Sw-motors.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство электродвигателя переменного тока

Устройство электродвигателя переменного тока

Электрические двигатели – это силовые машины, применяющиеся для превращения электрической энергии в механическую. Общая классификация разделяет их по типу питающего тока на двигатели постоянного и переменного тока. В статье ниже рассматриваются электрические двигатели со спецификацией под переменный ток, их виды, отличительные характеристики и преимущества.

Для общей информации, рекомендуем прочитать нашу отдельную статью о принципах работы электродвигателей.

Принцип преобразования энергии

Среди электрических двигателей, применяемых во всех отраслях промышленности и бытовых электроприборах, наибольшее распространение имеют двигатели переменного тока. Они встречаются практически в каждой сфере жизнедеятельности – от детских игрушек и стиральных машин до автомобилей и мощных производственных станков.

Принцип работы всех электрических двигателей основывается на законе электромагнитной индукции Фарадея и законе Ампера. Первый из них описывает ситуацию, когда на замкнутом проводнике, находящемся в изменяющемся магнитном поле, генерируется электродвижущая сила. В двигателях это поле создается через обмотки статора, по которым протекает переменный ток. Внутри статора (представляющего собой корпус устройства) находится подвижный элемент двигателя – ротор. На нем и возникает ток.

Вращение ротора объясняется законом Ампера, который утверждает, что на электрические заряды, протекающие по проводнику, находящемуся внутри магнитного поля, действует сила, движущая их в плоскости, перпендикулярной силовым линиям этого поля. Проще говоря, проводник, которым в конструкции двигателя является ротор, начинает вращаться вокруг своей оси, а закрепляется он на валу, к которому подключаются рабочие механизмы оборудования.

Виды двигателей и их устройство

Электрические двигатели переменного тока имеют различное устройство, благодаря которому можно создавать машины с одинаковой частотой вращения ротора относительно магнитного поля статора, и такие машины, где ротор «отстает» от вращающегося поля. По данному принципу эти двигатели разделяют на соответствующие типы: синхронные и асинхронные.

Асинхронные

Основу конструкции асинхронного электродвигателя составляет пара важнейших функциональных частей:

  1. Статор – блок цилиндрической формы, сделанный из листов стали с пазанми для укладки токопроводящих обмоток, оси которых располагаются под углом 120˚ относительно друг друга. Полюса обмоток уходят на клеммную коробку, где подключаются разными способами, в зависимости от необходимых параметров работы электродвигателя.
  2. Ротор. В конструкции асинхронных электродвигателей используются роторы двух видов:
    • Короткозамкнутый. Называется так, потому что изготавливается из нескольких алюминиевых или медных стержней, накоротко замкнутых с помощью торцевых колец. Эта конструкция, представляющая собой токоповодящую обмотку ротора, называется в электромеханике «беличьей клеткой».
    • Фазный. На роторах данного типа устанавливается трехфазная обмотка, похожая на обмотку статора. Чаще всего концы её проводников идут в клеммную площадку, где соединяются «звездой», а свободные концы подключаются к контактным кольцам. Фазный ротор позволяет с помощью щеток добавить в цепь обмотки добавочный резистор, позволяющий изменять сопротивление для уменьшения пусковых токов.


Помимо описанных ключевых элементов асинхронного электродвигателя, в его конструкцию также входит вентилятор для охлаждения обмоток, клеммная коробка и вал, передающий генерируемое вращение на рабочие механизмы оборудования, работа которого обеспечивается данным двигателем.

Работа асинхронных электрических двигателей основывается на законе электромагнитной индукции, утверждающем, что электродвижущая сила может возникнуть лишь в условиях разности скоростей вращения ротора и магнитного поля статора. Таким образом, если бы эти скорости были равны, ЭДС не могла бы появиться, но воздействие на вал таких «тормозящих» факторов, как нагрузка и трение подшипников, всегда создает достаточные для работы условия.

Синхронные

Конструкция синхронных электродвигателей переменного тока несколько отлична от устройства асинхронных аналогов. В этих машинах ротор крутится вокруг своей оси со скоростью, равной скорости вращения магнитного поля статора. Ротор или якорь этих устройств тоже оснащается обмотками, которые одними концами подключены друг к другу, а другими – к вращающемуся коллектору. Контактные площадки на коллекторе смонтированы так, что в определенный момент времени возможна подача питания через графитовые щетки лишь на два противоположных контакта.

Принцип работы синхронных электродвигателей:

  1. При взаимодействии магнитного потока в обмотке статора с током ротора возникает вращающий момент.
  2. Направление движения магнитного потока изменяется одновременно с направлением переменного тока, благодаря чему сохраняется вращение выходного вала в одну сторону.
  3. Настройка нужной частоты вращения осуществляется регулировкой входящего напряжения. Чаще всего, в быстроходном оборудовании, например, перфораторах и пылесосах, эту функцию выполняет реостат.

Чаще всего причинами выхода синхронных электродвигателей из строя является:

  • износ графитовых щеток или ослабление прижимной пружины;
  • износ подшипников вала;
  • загрязнение коллектора (чистится наждачной бумагой или спиртом).

История изобретения

Изобретение простейшего способа преобразования энергии из электрической в механическую принадлежит Майклу Фарадею. В 1821 году этот великий английский ученый провел эксперимент с проводником, опущенным в сосуд с ртутью, на дне которого лежал постоянный магнит. После подачи электричества на проводник он приходил в движение, вращаясь соответственно силовым линиями магнитного поля. В наши дни этот опыт часто проводят на уроках физики, заменяя ртуть рассолом.

Дальнейшее изучение вопроса привело к созданию Питером Барлоу в 1824 году униполярного двигателя, названного колесом Барлоу. В его конструкцию входят два зубчатых колеса из меди, расположенных на одной оси между постоянными магнитами. После подачи тока на колеса, в результате его взаимодействия с магнитными полями, колеса начинают вращаться. Во время опытов ученый установил, что направление вращения можно изменить, поменяв полярность (перестановкой магнитов или контактов). Практического применения «колесо Барлоу», но сыграло важную роль в изучении взаимодействия магнитных полей и заряженных проводников.

Первый рабочий образец устройства, ставшего прародителем современных двигателей, был создан русским физиком Борисом Семеновичем Якоби в 1834 году. Принцип использования вращающегося ротора в магнитном поле, продемонстрированный в этом изобретении, практически в неизменном виде применяется современных двигателях постоянного тока.

А вот создание первого двигателя с асинхронным принципом работы принадлежит сразу двум ученым – Николе Тесла и Галилео Феррарис, по удачному стечению обстоятельств продемонстрировавшим свои изобретения в один год (1888). Через несколько лет двухфазный бесколлекторный двигатель переменного тока, созданный Николой Тесла уже использовался на нескольких электростанциях. В 1889 году русский электротехник Михаил Осипович Доливо-Добровольский усовершенствовал изобретение Теслы для работы в трехфазной сети, благодаря чему смог создать первый асинхронный двигатель переменного тока мощностью более 100 Вт. Ему же принадлежит изобретение используемых сегодня способов подключения фаз в трехфазных электродвигателях: «звезда» и «треугольник», пусковых реостатов и трехфазных трансформаторов.

Подключение к однофазным и трехфазным источникам питания

По типу питающей сети электродвигатели переменного тока классифицируют на одно- и трехфазные.

Подключение асинхронных однофазных двигателей осуществляет очень легко – для этого достаточно подвести к двум выходам на корпусе фазный и нулевой провод однофазной 220В сети. Синхронные двигатели тоже можно запитывать от сети данного типа, однако подключение немного сложнее – необходимо соединить обмотки ротора и статора так, чтобы их контакты однополюсного намагничивания были расположены напротив друг друга.

Подключение к трехфазной сети представляется несколько более сложным. В первую очередь, следует обратить внимание, что клеммная коробка содержит 6 выводов – по паре на каждую из трех обмоток. Во-вторых, это дает возможность использовать один из двух способов подключения («звезда» и «треугольник»). Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора.

Главное функциональное отличие «звезды» и «треугольника» заключается в различном потреблении мощности, что сделано для возможности включения машины в трехфазные сети с различным линейным напряжением — 380В или 660В. В первом случае следует соединять обмотки по схеме «треугольник», а во втором – «звездой». Такое правило включения позволяет в обоих случаях иметь напряжение 380В на обмотках каждой фазы.

На панели подключения выводы обмоток располагаются таким образом, чтобы перемычки, используемых для включения, не перекрещивались между собой. Если коробка выводов двигателя содержит только три зажима, значит, он рассчитан для работы от одного напряжения, которое указано в технической документации, а обмотки соединены между собой внутри устройства.

Преимущества и недостатки электрических двигателей переменного тока

В наши дни среди всех электродвигателей устройства для переменного тока занимают лидирующую позицию по объему использования в силовых установках. Они обладают низкой себестоимостью, простой в обслуживании конструкцией и КПД не менее 90%. Кроме того, их устройство позволяет плавно изменять скорость вращения, не прибегая к помощи дополнительного оборудования вроде коробок передач.

Главным недостатком двигателей переменного тока с асинхронным принципом работы является тот факт, что регулировать их частоту вращения вала можно только изменяя входную частоту тока. Это не позволяет добиться постоянной скорости вращения, а также снижает мощность. Для асинхронных электродвигателей характерны высокие пусковые токи, но низкий пусковой момент. Для исправления этих недостатков применяется частотный привод, однако его цена противоречит одному из главных достоинств этих двигателей – низкой себестоимости.

Слабым местом синхронного двигателя является его сложная конструкция. Графитовые щетки довольно быстро выходят из строя под нагрузкой, а также теряют плотный контакт с коллектором из-за ослабления прижимной пружины. Кроме того, эти двигатели, как и асинхронные аналоги, не защищены от износа подшипников вала. К недостаткам также относится более сложный пуск, необходимость наличия источника постоянного тока и исключительно частотная регулировка частоты вращения.

Читать еще:  Двигатель 06 как снять успокоитель

Применение

На сегодняшний день электродвигатели со спецификацией на переменный ток распространены во всех сферах промышленности и жизнедеятельности. На электростанциях они устанавливаются в качестве генераторов, используются в производственном оборудовании, автомобилестроении и даже бытовой технике. Сегодня в каждом доме можно встретить как минимум одно устройство с электрическим двигателем переменного тока, например, стиральную машину. Причины столь большой популярности заключаются в универсальности, долговечности и легкости обслуживания.

Среди асинхронных электрических машин наибольшее распространение получили устройства с трехфазной спецификацией. Они являются наилучшим вариантом для использования во многих силовых агрегатах, генераторах и высокомощных установках, работа которых связана с необходимостью контроля скорости вращения вала.

Схема двигателя постоянного тока

Электродвигатели, работающие на постоянном токе, используются не так часто, как двигатели переменного тока. Ниже приведем их достоинства и недостатки.

ДостоинстваНедостатки
частота вращения легко регулируетсявысокая стоимость
мягкий пуск и плавный разгонсложность конструкции
получение частоты вращения выше 3000 об/минсложность в эксплуатации

В быту двигатели постоянного тока нашли применение в детских игрушках, так как источниками для их питания служат батарейки. Используются они на транспорте: в метрополитене, трамваях и троллейбусах, автомобилях. На промышленных предприятиях электродвигатели постоянного тока применяются в приводах агрегатов, для бесперебойного электроснабжения которых используются аккумуляторные батареи.

  1. Конструкция и обслуживание двигателя постоянного тока
  2. Схемы включения двигателя постоянного тока
  3. Независимое возбуждение
  4. Параллельное возбуждение
  5. Последовательное возбуждение
  6. Смешанное возбуждение

Конструкция и обслуживание двигателя постоянного тока

Основной обмоткой двигателя постоянного тока является якорь, подключающийся к источнику питания через щеточный аппарат. Якорь вращается в магнитном поле, создаваемом полюсами статора (обмотками возбуждения). Торцевые части статора закрыты щитами с подшипниками, в которых вращается вал якоря двигателя. С одной стороны на этом же валу установлен вентилятор охлаждения, прогоняющий поток воздуха через внутренние полости двигателя при его работе.

Схема двигателя постоянного тока

Щеточный аппарат – уязвимый элемент в конструкции двигателя. Щетки притираются к коллектору, чтобы как можно точнее повторять его форму, прижимаются к нему с постоянным усилием. В процессе работы щетки истираются, токопроводящая пыль от них оседает на неподвижных частях, ее периодически нужно удалять. Сами щетки нужно иногда перемещать в пазах, иначе они застревают в них под действием той же пыли и «зависают» над коллектором. Характеристики двигателя зависит еще и от положения щеток в пространстве в плоскости вращения якоря.

Со временем щетки изнашиваются и заменяются. Коллектор в местах контакта со щетками тоже истирается. Периодически якорь демонтируют и протачивают коллектор на токарном станке. После протачивания изоляция между ламелями коллектора срезается на некоторую глубину, так как она прочнее материала коллектора и при дальнейшей выработке будет разрушать щетки.

Схемы включения двигателя постоянного тока

Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.

Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.

Схема последовательного возбуждения

Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.

Схемы подключения электродвигателя к электропитанию

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

Читать еще:  Что такое тормоз двигателя триммера

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Двигатели переменного тока (ЭПТ) относятся к категории силовых агрегатов, в основу работы которых заложен принцип преобразования электрической энергии в механическое вращение.

Функционирование таких электротехнических устройств основано на эффекте вращающегося магнитного поля, создаваемого в статоре за счет соответствующего распределения питающего напряжения. Для понимания принципа работы двигателей переменного тока потребуется ознакомиться с существующими разновидностями этих агрегатов.

Виды двигателей переменного тока.

В зависимости от конструктивных особенностей и характера связи электромагнитного (э/м) поля вращающегося ротора и ЭДС неподвижного статора различают синхронные и асинхронные двигатели. В первых эта связь жесткая, а в асинхронных частоты их вращения отличаются на величину так называемого «скольжения».

По количеству полюсов, электромагнитных катушек статора и типу питающего напряжения все известные модели делятся на:

  • однофазные (включая конденсаторные);
  • трехфазные двигатели переменного тока;
  • шаговые (многофазные) агрегаты.

По способу организации возбуждения и характеру связи с ротором различают коллекторные и бесколлекторные электродвигатели.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ

Независимо от типа электрической машины (синхронная или асинхронная, коллекторная или бесколлекторная) все они обладают следующими техническими характеристиками:

  • количество рабочих фаз – одна или три (за исключением шаговых моделей);
  • мощность электрическая и на валу;
  • схемы соединения обмоток («звезда» или «треугольник»);
  • класс защиты оборудования.

В однофазных машинах запуск осуществляется либо вручную, либо в них предусматривается специальная пусковая обмотка (фазосдвигающая цепочка с конденсатором).

В 3-х фазных агрегатах вращающееся э/м поле создается тремя независимыми катушками, размещенными на статоре под углом 120 градусов одна к другой. Соответствующие им ЭДС разнесены в электрическом пространстве на те же углы.

Виды мощности:

1. Электрической называют мощность, потребляемую от сети фазными обмотками двигателя в рабочем режиме.

2. Механическая мощность на валу – развиваемое ЭПТ вращательное усилие, измеряемое в Ваттах и характеризующее эффективность преобразования или КПД всего двигателя.

Схема включения обмоток выбирается с учетом особенностей конструкции агрегата и условий его работы. Чаще всего в бытовом электрооборудовании и инструменте применяется схема включения типа «звезда».

Класс защиты электродвигателей от проникновения внутрь механических частиц грязи, а также от попадания влаги устанавливается согласно стандарту EN 60034.

Читать еще:  Что такое двигатель dongfeng

Для его обозначения используют две английские буквы IP со следующими за ними цифрами. Первая соответствует уровню защиты от попадания твердых частиц, а вторая – от проникновения во внутрь влаги.

КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Конструкция коллекторных электродвигателей содержит в своем составе следующие обязательные компоненты:

  • ротор особой конструкции;
  • статор с основными и возбуждающими обмотками;
  • коллекторный узел с комплектом щеток.

Основа ротора (якоря) – магнитопровод из пластин электротехнической стали, между полюсами которого при изготовлении по определенной схеме укладываются витки медного провода.

Концы обмоток выводятся на коллекторный узел, являющийся коммутаторной частью системы (здесь осуществляется их переключение). С его помощью обмотка якоря соединяется со статорной в последовательную цепочку. При этом создаваемое в ней поле взаимодействуют с магнитным потоком статора, создавая необходимый вращающий момент.

Преимущества и недостатки.

К достоинствам коллекторных двигателей переменного тока относят плавность запуска и простоту схемы возбуждающей цепочки, включенной последовательно с основной обмоткой. Отмечается также возможность получения значительных по величине вращательных моментов. Эти изделия надежны в работе и хорошо «держат» предельные нагрузки на валу.

Недостатки этих агрегатов представлены ниже:

  • повышенный уровень шумности;
  • низкий по сравнению с бесколлекторными конструкциями кпд;
  • необходимость постоянного обслуживания коллекторного узла из-за износа и загрязнения его элементов (ламелей);
  • потребность в обновлении и регулировки щеток;
  • высокий уровень радиопомех.

К минусам коллекторных электродвигателей также относят недостаточную надежность рабочих узлов и малые сроки эксплуатации входящих в их состав элементов.

Области применения.

Область применения коллекторных двигателей определяется особенностью их конструкции.

При частоте сетевого напряжения 50 Гц скорость вращения вала у этих изделий достигает 9000-10000 об/мин. Именно поэтому двигатели с коллекторным узлом типа широко применяются в бытовой аппаратуре самого различного класса.

Это:

  • стиральные машины;
  • электромясорубки, кофемолки и миксеры;
  • электроинструмент (дрели, болгарки, перфораторы и т. п.).

Сегодня традиционные коллекторные двигатели везде, где это возможно, заменяются современными бесщеточными агрегатами.

С расширением и удешевлением современной электронной базы их производство становится более выгодным. Одновременно совершенствуются схемы управления, работающие на полупроводниковых элементах различного класса.

УПРАВЛЕНИЕ ДВИГАТЕЛЯМИ ПЕРЕМЕННОГО ТОКА

В основу управления режимами работы двигателей переменного тока заложен принцип зависимости частоты вращения вала от величины напряжения, прикладываемого к катушкам статора.

При фиксированной величине тока это означает изменение мощности, передаваемой в нагрузочную (роторную) цепь. Еще один параметр, которым нередко приходится управлять при эксплуатации двигателей рассматриваемого класса – направление вращения вала (реверс).

Для реализации двух этих возможностей применяются различные схемы, построенные на компонентах того или иного типа.

Это могут быть:

  • транзисторные ключи или реле;
  • тиристорные элементы;
  • электронные тиристоры (симисторы).

Транзисторы применяется сегодня крайне редко, поскольку на смену им пришли более эффективные тиристорные и симисторные управляющие элементы.

С их помощью удается непосредственно изменять величину мощности, отдаваемой в нагрузочную цепочку ротора. Для этих целей применяются современные методы широтно-импульсного или фазоимпульсного управления.

Для получения нужной частоты вращения вала и мощности, отдаваемой непосредственно в нагрузку, используется особый электронный элемент – симистор. Степень его открытия задается подачей на управляющий электрод соответствующего напряжения или последовательности прямоугольных импульсов.

Во втором случае частота следования задает время открытия прямого перехода симистора, что в конечном счете определяет величину мощности, передаваемой в управляемую роторную цепочку.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Виды электродвигателей и схемы их подключения для 220 и 380 В

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

  • Основные разновидности
  • Способы подключения
    • Однофазный асинхронный
    • Коллекторный вариант
    • Подключение «звездой»
    • Соединение «треугольник»

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:

  • рабочим;
  • пусковым;
  • рабочим и пусковым.

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.

Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector