Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Машины постоянного тока

Машины постоянного тока. Электродвигатели и генераторы.

1. Особенности коллекторных машин постоянного тока

Коллекторные машины — это в основном машины постоянного тока. Они выпускаются мощностью от долей ватта до десятков тысяч киловатт. Коллекторные машины переменного тока находят применение в качестве приводных двигателей лишь для узкого круга специальных механизмов небольшой мощности, например как приводы некоторых бытовых приборов, электрифицированного ручного инструмента, медицинского оборудования, т. е. в тех случаях, когда для питания двигателей используется однофазный и реже трехфазный переменный ток, а характеристики асинхронных машин не удовлетворяют требованиям приводного механизма.
Коллекторные машины постоянного тока используются как двигатели и как генераторы. В промышленности более распространены двигатели, что объясняется все возрастающим применением различных статических выпрямителей, обеспечивающих промышленные установки энергией постоянного тока.
Широкое распространение электродвигателей постоянного тока несмотря на их более высокую стоимость и сложность эксплуатации по сравнению с асинхронными двигателями, объясняется в первую очередь простыми и надежными способами регулирования частоты вращения, большими пусковыми моментами и перегрузочной способностью, чем у двигателей переменного тока. Наибольшее распространение двигатели постоянного тока получили в приводах, требующих глубокого регулирования частоты вращения (металлургическая промышленность, транспорт и т. п.).

2. Основные элементы конструкции машин постоянного тока^

Рис. 1. Двигатель постоянного тока серии 2П:
1 — тахогенератор; 2 — траверса; 3 — коллектор; 4 — станина; 5 — якорь; 6 — главный полюс; 7 — добавочный полюс;

Основными конструктивными элементами машин постоянного тока (рис. 1) являются станина с закрепленными на ней главными и добавочными полюсами, вращающийся якорь с обмоткой и коллектором и щеточный аппарат. В машинах малой и средней мощностей станина одновременно служит и корпусом, к которому крепятся лапы для установки машины, и частью магнитопровода. По ней замыкается магнитный поток. В большинстве машин станина выполнена массивной, из стальных труб, либо сварной из листов конструкционной стали. В ряде машин станину выполняют шихтованной.
К внутренней поверхности станины крепят главные и добавочные полюсы. Сердечники главных полюсов массивные либо набраны из листов стали толщиной 1 — 2 мм. Сердечники добавочных полюсов, как правило, массивные. На главных полюсах располагаются обмотки возбуждения; их МДС создают рабочий поток машины. Обмотки добавочных полюсов, расположенных по поперечным осям машины, служат для обеспечения нормальной коммутации.
Магнитопровод якоря шихтуется из листов электротехнической стали. В машинах малой мощности сердечник якоря насаживается непосредственно на вал со шпонкой и фиксируется в осевом направлении буртиком вала и кольцевой шпонкой. С торцов якоря для предотвращения распушения листов во время работы установлены нажимные шайбы, совмещенные с обмоткодержателями.
Обмотки якорей двухслойные. В машинах мощностью до 15 — 20 кВт они выполнены из круглого провода и уложены в полузакрытые пазы. В пазовых частях обмотка крепится пазовыми клиньями, в лобовых — бандажами из стеклоленты или немагнитной стальной проволоки, которые прижимают их к обмоткодержателям. В машинах большой мощности катушки обмотки якоря наматывают из прямоугольного провода и укладывают в открытые пазы. Крепление обмотки либо такое же, как и в машинах малой мощности, т. е. клиньями в пазовой и бандажами в лобовой части, либо бандажами и в пазовой, и в лобовой части. Выводные концы каждой секции обмотки впаиваются в прорези коллекторных пластин.
Коллекторы в большинстве машин общего назначения цилиндрические. Торцевые коллекторы применяют лишь в некоторых машинах малой мощности специального назначения. Во всех цилиндрических коллекторах пластины имеют клиновидную форму с углом наклона, при котором пластины, собранные в кольцо, плотно прилегают друг к другу боковыми поверхностями и зажимают миканитовую изоляцию (рис. 2). Наибольшее распространение получили коллекторы, в которых пластины удерживаются в сжатом состоянии металлическими нажимными конусами (рис. 3) либо опрессовкой в пластмассу (рис. 4).

Рис. 2. Положение коллекторных пластин в цилиндрических коллекторах:
1 — пластины коллектора; 2 — изоляция между пластинами; Р — сила давления нажимных конусов; Р, — сила арочного распора

В коллекторах с нажимными конусами пластины закрепляются передвижением переднего нажимного конуса по втулке коллектора. При этом создается давление на нижнюю часть ласточкина хвоста пластин и возникает арочный распор (рис. 2). Такие коллекторы называют арочными. Пластины коллектора с расположенными между ними изоляционными прокладками образуют монолитное кольцо. Нажимные конусы изолируют от пластин миканитовыми фигурными прокладками — манжетами, имеющими большую механическую прочность.

Рис. 3. Коллектор с нажимными конусами:
1 — передний нажимной конус; 2 — пластины коллектора ; 3 — втулка коллектора; 4 — изоляционная манжета; 5 —задний нажимной конус

Коллекторы на пластмассе более просты в изготовлении, но в силу меньшей механической прочности и надежности не применяются в машинах большой мощности.
В некоторых быстроходных машинах, например в возбудителях турбогенераторов, из-за больших центробежных сил, действующих на пластины коллектора, прочность их крепления с помощью ласточкиных хвостов оказывается недостаточной и коллекторные пластины крепят на втулку с помощью внешних бандажных колец (рис. 5).

Рис. 5. Принципиальная конструкция коллектора с бандажными кольцами:
1 — изоляция под бандажными кольцами; 2 — бандажные кольца; 3 — пластины коллектора; 4 — втулка коллектора

Щетки коллекторных машин устанавливают в щеткодержатели, закрепленные на щеточных пальцах, причем на каждом щеточном пальце может быть установлено по нескольку щеткодержателей и щеток, соединенных между собой параллельно. Число щеток и их размеры определяются номинальным током машины. Число щеточных пальцев должно быть равно числу полюсов машины. Двигатели с волновой обмоткой на якоре при отсутствии места для установки полного комплекта щеточных пальцев допускают установку неполного числа щеточных пальцев, что используется в некоторых конструкциях тяговых двигателей. Щеточные пальцы укреплены на траверсе, которая допускает поворот на некоторый угол вокруг оси машины для регулирования положения щеток на коллекторе.
В последние годы получают распространение бесколлекторные двигатели постоянного тока, в которых механический преобразователь тока — коллектор со щеточным аппаратом — заменен вентильным коммутатором. Вентильные двигатели имеют широкий диапазон регулирования частоты вращения и не имеют недостатков, связанных с работой скользящих контактов коллектор—щетки, характерных для коллекторных машин постоянного тока.

3. Характеристики машин постоянного тока.
Машины постоянного тока по своим характеристикам определяются системой возбуждения: независимой, параллельной, последовательной или смешанной.

При независимой системе возбуждения обмотка возбуждения питается от постороннего источника постоянного тока и ток возбуждения не зависит от режима работы и нагрузки машины. Генераторы с независимой системой возбуждения допускают регулирование напряжения практически от нуля до номинального. Изменение напряжения при увеличении нагрузки определяется только размагничивающим действием реакции якоря и увеличением падения напряжения на сопротивлении якорной цепи.
Ток параллельной обмотки возбуждения генераторов с самовозбуждением меняется в зависимости от напряжения на выводах генератора и уменьшается с ростом нагрузки из-за размагничивающего действия реакции якоря, что в свою очередь приводит к добавочному увеличению падения напряжения. За счет этого номинальное падение напряжения генераторов с параллельным возбуждением больше, чем генераторов с независимым возбуждением.
В генераторах со смешанной системой возбуждения при согласном включении параллельной и последовательной обмоток поток стабилизируется, так как размагничивающее действие реакции якоря компенсируется изменением МДС последовательной обмотки, пропорциональным току нагрузки. Последовательную обмотку таких машин называют стабилизирующей. Номинальное падение напряжения генераторов со стабилизирующей обмоткой мало. Некоторые генераторы выполнены со стабилизирующей обмоткой, при которой обеспечивается равенство 7НОМ = (7Х|Х (где 1/Х]Х — напряжение холостого хода).

Читать еще:  Двигатель 4в12 расход масла

При встречном включении параллельной и последовательной обмоток возбуждения напряжение на выводах генератора резко падает с увеличением тока нагрузки. Такие системы возбуждения находят применение в сварочных генераторах постоянного тока.
В двигателях параллельного возбуждения размагничивающее действие реакции якоря может вызвать неустойчивую работу, так как уменьшение потока с ростом нагрузки из-за действия реакции якоря при малом суммарном сопротивлении якорной цепи приводит к увеличению частоты вращения двигателя. Поэтому в большинстве двигателей средней и во всех двигателях большой мощности помимо параллельной устанавливается последовательная обмотка возбуждения, стабилизирующая магнитный поток и придающая устойчивость механической характеристике (рис. 7, а).

Рис. 7. Механические характеристики двигателей постоянного тока:
а — смешанного возбуждения; б — последовательного возбуждения

Механические характеристики двигателей с последовательным возбуждением (рис. 7,б) имеют специфический «падающий» характер. Двигатели с последовательным возбуждением используются в приводах, требующих больших пусковых моментов и устойчивой работы при малых частотах вращения.

4. Регулирование частоты вращения машин постоянного тока.

Частота вращения двигателя при неизменной нагрузке может быть изменена регулированием питающего напряжения U, включением последовательно с якорем дополнительного регулировочного резистора и изменением магнитного потока машины (изменением тока возбуждения). В практике применяются все три способа регулирования.
Регулирование частоты вращения изменением подводимого напряжения встречает трудности, связанные со сложностью преобразования напряжения постоянного тока. Для этой цели либо применяют статические преобразователи напряжения, либо питают двигатель от отдельного генератора постоянного тока, допускающего плавное регулирование напряжения (система генератор — двигатель). Такие системы применяют лишь для отдельных специальных приводов, требующих регулирования частоты вращения по сложной программе, например для главных двигателей прокатных станов.
Регулирование частоты вращения потоком является наиболее экономичным способом, так как потери в регулировочных резисторах, включаемых для этой цели последовательно с обмоткой возбуждения, невелики из-за малого тока возбуждения.
Однако этот способ позволяет лишь увеличивать частоту вращения двигателей по сравнению с номинальной. Такой способ регулирования предусмотрен для всех серийных двигателей постоянного тока.
Включение добавочного резистора в цепь якоря дает возможность плавно регулировать частоту вращения, но сопряжено с большими потерями в регулировочном реостате, по которому проходит полный ток нагрузки. Этот способ используется, например, для регулирования частоты вращения тяговых двигателей.
В современных системах регулирования частоты вращения двигателей постоянного тока применяются тиристорные схемы, позволяющие осуществить регулирование частоты вращения в широких пределах по заданной программе. Датчиками частоты вращения для осуществления обратной связи при регулировании могут быть тахогенераторы, размещенные на валу якоря двигателя (рис. 1).

5. Коммутация машин постоянного тока

Коммутация машин постоянного тока, т. е. изменение направления тока в секциях обмотки якоря при переходе секций от одного полюсного деления к другому, происходит при кратковременном замыкании их щетками на пластинах коллектора. При коммутации в короткозамкнутых секциях возникают реактивная ЭДС и ЭДС вращения, наводимая потоком реакции якоря, магнитные силовые линии которого пронизывают замкнутые при коммутации секции. При движении коллектора в момент отхода пластины коллектора от замыкающей данную секцию щетки происходит разрыв цепи (замкнутой секции), имеющей индуктивное сопротивление, и возникает искрение между сбегающим краем щетки и коллекторной пластиной. При неудовлетворительной коммутации искрение может быть значительным и может привести к местному повреждению коллектора, что в свою очередь ухудшает переходный контакт щетка—коллектор и усиливает искрение. Качество коммутации машины постоянного тока оценивается по интенсивности искрения на коллекторе (табл. 1).
Для улучшения коммутации во всех машинах постоянного тока, кроме машин малой мощности, устанавливают добавочные полюсы, МДС которых компенсирует МДС реакции якоря по поперечной оси машины, т. е. в зоне расположения коммутируемых секций. Кроме того, поток, создаваемый обмоткой добавочных полюсов, наводит в замкнутых при коммутации секциях ЭДС, несколько превышающую реактивную ЭДС секций и направленную ей навстречу. Коммутация машины при этих условиях становится прямолинейной или даже ускоренной. Напряжение под сбегающим краем щеток уменьшается до весьма малых значений и искрение под щетками становится не опасным для работы машины.
В крупных машинах постоянного тока кроме добавочных полюсов в пазах на наконечниках главных полюсов располагают компенсационную обмотку . Компенсационная обмотка предназначена для компенсации воздействия реакции якоря на поток возбуждения по продольной оси. Уменьшение влияния реакции якоря позволяет выполнять машины с уменьшенным воздушным зазором и улучшить их коммутацию.

Таблица 1. Оценка степени искрения под сбегающим краем щеток по ГОСТ 183-74

ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока находят широкое применение в электроприводах механизмов, где требуется широкое изменение частоты вращения. Как уже отмечалось, они используются в металлургической промышленности, станкостроении, системах автоматического регулирования, на электрическом транспорте, в авиации и автомобилестроении. Двигатели постоянного тока могут иметь мощность в пределах от нескольких ватт до нескольких тысяч киловатт. Двигатели постоянного тока классифицируют по способу включения обмотки возбуждения. Различают двигатели независимого, параллельного, последовательного и смешанного возбуждения. Электрические схемы этих двигателей аналогичны схемам соответствующих генераторов. В отличие от генератора, и ток якоря, и ток возбуждения в двигателях постоянного тока потребляется из сети.

Двигатель постоянного тока параллельного возбуждения. На рис. 6.1 представлена схема включения в сеть двигателя постоянного тока па­раллельного возбуждения.

Рис. 6.1. Схема включения двигателя параллельного возбуждения в сеть

Обычно мощность сети постоянного тока много больше мощности двигателя, так что напряжение сети неизменно. Тогда обмотку параллельного возбуждения можно представить и как обмотку независимого возбуждения. Отметим, что в цепь якоря машин небольшой мощности (единицы кВт) обычно включают пусковое сопротивление RП, ограничивающее ток якоря в момент его включения в сеть.

Таким образом, ток двигателя IДВ будет складываться из тока якоря и тока возбуждения:

Поскольку ток возбуждения составляет 3. 5% тока якоря, то иногда для практических расчетов принимают ток двигателя равным току якоря. Ток в цепи якоря будет определяться разностью напряжения сети и ЭДС якоря и сопротивлением якорной цепи:

Этот ток, взаимодействуя с магнитным полем машины, будет создавать вращающий электромагнитный момент, потребляя из сети мощность

Мощность P1,подводимая из сети, делится между цепью якоря Ра и цепью возбуждения РВ. Небольшая часть мощности, потребляемой цепью якоря, затрачивается на нагревание обмотки якоря РЭЛ. Остальная часть преобразуется в механическую мощность РМЕХ. Механическая мощность идет на покрытие мощности потерь в стали РС и мощности механических потерь РМП на трение в подшипниках, щеток на коллекторе и вентиляционные потери. Энергетическая диаграмма двигателя приведена на рис. 6.2.

Рис. 6.2. Энергетическая диаграмма двигателя постоянного тока

Поскольку ЭДС Е в двигателе имеет направление, противоположное направлению тока якоря, то ее принято называть противоэлектродвижущей силой (противоЭДС). Она, как и ЭДС генератора, зависит от конструктивной постоянной машины СЕ, потока главных полюсов и частоты вращения n якоря:

Читать еще:  Что такое карамельный реактивный двигатель

Напряжение на зажимах якоря:

Двигатель при подключении в сеть вращается и развивает на валу вращающий момент:

Этот момент уравновешивает статический момент (момент сопротивления) на валу двигателя.

С учетом (6.4), уравнение баланса напряжений на якоре (6.5) примет вид:

откуда можно получить зависимость частоты вращения от тока якоря:

Выражение (6.8) называется уравнением электромеханической характеристики двигателя постоянного тока независимого возбуждения.

При токе якоря равном нулю n=n= U/СЕ Ф. Величина n называется частотой идеального холостого двигателя. При n=n Е = U.

Подставив в (6.8) выражение для тока, выраженного через момент в соответствии с (6.6), получим зависимость n = f(M), которая называется уравнением механической характеристики двигателя постоянного тока:

При неизменных значениях напряжения, магнитного потока и сопротивления якорной цепи механическая характеристика (6.9) представляет собой уравнение прямой линии (рис. 6.3,а).

Рис. 6.3. Механические (а) и рабочие (6) характеристики двигателя постоянного тока с параллельным возбуждением

Величина Δn=(Rа+ RП)/СЕ СМФ 2 , зависящая от суммы сопротивлений Rа+ RП,определяет наклон механической характеристики к оси абсцисс. При отсутствии в цепи якоря добавочного сопротивления RП, и номинальном токе возбуждения механическая характеристика двигателя называется естественной характеристикой (1 на рис. 6.3, а). Номинальному моменту МН на естественной характеристике соответствует номинальная частота вращения nН. При включении добавочного реостата угол наклона этих характеристик возрастает тем больше, чем больше величина сопротивления, вследствие чего формируется семейство реостатных характеристик 2, 3, 4. Это позволяет получить новые значения частот вращения.

Реакция якоря, уменьшая несколько поток машины Ф при нагрузке, стремится придать естественной механической характеристике отрицательный угол наклона, при котором частота вращения n возрастает с увеличением момента М. Однако двигатель с такой характеристикой в большинстве электроприводов устойчиво работать не может. Поэтому современные мощные двигатели с параллельным возбуждением часто снабжают небольшой последовательной обмоткой возбуждения, которая придает механической характеристике необходимый наклон. МДС этой обмотки при номинальном токе составляет около 10% от МДС параллельной обмотки.

Регулировочный реостат RВ позволяет изменять ток возбуждения двигателя и его магнитный поток. При этом, как следует из (6.9), будет изменяться и частота вращения, причем будет возрастать и частота вращения идеального холостого хода. При номинальном напряжении на якоре (RП=0) и уменьшении магнитного потока (RВ >0) характеристики проходят тем выше естественной и круче ее, чем меньше магнитный поток. Однако существенное уменьшение магнитного потока не допускается, поскольку частота вращения двигателя резко возрастает (двигатель идет «вразнос»). При этом сильно увеличивается ток якоря и может возникнуть круговой огонь. Таким образом, обрыв цепи возбуждения крайне опасен.

Рабочие характеристики двигателя представляют собой зависимости потребляемой мощности Р1,тока якоря 1а,частоты вращения n, момента M и КПД η от мощности на валу двигателя Р2 при неизменных напряжении и токе возбуждения (U = const и 1В= const). Характеристики частоты вращения и момента являются линейными, а зависимости КПД, тока и мощности имеют характер, общий для всех электрических машин. Если в двигателе, обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, та его называют двигателем с независимым возбуждением. Механические и рабочие характеристики двигателя с независимым возбуждением аналогичны характеристикам двигателя с параллельным возбуждением, поскольку у них ток возбуждения не зависит от тока якоря.

Двигатель постоянного тока последовательного возбуждения. В этом двигателе обмотка возбуждения соединяется последовательно с обмоткой якоря, ток возбуждения равен току якоря 1В=1а , поэтому магнитный поток Ф является функцией тока якоря. Если ток якоря 1а 2 . (6.10)

Так как М= СМ Ф1а= СМ kФ 1а 2 , то выразив ток якоря через момент и подставив его в (6.10), получим:

Механическая характеристика двигателя мягкая, имеет форму гиперболы, асимптотически приближающуюся к оси частот вращения (рис. 6.4,б). Это означает, что при холостом ходе или малых нагрузках на валу частота вращения двигателя резко возрастает до недопустимых значений, двигатель идет «вразнос». Поэтому минимальная нагрузка такого двигателя должна быть не менее 20. 30% номинальной.

Дата добавления: 2017-11-21 ; просмотров: 2654 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Краткие теоретические сведения. В электроприводах постоянного тока в настоящее время используются двигатели постоянного тока с независимым возбуждением (ДПТ НВ)

В электроприводах постоянного тока в настоящее время используются двигатели постоянного тока с независимым возбуждением (ДПТ НВ). Схема включения ДПТ НВ приведена на рисунке 8. Особенностью этого двигателя является то, что якорь ДПТ и обмотка возбуждения получают питание от различных (независимых) источников энергии.

Для анализа работы ДПТ НВ в установившемся режиме работы используют его статические электромеханические и механические характеристики.

Статическая электромеханическая характеристика ДПТ НВ w=f(Iя) представляет собой зависимость угловой скорости от тока якоря в установившемся режиме работы. Электромеханическая характеристика позволяет оценить загрузку двигателя по току.

Выражение статической электромеханической характеристики ДПТ НВ для двигательного режима работы имеет вид:

, (1)

где UЯ – напряжение на якоре, В;

RЯ – сопротивление якорной цепи для нагретого состояния, Ом;

IЯ – ток якорной цепи, А;

Рисунок 8 – Схема включения ДПТ НВ

k – конструктивный коэффициент двигателя;

Ф – полезный поток, Вб;

k×Ф – коэффициент ЭДС и момента (электромагнитного); при номинальном и неизменном потоке возбуждения (k×Фном=Сном).

Статическая механическая характеристика ДПТ НВ w=f(М) представляет собой зависимость угловой скорости от момента в установившемся режиме работы. Механическая характеристика позволяет определить скорость, с которой будет вращаться вал двигателя при изменении нагрузки на валу. Статическая механическая характеристика – есть множество точек установившегося режима работы электрической машины. По статической механической характеристике анализируют установившиеся режимы работы привода.

Выражение статической механической характеристики ДПТ НВ для двигательного режима работы имеет вид:

. (2)

В выражениях (1) и (2) угловая скорость w является функцией; IЯ и М являются аргументами, а все остальные величины, входящие в выражения характеристик, называют параметрами двигателя.

Статические характеристики (электромеханические и механические) рассчитанные и построенные при номинальных параметрах для нормальной схемы включения ДПТ НВ (отсутствуют добавочные сопротивления) носят название естественные характеристики. Выражения естественных статических электромеханической и механической характеристик имеют вид:

, (3)

. (4)

Параметры, входящие в выражения этих характеристик определяются следующим образом:

– номинальное напряжение на якоре задается в справочниках и указывается на табличке двигателя;

– сопротивление якорной цепи определяется выражением:

, (5)

где RОЯ – сопротивление обмотки якоря, Ом;

RОДП – сопротивление обмотки дополнительных полюсов, Ом;

RКО – сопротивление компенсационной обмотки, Ом;

RЩК – сопротивление щеточного контакта, Ом;

1,2 – коэффициент приведения сопротивлений к нагретому состоянию (в случае класса изоляции В).

Если сопротивления обмоток якоря, добавочных полюсов и компенсационной обмотки приведены в справочнике уже для нагретого состояния, то при расчете сопротивления якорной цепи следует вместо коэффициента 1,2 использовать коэффициент равный 1.

Читать еще:  Двигатель 1нз фе троит

У двигателей небольшой мощности компенсационная обмотка может отсутствовать, тогда при расчете сопротивления якорной цепи в формуле (5) следует положить RКО = 0.

Сопротивление щеточного контакта определяется по формуле:

, (6)

где DUЩ – падение напряжения на щеточном контакте, В; (DUЩ = 0,6 В – для медно-графитовых щеток, DUЩ = 2 В – для графитовых щеток);

IЯном – номинальный ток якоря двигателя, А.

Обычно номинальный ток якоря приводится в справочнике или на табличке двигателя. Если ток якоря номинальный неизвестен, то его можно определить по формуле:

, (7)

где Р2ном – номинальная мощность на валу двигателя, Вт;

hном – номинальный коэффициент полезного действия, о.е.;

RОВ – сопротивление обмотки возбуждения, Ом.

В случае, если в справочнике не заданы сопротивления обмоток двигателя, то сопротивление якорной цепи можно оценить по приближенной формуле, считая, что половина всех потерь в двигателе приходится на долю переменных потерь:

; (8)

Коэффициент ЭДС и момента может быть определен из выражения естественной электромеханической характеристики, записанной для номинального режима работы двигателя. Выражение для определения этого коэффициента имеет вид:

, (9)

где wном – номинальная угловая скорость вала (якоря) двигателя, рад/с.

В справочнике и на табличке двигателя обычно указывается номинальная частота вращения вала двигателя nном [об/мин]. Угловая скорость и частота вращения связаны следующим выражением:

. (10)

При изменении хотя бы одного из параметров, входящих в выражения механической и электромеханической характеристик (напряжения на якоре, потока двигателя, добавочных сопротивлений) получают характеристики отличные от естественной. Такие характеристики называют искусственными. Естественная характеристика у двигателя одна, искусственных – множество. Искусственная характеристика, полученная введением в цепь якоря добавочного сопротивления (реостата) носит название – реостатная механическая (или электромеханическая) характеристика. Реостатная статическая механическая характеристика имеет вид:

, (11)

где RЯдоб – величина добавочного сопротивления, Ом.

Характеристики, полученные уменьшением напряжения на якоре ДПТ НВ или ослаблением потока, называют искусственными характеристиками при пониженном напряжении и искусственными характеристиками при ослабленном потоке соответственно.

Чтобы определить величину сопротивления, включенного в цепь якоря, нужно в выражение реостатной характеристики вместо w и М подставить их значения для заданного статического режима работы wС и МС и решить относительно RЯдоб. Аналогично поступают для определения требуемого напряжения или требуемого потока двигателя, для обеспечения работы привода с требуемой скоростью при заданном моменте нагрузки.

Формулы для определения требуемого добавочного сопротивления и требуемого напряжения на якоре имеют вид:

, (12)

. (13)

Из анализа выражений электромеханической и механической характеристик видно, что они линейны. Для двигательного режима работы ДПТ НВ угловая скорость и ток (момент) имеют одинаковые знаки. Характеристики двигательного режима работы располагаются в I–III квадрантах плоскости (w, М). Так как характеристики линейны, то для построения их достаточно рассчитать две точки. Подставляя в выражение требуемой характеристики два значения тока (момента) определяют угловые скорости, соответствующие этим токам (моментам). По полученным двум точкам на плоскости <(w, IЯ) или (w, М)> строят требуемую электромеханическую или механическую характеристику. Обычно для расчета первой точки электромеханической (механической) характеристики принимают IЯ=0 (М=0), при этом скорость вала двигателя будет равна скорости идеального холостого хода (w=w). Скорость идеального холостого хода определяется выражением:

. (14)

Для расчета второй точки электромеханической (механической) характеристики принимают номинальное значение тока (момента) двигателя и рассчитывают угловую скорость.

При расчете статических механических характеристик двигателя следует иметь ввиду различие между моментом двигателя электромагнитным и моментом на его валу. Это разные моменты. Ввиду наличия механических потерь в двигателе (трение в подшипниках, вентиляционные потери) момент электромагнитный отличается от момента на валу на величину момента потерь вращения. Соотношение электромагнитного момента, момента на валу и момента потерь вращения имеет вид:

, (15)

где М – электромагнитный момент двигателя, Н×м;

МВ – момент на валу двигателя, Н×м;

DМ – момент потерь вращения, Н×м.

В выражении (15) знак «+» относится к двигательному, знак «–» – к тормозным режимам работы.

При совместном рассмотрении механических механизма w=f(MC) и характеристик двигателя w=f(MВ), в качестве последней следует рассматривать зависимость угловой скорости в функции момента на валу. Вместе с тем, эта зависимость имеет разрыв первого рода, обусловленный влиянием момента потерь вращения. Поэтому при решении задач в области автоматизированного электропривода лучше рассматривать механические характеристики двигателя w=f(M) (где М – электромагнитный момент), отнеся момент потерь вращения DМ, если его величина существенная (>5% от номинального момента), к нагрузке МС, или пренебрегая им в случае его малости (

Основные соотношения для двигателей постоянного тока

Уравнение напряжений для цепи якоря по второму зако­ну Кирхгофа

(2.4)

Рис 2.1. Схемы включения двигателей:

а – независимого возбуждения; б – последовательного возбуждения;

в – смешанного возбуждения; сплошные стрелки – направления токов в генераторном режиме, штри­ховые – в двигательном

ЭДС обмотки якоря и момент

(2.5)

Уравнение электромеханической характеристики

(2.6)

Уравнение механической характеристики

(2.7)

В формулах (2.4–2.7) обозначены: Ra – сопротивление самой обмотки якоря относительно внешних зажимов; – добавочное сопротивление в цепи якоря; – ток обмотки якоря (рис. 2.1); – постоянная для конкретной машины; p – число пар полюсов; N – число эффективных про­водников обмотки якоря; – угловая скорость; Ф – магнит­ный поток в зазоре, ; – коэффициент полюсной дуги, = 0,6 ÷ 0,75; – полюсное деление, ; , – диаметр и длина якоря соответственно; – индукция в зазо­ре, = (0,7 ÷ 1,0) Тл; – скорость идеального холостого хода, ; – снижение скорости под влиянием нагрузки.

Из (2.6, 2.7) видно, что для двигателя независимого возбу­ждения при неизменных характеристики представ­ляются прямыми линиями, а их жесткость зависит от сопро­тивления якорной цепи и потока Ф. Следовательно, изменяя указанные параметры (U, Ф, ), можно регулиро­вать скорость электропривода.

На рис. 2.2 представлены механические характери­стики двигателя независимого возбуждения в различных ре­жимах работы при . При характеристика называется естественной, а осталь­ные – искусственные . Естественная характеристи­ка является жесткой, относительный статический перепад ско­рости . При U= const, Ф = const, все характеристики выходят из одной точки на оси ординат – щ, скорости идеального холостого хода, когда = 0, U= Е. Из графика же следуют и режимы работы (рис. 2.3).

Рис. 2.3. Энергетические режимы ДПТ

а – холостой ход; б – двигательный; в – генераторный параллельно

с сетью; г – короткое замыкание; д – генераторный последовательно

с сетью; е – генератор­ный независимо от сети

I квадрант. Двигательный режим – электрическая энер­гия потребляется из сети и преобразуется в механическую, (рис. 2.3, б).

II квадрант. Генераторный режим – энергия (механиче­ская) поступает с вала и преобразуется в электрическую. При этом она может отдаваться в сеть (рекуперация) при или рассеиваться в реостатах (динамическое или реостатное торможение) (рис. 2.3, в, е). В режиме рекуперации М

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector