина переменного тока, у которой только одна обмотка (первичная) получает питание от электрической сети с постоянной частотой ω1, а вторая обмотка (вторичная) замыкается накоротко или на электрические сопротивления. Токи во вторичной обмотке появляются в результате электромагнитной индукции. Их частота ω2 является функцией угловой скорости ротора Ω, которая в свою очередь зависит от вращающего момента, приложенного к валу.

Наибольшее распространение получили асинхронные машины с трехфазной симметричной разноименнополюсной обмоткой на статоре, питаемой от сети переменного тока, и с трехфазной или многофазной симметричной разноименнополюсной обмоткой на роторе.

Машины такого исполнения называют просто «асинхронными машинами», в то время как асинхронные машины иных исполнений относятся к «специальным асинхронным машинам».

Асинхронные машины используются в основном как двигатели; в качестве генераторов они применяются крайне редко.

Асинхронный двигатель является наиболее распространенным типом двигателя переменного тока.

Разноименнополюсная обмотка ротора асинхронного двигателя может быть короткозамкнутой (беличья клетка) или фазной (присоединяется к контактным кольцам). Наибольшее распространение имеют дешевые в производстве и надежные в эксплуатации двигатели с короткозамкнутой обмоткой на роторе, или короткозамкнутые двигатели. Эти двигатели обладают жесткой механической характеристикой (при изменении нагрузки от холостого хода до номинальной их частота вращения уменьшается всего на 2—5%).

Двигатели с короткозамкнутой обмоткой на роторе обладают также довольно высоким начальным пусковым вращающим моментом. Их основные недостатки: трудность осуществления плавного регулирования частоты вращения в широких пределах; потребление больших токов из сети при пуске (в 5—7 раз превышающих поминальный ток).

Двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами избавлены от этих недостатков ценой усложнения конструкции ротора, что приводит к их заметному удорожанию по сравнению с короткозамкнутыми двигателями (примерно в 1,5 раза). Поэтому двигатели с контактными кольцами на роторе находят применение лишь при тяжелых условиях пуска, а также при необходимости плавного регулирования частоты вращения.

Двигатели с контактными кольцами иногда применяют в каскаде с другими машинами. Каскадные соединения асинхронной машины позволяют плавно регулировать частоту вращения в широком диапазоне при высоком коэффициенте мощности, однако из-за значительной стоимости не имеют сколько-нибудь заметного распространения.

В двигателях с контактными кольцами выводные концы обмотки ротора, фазы которой соединяются обычно в звезду, присоединяются к трем контактным кольцам. С помощью щеток, соприкасающихся с кольцами, в цепь обмотки ротора можно вводить добавочное сопротивление или дополнительную ЭДС для изменения пусковых или рабочих свойств машины; щетки позволяют также замкнуть обмотку накоротко.

В большинстве случаев добавочное сопротивление вводится в обмотку ротора только при пуске двигателя, что приводит к увеличению пускового момента и уменьшению пусковых токов и облегчает пуск двигателя. При работе асинхронного двигателя пусковой реостат должен быть полностью выведен, а обмотка ротора замкнута накоротко. Иногда асинхронные двигатели снабжаются специальным устройством, которое позволяет после завершения пуска замкнуть между собой контактные кольца и приподнять щетки. В таких двигателях удается повысить КПД за счет исключения потерь от трения колец о щетки и электрических потерь в переходном контакте щеток.

Выпускаемые заводами асинхронные двигатели предназначаются для работы в определенных условиях с определенными техническими данными, называемыми номинальными. К числу номинальных данных асинхронных двигателей, которые указываются в заводской табличке машины, укрепленной на ее корпусе, относятся:

механическая мощность, развиваемая двигателем, Рн = P2н;

частота сети f1;

линейное напряжение статора U1лн

линейный ток статора I1лн;

частота вращения ротора nн;

коэффициент мощности cos φ1н;

коэффициент полезного действия ηн.

Если у трехфазной обмотки статора выведены начала и концы фаз и она может быть включена в звезду или треугольник, то ука-зываются линейные напряжения и токи для каждого из возможных соединений (Υ/Δ).

Кроме того, для двигателя с контактными кольцами приводится напряжение на разомкнутых кольцах при неподвижном роторе и линейный ток ротора в номинальном режиме.

Номинальные данные асинхронных двигателей варьируются в очень широких пределах. Номинальная мощность — от долей ватта до десятков тысяч киловатт. Номинальная синхронная частота вращения п1н = 60 f1/р при частоте сети 50 Гц от 3000 до 500 об/мин и менее в особых случаях; при повышенных частотах — до 100 000 об/мин и более (номинальная частота вращения ротора обычно на 2—5% меньше синхронной; в микродвигателях — на 5—20%). Номинальное напряжение от 24 В до 10 кВ (большие значения при больших мощностях).

Номинальный КПД асинхронных двигателей возрастает с ростом их мощности и частоты вращения; при мощности более 0,5 кВт он составляет 0,65—0,95, в микродвигателях 0,2—0,65.

Номинальный коэффициент мощности асинхронных двигателей, равный отношению активной мощности к полной мощности, потребляемой из сети,

также возрастает с ростом мощности и частоты вращения двигателей; при мощности более 1 кВт он составляет 0,7—0,9; в микродвигателях 0,3—0,7.

Общие сведения о режимах работы асинхронного двигателя.

В двигательном режиме разница частот вращения ротора и поля статора в большинстве случаев невелика и составляет лишь несколько процентов. Поэтому частоту вращения ротора оценивают не в абсолютных единицах (об/мин или об/с), а в относительных, вводя понятие скольжения:

где пс — частота вращения поля (синхронная частота вращения); п — частота вращения ротора.

Скольжение выражается либо в относительных единицах (s = = 0,02; 0,025 и т. п.), либо в процентах (s — 2 %; 2,5 % и т. п.).

Частота тока и ЭДС, наводимая в проводниках обмотки ротора, зависят от частоты тока и ЭДС обмотки статора и от скольжения:

f2 — f1s; Е’2 — E1s,

где Е1— ЭДС обмотки статора; Е’2 — ЭДС обмотки ротора, приведенная к числу витков обмотки статора.

Рис. 2.1. Механическая характеристика асинхронной машины

Теоретически асинхронная машина может работать в диапазоне изменения скольжения s = -∞. +∞ (рис. 2.1), но не при s = 0, так как в этом случае п — пс и проводники обмотки ротора неподвижны относительно поля статора, ЭДС и ток в обмотке равны нулю и момент отсутствует. В зависимости от практически возможных скольжений различают несколько режимов работы асинхронных машин (рис. 2.1): генераторный режим при s 1. В генераторном режиме ротор машины вращается в ту же сторону, что и поле статора, но с большей частотой. В двигательном — направления вращения поля статора и ротора совпадают, но ротор вращается медленнее поля статора: п = пс(1 — s). В трансформаторном режиме ротор машины неподвижен и обмотки ротора и статора не перемещаются относительно друг друга. Асинхронная машина в таком режиме представляет собой трансформатор и отличается от него расположением первичной и вторичной обмоток (обмотки статора и ротора) и наличием воздушного зазора в магнитопроводе. В тормозном режиме ротор вращается, но направление его вращения противоположно направлению поля статора и машина создает момент, противоположный моменту, действующему на вал. Подавляющее большинство асинхронных машин используют в качестве двигателей, и лишь очень небольшое количество — в генераторном и трансформаторном режимах, в тормозном режиме — кратковременно.

Читать еще:  Что такое подушку двигателя ваз2109

Для оценки механической характеристики асинхронного двигателя моменты, развиваемые двигателем при различных скольжениях, обычно выражают не в абсолютных, а в относительных единицах, т. е. указывают кратность по отношению к номинальному моменту: М* = M/Мном. Зависимость М* = f(s) асинхронного двигателя (рис. 2.2) имеет несколько характерных точек, соответствующих пусковому М*п, минимальному М*min, максимальному М*max и номинальному М*ном моментам.

Пусковой момент М*п характеризует начальный момент, развиваемый двигателем непосредственно при включении его в сеть при неподвижном роторе (s — 1). После трогания двигателя с места его момент несколько уменьшается по сравнению с пусковым (см. рис. 2.2). Обычно М*min на 10. 15 % меньше М*п. Большинство двигателей проектируют так, чтобы их М*min был больше М*ном , так как они могут достигнуть номинальной скорости лишь при условии, что момент сопротивления, приложенный к валу, будет меньше, чем М*min .

Максимальный момент М*max характеризует перегрузочную способность двигателя. Если момент сопротивления превышает М*max, двигатель останавливается. Поэтому М*max называют также критическим, а скольжение, при котором момент достигает максимума, — критическим скольжением sкp. Обычно sкр не превышает 0,1. 0,15; в двигателях с повышенным скольжением (крановых, металлургических и т. п.) sкp может быть значительно большим.

В диапазоне 0 sкр двигатель в нормальных условиях работать не может. Эта часть характеристики определяет пусковые свойства двигателя от момента пуска до выхода на рабочую часть характеристики.

Рис. 2.2. Зависимость тока и момента асинхронного двигателя от скольжения

Трансформаторный режим, т. е. режим, когда обмотка статора подключена к сети, а ротор неподвижен, называют также режимом короткого замыкания двигателя. При s = 1 ток двигателя в несколько раз превышает номинальный, а охлаждение много хуже, чем при номинальном режиме. Поэтому в режиме короткого замыкания асинхронный двигатель, не рассчитанный для работы при скольжениях, близких к единице, может находиться лишь в течение нескольких секунд.

Режим короткого замыкания возникает при каждом пуске двигателя, однако в этом случае он кратковременен. Несколько пусков двигателя с короткозамкнутым ротором подряд или через короткие промежутки времени могут привести к превышению допустимой температуры его обмоток и к выходу двигателя из строя.

3. Аналитическое и графическое определение режимов работы асинхронной машины

Электромеханическое преобразование энергии может происходить в асинхронной машине в следующих трех режимах:

в режиме двигателя 0 Ω > 0;

в режиме генератора s Ω1;

в режиме тормоза s > 1, Ω 0, направленного в сторону поля, ротор машины вращается в сторону поля со скоростью, меньшей, чем скорость поля (Ω1 > Ω > 0, 0 0; Ρмех = ΜΩ = Ρэ2 > 0.

Электрическая мощность Р1 = Рэм + Рм + Рэ1 > 0 преобразуется в механическую мощность Р2 = Рмех — Ρд — ΡΊ > 0, передаваемую через вал приводимой в движение машины.

Энергетические процессы в режиме двигателя иллюстрируются рис. 3.1, а, на котором направление активной составляющей тока ротора i2а совпадает с индуктированной в роторе ЭДС. Направление электромагнитного момента Μ определяется электромагнитной силой Bmi2a, действующей на ток i2a .

Полезная механическая мощность Р2 оказывается меньше потребляемой из сети мощности на потери ΣΡ:

Ρ2 = Ρ1-ΣΡ = Ρ1 -(Ρэ1 + Ρм+Ρэ2 + Ρд + Ρт),

И КПД двигателя выражается формулой:

η = = 1- = f(s)

В режиме генератора (область Г на рис. 3.2) под воздействием внешнего момента Мв > 0, направленного в сторону поля (рис. 3.1, б), ротор машины вращается со скоростью, превышающей скорость поля (Ω > Ω1, s 0

Это означает, что она поступает из сети в машину.

Подведенные к ротору машины со стороны сети |Ρэм| и вала |Ρмех| мощности превращаются в электрические потери Рэ2 в сопротивлении ротора R’2 (рис. 3.2):

|Ρмех| + | Ρэм | = Ρэ2 + Ρэ2 = Ρэ2 = m1 R’2(I ‘2)2 .

Асинхронная машина в этом режиме может быть использована для притормаживания опускаемого подъемным краном груза. При этом мощность | Ρмех | = | ΜΩ | поступает в ротор машины (см. рис. 3.1).

В режиме идеального холостого хода внешний вращающий момент Μв, момент трения Μт = Ρт/Ω и момент, связанный с добавочными потерями, Мд = Ρд/Ω равны нулю. Ротор вращается со скоростью поля (Ω = Ω1, s = 0) и не развивает полезной механической мощности (М = 0, Рмех = ΜΩ = 0).

В режиме идеального холостого хода внешний момент, приложенный к валу машины, равен нулю (Мв = 0). Считается также, что отсутствует момент от трения вращающихся частей. Ротор машины вращается с той же угловой скоростью, что и вращающееся поле (Ω = Ω1), скольжение равно нулю (s = 0); ЭДС и токи в обмотке ротора не индуктируются (I2=0), и электромагнитный момент, уравновешивающий внешний момент и момент сил трения, равен нулю (М = 0).

Режим холостого хода асинхронной машины аналогичен режиму холостого хода трансформатора. В асинхронной машине и в трансформаторе ток в этом режиме имеется только в первичной обмотке I1 ≠ 0, а во вторичной — отсутствует (I2 = 0); в машине и в трансформаторе магнитное поле образуется в этом режиме только первичным током, что позволяет называть ток холостого хода намагничивающим током (I1 = I0). В отличие от трансформатора система токов I0 в фазах многофазной

Поможем написать работу на аналогичную тему

Механическая характеристика асинхронного двигателя при различных режимах, напряжениях и частотах

Механические характеристики асинхронных двигателей могут быть выражены в виде n=f(M) или n = f ( I ). Однако часто механические характеристики асинхронных двигателей выражаются в виде зависимости M = f ( S), где S — скольжение, S = (nc-n)/nc , где n с — синхронная скорость.

Читать еще:  406 двигатель карбюраторный технические характеристики

На практике для графического построения механической характеристики пользуются упрощенной формулой, называемой формулой Клосса:

здесь: Мк — критическое (максимальное) значение момента. Этому значению момента отвечает критическое скольжение

Формула Клосса применяется при решении вопросов, связанных с электроприводом, осуществляемым с помощью асинхронного двигателя. Пользуясь формулой Клосса можно построить график механической характеристики по паспортным данным асинхронного двигателя. Для практических расчетов в формуле при определении критического момента перед корнем следует принимать во внимание только знак плюс.

Рис. 1. Асинхронный двигатель: а — принципиальная схема, б — механическая характеристика М=f(S) — естественная в двигательном и генераторном режимах, в — естественная механическая характеристика n=f(М) в двигательном режиме, г — искусственные реостатные механические характеристики, д — механические характеристики для различных напряжений и частот.

Асинхронный двигатель с короткозамкнутым ротором

Как видно из рис. 1, механическая характеристика асинхронного двигателя располагается в I и III квадрантах. Часть кривой в I квадранте соответствует положительному значению скольжения и характеризует двигательный режим работы асинхронного двигателя, а в III квадранте — генераторный режим. Наибольший практический интерес представляет двигательный режим.

График механической характеристики двигательного режима содержит три характерные точки: А, В, С и условно может быть подразделен на два участка: ОВ и ВС (рис. 1, в).

Точка А соответствует номинальному моменту двигателя и определяется по формуле Мн = 9,55 •10 3 • (P н/ n н)

Этому моменту соответствует номинальное скольжение, которое для двигателей общепромышленного применения имеет величину в пределах от 1 до 7%, т. е. Sн=1 — 7%. При этом мелкие двигатели имеют большее скольжение, а крупные — меньшее.

Двигатели с повышенным скольжением , предназначенные для работы с ударной нагрузкой, имеют S н

15%. К ним относятся, например, двигатели единой серии АС.

Точка С на характеристике соответствует величине начального вращающего момента , возникающего на валу двигателя при пуске. Этот момент Мп носит название начального, или пускового. Скольжение при этом равно единице, а скорость — нулю. Величину пускового момента легко определить по данным справочной таблицы, где указывается отношение пускового момента к номинальному Мп/Мн.

Величина пускового момента при постоянных величинах напряжения и частоты тока зависит от активного сопротивления в цепи ротора. При этом вначале с возрастанием активного сопротивления увеличивается величина пускового момента, достигая своего максимума при равенстве активного сопротивления цепи ротора и полного индуктивного сопротивления двигателя. В дальнейшем с возрастанием активного сопротивления ротора величина пускового момента уменьшается, стремясь в пределе к нулю.

Точка В (рис. 1,б и в) соответствует максимальному моменту , который может развивать двигатель на всем диапазоне скоростей от n = 0 до n = n с. Этот момент носит название критического (или опрокидывающего) момента Мк. Критическому моменту соответствует и критическое скольжение Sк. Чем меньше величина критического скольжения Sк, а также величина номинального скольжения S н, тем больше жесткость механической характеристики.

Как пусковой, так и критический моменты определяются через номинальный. Согласно ГОСТ на электрические машины для короткозамкнутого двигателя должно соблюдаться условие Мп/Мн = 0,9 — 1,2, Мк/Мн = 1,65 — 2,5.

Следует иметь в виду, что величина критического момента не зависит от активного сопротивления роторной цепи, в то время как критическое скольжение S к прямо пропорционально этому сопротивлению. Это означает, что с увеличением активного сопротивления роторной цепи величина критического момента остается неизменной, однако максимум кривой момента смещается в сторону возрастающих значений скольжения (рис. 1, г).

Величина критического момента прямо пропорциональна квадрату напряжения, подводимого к статору, и обратно пропорциональна квадрату частоты напряжений и частоты тока в статоре.

Если, например, напряжение, подводимое к двигателю, будет равно 85% номинального значения, то величина критического момента при этом составит 0,85 2 = 0,7225 = 72,25% критического момента при номинальном напряжении.

Обратное явление наблюдается при изменении частоты. Если, например, к двигателю, предназначенному для работы с частотой тока f = 60 гц, подвести ток частотой f = 50 гц, то критический момент получит в (60/50) 2 = 1,44 раза большее значение, чем при своей формальной частоте (рис. 1, д).

Критический момент характеризует собой мгновенную перегрузочную способность двигателя, т. е. он показывает, какую мгновенную (на несколько секунд) перегрузку способен перенести двигатель без каких-либо вредных последствий.

Участок механической характеристики от нулевого до максимального (критического) значения (см. рис. 1 , б и в) носит название устойчивой части характеристики , а участок ВС (рис. 1,в) — неустойчивой части .

Объясняется такое деление тем, что на возрастающей части характеристики ОВ с увеличением скольжения, т.е. с уменьшением скорости, растет развиваемый двигателем момент. Это означает, что при увеличении нагрузки, т. е. при возрастании тормозного момента, уменьшается скорость вращения двигателя, а развиваемый им момент увеличивается. При снижении нагрузки, наоборот, скорость возрастает, а момент уменьшается. При изменении нагрузки на всем диапазоне устойчивой части характеристики происходит изменение скорости вращения и момента двигателя.

Двигатель не в состоянии развить момент больше критического, и если тормозной момент окажется больше, двигатель неминуемо должен остановиться. Происходит, как принято говорить, опрокидывание двигателя .

Механическая характеристика при постоянных U и I и отсутствии добавочного сопротивления в цепи ротора называется естественной характеристикой (характеристика короткозамкнутого асинхронного двигателя с фазным ротором без добавочного сопротивления в цепи ротора). Искусственными, или реостатными, характеристиками называются такие, которые соответствуют добавочному сопротивлению в цепи ротора.

Все значения пусковых моментов различны между собой и зависят от активного сопротивления цепи ротора. Одному и тому же номинальному моменту Мн соответствуют скольжения различной величины. С увеличением сопротивления цепи ротора возрастает скольжение и, следовательно, уменьшается скорость вращения двигателя.

Благодаря включению в цепь ротора активного сопротивления механическая характеристика в устойчивой части вытягивается в сторону возрастания скольжения, пропорционально сопротивлению. Это означает, что скорость двигателя начинает сильно меняться в зависимости от нагрузки на валу и характеристика из жесткой делается мягкой.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Читать еще:  Что такое одеяло для двигателя

Двигательный и генераторный режим работы асинхронной машины

Экзаменационные билеты по предмету

«Применение электроэнергии в сельском хозяйстве».

Билет № 1

Назначение электрических машин и трансформаторов.

Электрическая машина представляет собой электромеханическое устройство, осуществляющее взаимное преобразование механической и электрической энергий. Электрическая энергия вырабатывается на электростанциях электрическими машинами — генераторами, преобразующими механическую энергию в электрическую.

Трансформаторы широко применяются в системах передачи и распределения электроэнергии. Известно, что передача электроэнергии на дальние расстояния осуществляется при высоком напряжении (до 500 кВ и более), благодаря чему значительно уменьшаются электрические потери в линии электропередачи. В местах распределения электроэнергии между потребителями устанавливают понижающие трансформаторы, которые понижают напряжение до требуемого значения. И наконец, в местах потребления электроэнергии напряжение еще раз понижают посредством трансформаторов до 220, 380 или 660 В. При таком напряжении электроэнергия подается непосредственно потребителям — на рабочие места предприятий и в жилые помещения.

Схемы включения дуговых ртутных ламп.

Билет № 2

Классификация электрических машин.

Все электрические машины подразделяют на бесколлекторные и коллекторные. Различающиеся как принципом действия, так и конструкцией. Бесколлекторные машины — это машины переменного тока. Их делят на асинхронные и—синхронные. Асинхронные машины применяют преимущественно в качестве двигателей, а синхронные — как в качестве двигателей, так и в качестве генераторов. Коллекторные машины используют главным образом для работы на постоянном токе в качестве генераторов или двигателей. Электрические машины одного принципа действия могут различаться схемами включения либо другими признаками, влияющими на эксплуатационные свойства этих машин. Например, асинхронные и синхронные машины могут быть трехфазными (включаемыми в трехфазную сеть) или однофазными. Асинхронные машины в зависимости от конструкции обмотки ротора разделяют на машины с короткозамкнутым ротором и с фазным ротором.

Схемы включения люминесцентных ламп.

Билет № 3

Двигательный и генераторный режим работы асинхронной машины.

Двигательный режим. непременным условием работы асинхронного двигателя является наличие в нем магнитного поля, вращающегося с частотой ή (синхронная частота вращения). Это поле создается при включении трехфазной обмотки статора в сеть трехфазного переменного тока. Процесс наведения вращающегося магнитного поля называют в о з б у ж д е н и е м асинхронной машины. Возбуждение создается реактивной (индуктивной) составляющей переменного тока, поступающего из сети в обмотку статора.

Скольжение выражают в долях единицы либо в %. 0 ή 1 В этих условиях характер движения ротора относительно поля статора изменится на обратное (по сравнению с двигательным режимом работы), так как ротор будет обгонять поле статора и скольжение станет отрицательным,S

Генераторный режим работы асинхронной машины.

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдёт в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозным. В генераторном режиме работы скольжение. Генераторный режим асинхронного двигателя используется довольно часто в механизмах с активным моментом: в таком режиме могут работать двигатели эскалаторов метро (при движении вниз), опускании груза в подъёмных кранах, в генераторном режиме также работают двигатели лифтов, в зависимости от соотношения веса в кабине и в противовесе; при этом сочетаются необходимый по технологии режим торможения механизма и рекуперация энергии в сеть с экономией электроэнергии.

Условия самовозбуждения асинхронного генератора.

Для работы асинхронной машины в генераторном режиме требуется источник реактивной мощности, создающий магнитное поле. При отсутствии первоначального магнитного поля в обмотке статора поток создают с помощью постоянных магнитов, либо при активной нагрузке за счёт остаточной индукции машины и конденсаторов, параллельно подключенных к фазам обмотки статора. Асинхронный генератор потребляет реактивный ток и требует наличия в сети генераторов реактивной мощности в виде синхронных машин, синхронных компенсаторов, батарей статических конденсаторов (БСК). Из-за этого, несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном в качестве ветрогенераторов малой мощности, вспомогательных источников небольшой мощности и тормозных устройств.

Тормозные режимы работы асинхронной машины.

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.

Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.

67. Трансформаторный режим работы асинхронной машины.Фазорегуляторы. В трансформаторном режиме асинхронная машина работает при s=1 . В этом энергетическом режиме машина является электромагнитным преобразователем и не преобразует электрическую энергию в механическую или обратно. Для работы в трансформаторном режиме используются машины с фазным ротором. При этом между обмотками статора и ротора возможна трансформаторная или автотрансформаторная связь. Фазорегулятор. Конструктивно фазорегулятор – это асинхронная машина с заторможенным фазным ротором, обмотки статора и ротора которой имеют между собой трансформаторную связь и могут поворачиваться относительно друг друга на электрический угол 360 . При повороте ротора относительно статора амплитуда ЭДС на роторе 2 Е не изменится, т. к. ЭДС в фазных обмотках ротора наводится вращающимся полем, а фаза (временной сдвиг между первичным и вторичным напряжением) изменится. Принимая активные и индуктивные сопротивления фазных обмоток ротора равными нулю, можно считать U2= E2 . При повороте ротора относительно статора на угол β изменяется и временной угол между напряжениями статора и ротора на величину рβ.

Ротор относительно статора поворачивается вручную или с помощью привода. Как было сказано выше, на ротор действует пусковой момент, что следует учитывать при расчете самостопорящегося поворотного редуктора ротора фазорегулятора. Промышленность выпускает трехфазные фазорегуляторы серии ФР, ФРО напряжением 220/380 В и мощностью до 18 кВ А.

Дата добавления: 2018-06-01 ; просмотров: 1188 ; Мы поможем в написании вашей работы!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector