Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы управления электроприводами

Схемы управления электроприводами

Управление наиболее распространёнными на пищевых предприятиях трёхфазными асинхронными двигателями с короткозамкнутым ротором удобно осуществлять с помощью релейно-контакторных аппаратов. Асинхронные двигатели номинальной мощностью до 75 кВт при напряжении 380 В частоты 50 Гц включают включают и отключают при продолжительном и ненапряжённом повторно-кратковременном режимах работы нереверсивными и реверсивными магнитными пускателями как без тепловых реле, так и с ними при помощи двух- или трёхкнопочных станций.

В установке (рис. 1.20), обеспечивающей нереверсивное управление трёхфазным асинхронным двигателем с короткозамкнутым ротором, предусмотрена двухкнопочная станция, обеспечивающая пуск и остановку двигателя М. При включённом трёхполюсном, выключателе Q1, выполненном в виде рубильника, нажатие пусковой кнопки S2 приводит к присоединению катушки линейного контактора K1 к источнику питания и включению главными замыкающими контактами K1.1 обмотки статора двигателя, в результате чего ротор приходит во вращение. Одновременно с этим в цепи управления срабатывают вспомогательные замыкающие контакты K1.2, которые шунтируют пусковую кнопку S2, вследствие чего дальнейшее её нажатие излишне. Нажатие остановочной кнопки S1 размыкает цепь катушки линейного контактора K1 и его главные контакты K1.1 отключают обмотку статора двигателя от сети, в результате чего вращение ротора прекращается.

Рис. 1.20. Схема нереверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором.

Защита двигателя от длительной токовой перегрузки обеспечена двухполюсным тепловым реле F2 c ручным возвратом, а защита от токов короткого замыкания – плавкими предохранителями F1, которые при электроприводах малой мощности выполняют общими для силовой цепи и цепи управления, а при средней и большой мощности – раздельными. Защита от значительного снижения или полного исчезновения напряжения выполняется самим контактором, якорь которого при этом автоматически возвращается в исходное положение, а главные контакты K1.1 отключают двигатель от сети.

Для реверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором используют трёхкнопочную станцию, обеспечивающую пуск, изменение направления вращения ротора и остановку двигателя М (рис. 1.21).

Рис. 1.21. Схема реверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором.

При включённом трёхполюсном выключателе Q1 после нажатия двухцепной пусковой кнопки S2 происходит включение катушки контактора K1, которая получает питание через вспомогательные размыкающие контакты K2.3 контактора другого направления и остающиеся размыкающие контакты F2.1 и F3.1 однополюсных тепловых реле. Это приводит к срабатыванию главных замыкающих контактов K1.1, в результате чего ротор приходит во вращение. Одновременно пусковая кнопка S2 шунтируется вспомогательными замыкающими контактами K1.2. Переход к другому направлению вращения ротора достигается нажатием двухцепной пусковой кнопки S3, которая сначала отключает катушку контактора K1, а затем включает катушку контактора K2. При этом происходит изменение последовательности фаз напряжений на зажимах обмотки статора, что вынуждает ротор вращаться в противоположном направлении, а шунтирование пусковой кнопки S3 вспомогательными замыкающими контактами K2.2 позволяет её отпустить, поскольку при этом цепь катушки K2 не размыкается. Нажатие остановочной кнопки S1 прерывает питание цепи управления, силовая цепь двигателя отсоединяется от питающей сети, а ротор останавливается.

Несмотря на то, что использование двухцепных пусковых кнопок исключает одновременное включение обоих контакторов направления при случайном одновременном нажатии пусковых кнопок S2 и S3, в схеме применена электрическая блокировка с помощью вспомогательных размыкающих контактов K2.3 и K1.3, не допускающая втягивание якоря второго контактора, если якорь первого из них по какой-либо причине не возвратился в исходное положение.

Защита двигателя при реверсивном управлении такая же, как и при нереверсивном.

В схеме нереверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором (рис. 1.22) обеспечивает включение обмоток статора при пуске звездой, а при работе – треугольником, что снижает пусковой ток, но уменьшает момент, что обеспечивает плавный пуск двигателя М. Обмотка реле времени K2 включена параллельно катушке линейного контактора K1.

Рис. 1.22. Схема нереверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором с переключением фаз обмотки статора с звезды на треугольник.

Благодаря этому при включённых трёхполюсном автоматическом выключателе Q1 и двух однополюсных выключателях S3 и S4 нажатие пусковой кнопки S2, шунтируемой вспомогательными замыкающими контактами K1.2, приводит к одновременному включению катушек контакторов K1 и K3, а также обмотки реле времени K2, из-за чего включаются главные замыкающие контакты K1.1 и K3.1, из которых первые подают напряжение к обмотке статора, а вторые обеспечивают соединение её фаз звездой. Когда разгон ротора закончится, срабатывает реле времени и своими размыкающими контактами K2.1 с замедлителем, действующим при срабатывании, отключает катушку контактора K3, а затем своими же замыкающими контактами K2.2 с аналогичным замедлителем включает катушку контактора K4, вследствие чего фазы обмотки статора переключаются со звезды на треугольник.

В схеме предусмотрены электрическая блокировка вспомогательными размыкающими контактами K4.2 и K3.2, исключающая одновременное замыкание главных замыкающих контактов K3.1 и K4.1, а также отключающее устройство в виде остановочной кнопки S1.

Защита двигателя от длительной токовой перегрузки и токов короткого замыкания обеспечена трёхполюсным автоматическим выключателем Q1 с максимальными токовыми тепловыми и электромагнитными расцепителями, а от значительного снижения или полного исчезновения напряжения в сети осуществляется линейным контактором с катушкой K1.

Независимое питание цепи управления позволяет опробовать действие всех аппаратов и производить наладку при отключённом двигателе.

Рис. 1.23. Схема нереверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором при торможении противовключением.

Схема нереверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором при торможении противовключением содержит реле контроля угловой скорости S5 (рис. 1.23), которое механически связано с валом двигателя или производственного агрегата. При угловой скорости , составляющей до 10…15% номинальной, контакты реле разомкнуты, а при большей – замкнуты. Управление работой двигателя М осуществляется линейным контактором K1 и контактором торможения с катушкой K2, из которых первый применён для двигательного режима, а второй – для режима торможения.

Пуск двигателя происходит при включённых трёхполюсном автоматическом выключателе Q1 и двух однополюсных выключателях S3 и S4, в результате нажатия пусковой кнопки S2, шунтируемой вспомогательными замыкающими контактами K1.2. Это приводит к срабатыванию линейного контактора, присоединяющего главными замыкающими контактами K1.1 обмотку статора двигателя к питающей сети. При нажатии остановочной кнопки S1 отключается линейный контактори его вспомогательные размыкающие контакты K1.3 включают катушку контактора торможения K2, в результате чего к обмотке статора подаётся трёхфазная система напряжений с изменённой последовательностью, начинается энергичное торможение ротора, и угловая скорость его резко снижается. При угловой скорости, близкой к нулю, контакты реле контроля угловой скорости S5 размыкаются, катушка контактора торможения K2 отключается, и двигатель оказывается отсоединённым главными замыкающими контактами K2.1 от питающей сети.

В схеме предусмотрена электрическая блокировка, исключающая возможность одновременного замыкания главных замыкающих контактов K1.1 и K2.1.

Читать еще:  Ягуар чип тюнинг двигателя

В схеме нереверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором при динамическом торможении (рис. 1.24) пуск двигателя М обеспечивают включением трёхполюсного автоматического выключателя Q1, замыканием двух однополюсных выключателей S3 и S4 и нажатием пусковой кнопки S2.

При этом срабатывает линейный контактор, его главные замыкающие контакты K1.1 присоединяют обмотку статора к питающей сети, одни его вспомогательные замыкающие контакты K1.2 шунтируют пусковую кнопку S2, а другие аналогичные контакты K1.4 включают обмотку реле динамического торможения K3. Последняя получает питание от сети переменного напряжения через понижающий трансформатор Т1 и полупроводниковый выпрямитель U1.

Одновременно размыкаются вспомогательные размыкающие контакты K1.3, находящиеся в цепи катушки контактора торможения K2. Сработавшие замыкающие контакты реле динамического торможения K3.1 с замедлителем, действующим при возврате, подготавливают к включению цепь катушки контактора торможения K2 разомкнутыми вспомогательными размыкающими контактами K1.3.

Рис. 1.24. Схема нереверсивного управления трёхфазным асинхронным двигателем с короткозамкнутым ротором при динамическом торможении.

Нажатие остановочной кнопки S1 вызывает отключение главными замыкающими контактами K1.1 линейного контактора обмотки статора от питающей сети и включение его вспомогательными размыкающими контактами K1.3 катушки контактора торможения K2, в результате чего к двум зажимам статора подводится постоянное напряжение и начинается динамическое торможение. При этом вспомогательные замыкающие контакты K1.4 отключат обмотку реле динамического торможения K3, вследствие чего его замыкающие контакты K3.1 с замедлителем, действующем при возврате, спустя некоторое время, большее время торможения, разомкнутся и отключат катушку контактора торможения K2.

В схеме предусмотрена электрическая блокировка, исключающая одновременное замыкание главных замыкающих контактов K1.1 и K2.1.

Схема нереверсивного управления (рис. 1.25) двухскоростным трёхфазным асинхронным двигателем с короткозамкнутым ротором, обеспечивающая изменение числа полюсов машины вдвое, содержит аппараты для переключения фаз обмотки статора с треугольника на двойную звезду. Пуск двигателя начинается с включения трёхполюсного автоматического выключателя Q1 и двух однополюсных выключателей S4 и S5 с дальнейшим нажатием двухцепной пусковой кнопки S2, отвечающей малой угловой скорости ротора. При этом срабатывает контактор малой скорости, который обеспечивает главными замыкающими контактами K1.1 присоединение обмотки статора к питающей сети при соединении фаз треугольником, что соответствует работе двигателя с большим числом полюсов, а, следовательно, меньшей угловой скоростью ротора.

Рис. 1.25. Схема нереверсивного управления двухскоростным трёхфазным асинхронным двигателем с короткозамкнутым ротором и переключением фаз обмотки статора с треугольника на двойную звезду.

Переход на большую скорость двигателя достигается нажатием двухцепной пусковой кнопки S3, при котором сначала прерывается цепь катушки K1, из-за чего обмотка статора отключается от питающей сети, а затем происходит включение катушек K2 и K3. Главные замыкающие контакты K2.1 соединяют фазы обмотки статора двойной звездой, а аналогичные контакты K3.1 присоединяют обмотку статора к питающей сети с изменённой последовательностью фаз напряжений. В этом случае двигатель переходит на работу с меньшим числом полюсов, а ротор начинает вращаться с большей угловой скоростью. Нажатие остановочной кнопки S1 размыкает цепь питания катушек включённых контакторов и этим вызывает отключение двигателя от питающей сети.

В схеме предусмотрена электрическая блокировка с помощью вспомогательных размыкающих контактов K2.3, K3.3 и K1.3, исключающая возможность одновременного замыкания главных замыкающих контактов K1.1, K2.1, K3.1, отвечающих меньшей и большей угловыми скоростями ротора.

Простые модели асинхронного электропривода

Технические реализации. Применения

Управляемый преобразователь УП в электроприводах, регулируемых изменением напряжения, может быть выполнен на основе либо регулируемого электромашинного агрегата, либо управляемого выпрямителя.

В первом случае электропривод носит название “система генератор-двигатель” (Г-Д) — рис. 3.24. Это традиционное техническое решение, обычно применявшееся при значительных мощностях (сотни кВт и выше). ЭДС генератора Г, вращаемого с практически неизменной скоростью wг приводным асинхронным или синхронным двигателем ПД, служит источником питания якорной цепи двигателя Д. Поскольку

то ее можно изменять, воздействуя на напряжение цепи возбуждения Uвг = Uвх.

Рис. 3.24. Система генератор – двигатель

К очевидным и важным достоинствам такой реализации УП относятся двусторонняя проводимость генератора, т.е. естественная возможность работы во всех четырех квадрантах, отсутствие искажений питающей сети, высокий коэффициент мощности.

Недостатки — две дополнительные вращающиеся машины, необходимость обслуживать генератор, инерционность цепи управления.

Система Г-Д до настоящего времени находит применение в металлургии, мощных экскаваторах и т.п.

Во втором случае, ставшем в последние десятилетия основным, УП представляет собой статическое устройство — управляемый выпрямитель (рис. 3.25), собранный на тиристорах, включаемых схемой управления СУ с задержкой на угол a против момента естественного включения, благодаря чему

где Еa — среднее значение ЭДС неуправляемого выпрямителя ().

Рис. 3.25. Система управляемый выпрямитель (тиристорный

В электроприводе используются все типы управляемых выпрямителей — однофазные, трехфразные, многофазные; мостовые и нулевые; нереверсивные и реверсивные.

Преимущества УП, выполненных таким образом, — отсутствие вращающихся машин, не требуют обслуживания, имеют высокое быстродействие. Недостатки — низкий коэффициент мощности

,

искажение напряжения питающей сети, трудно компенсируемое при значительных мощностях, необходимость в двух комплектах вентилей для работы в четырех квадрантах, необходимость в сглаживающих и уравнительных реакторах, утяжеляющих конструкцию.

Система тиристорный преобразователь-двигатель (система ТП-Д) является штатным техническим решением практически везде, где используется электропривод постоянного тока и лишь в последние годы активно вытесняется частотно-регулируемым асинхронным электроприводом.

Источник тока (I = const) в системе “источник тока — двигатель” также может быть организован на основе управляемого выпрямителя с сильной отрицательной обратной связью по току, и такое решение будет обладать всеми перечисленными выше недостатками.

Интересны параметрические источники тока, выполненные на основе резонансных LC — цепей. Рассмотрим кратко принцип действия таких источников тока — индуктивно-емкостных преобразователей (ИЕП) на примере схемы, показанной на рис. 3.26,а. Схема состоит из трех одинаковых реакторов переменного тока с реактивным сопротивлением хL и трех одинаковых батарей конденсаторов с реактивным сопротивлением хС. Точки А, В, С подключены к симметричной трехфазной сети переменного тока с напряжением U; к точкам a, b, c подключена нагрузка — три одинаковые резистора, соединенные в звезду, причем величина их сопротивления может изменяться от нуля до R2макс. В электроприводе нагрузкой является якорь двигателя, включенный через неуправляемый выпрямитель (рис. 3.26,б); тогда

Рис. 3.26. . Схема индуктивно-емкостного преобразователя, нагруженного резисторами (а) и подключение двигателя (б)

Принцип действия ИЕП основан на явлении резонанса напряжений в цепи L-C. Пусть U = const, f = const, хL = хС = хр.э, активные сопротивления реакторов и конденсаторов пренебрежимо малы. Так как схема симметрична, рассмотрение проведем для одной фазы; токи и напряжения в других фазах будут иметь соответственно одинаковые амплитуды, но будут сдвинуты по фазе на .

Для схемы на рис. 3.26,а справедливы следующие уравнения, записанные в комплексных величинах:

Читать еще:  Двигатель man d0836 характеристики

Решая эти уравнения, с учетом равенства реактивных сопротивлений получим:

, (3.25)

то есть ток I2 не зависит от величины R2, а определяется лишь величинами U и хр.э — схема по отношению к нагрузке обладает свойствами источника тока.

Характеристики источника тока на рис. 3.26,а показаны на рис. 3.27 в относительных единицах; за базовые приняты I2 и U.

Рис. 3.27. Характеристики индуктивно-емкостного преобразователя

Рассмотренное устройство отличается простотой, высокой надежностью, высокими технико-экономическими показателями, мало искажает при работе на неуправляемый выпрямитель напряжение сети, не нуждается в трансформаторе для согласования напряжений сети и нагрузки.

Электроприводы по системе “источник тока — двигатель”, практически не известные за рубежом, успешно применяются в отечественной практике в установках, транспортирующих гибкую ленту, полосу, нить, жилу кабеля с поддержанием натяжения при любой скорости (кабельная, текстильная промышленность, металлургия), в специальных лебедках с дозированным усилием, в нагрузочных устройствах испытательных стендов для создания заданных условий нагружения испытуемых двигателей, муфт, трансмиссий и т.п.

РАЗДЕЛ ЧЕТВЕРТЫЙ

ЭЛЕКТРОПРИВОДЫ ПЕРЕМЕННОГО ТОКА

Принцип действия асинхронной машины в самом общем виде состоит в следующем: один из элементов машины — статор используется для создания движущегося с определенной скоростью магнитного поля, а в замкнутых проводящих пассивных контурах другого элемента — ротора наводятся ЭДС, вызывающие протекание токов и образование сил (моментов) при их взаимодействии с магнитным полем. Все эти явления имеют место при несинхронном — асинхронном движении ротора относительно поля, что и дало машинам такого типа название — асинхронные.

Статор обычно выполнен в виде нескольких расположенных в пазах катушек, а ротор — в виде “беличьей клетки” (короткозамкнутый ротор) или в виде нескольких катушек (фазный ротор), которые соединены между собой, выведены на кольца, расположенные на валу, и с помощью скользящих по ним щеток могут быть замкнуты на внешние резисторы.

Несмотря на простоту физических явлений и материализующих их конструктивов полное математическое описание процессов в асинхронной машине весьма сложно:

во-первых, все напряжения, токи, потокосцепления — переменные, т.е. характеризуются частотой, амплитудой, фазой или соответствующими векторными величинами;

во-вторых, взаимодействуют движущиеся контуры, взаимное расположение которых изменяется в пространстве;

в-третьих, магнитный поток нелинейно связан с намагничивающим током (проявляется насыщение магнитной цепи), активные сопротивления роторной цепи зависят от частоты (эффект вытеснения тока), сопротивления всех цепей зависят от температуры и т.п.

Рассмотрим самую простую модель асинхронной машины, пригодную для объяснения основных явлений в асинхронном электроприводе.

|следующая лекция ==>
Замкнутая система источник тока — двигатель|Принцип получении движущегося магнитного поля

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Книга: Башенные краны

Навигация: Начало Оглавление | Другие книги | Отзывы:

§ 51. Тиристорная схема управления асинхронным электродвигателем

В связи с увеличением длины канатов крюковой подвески на кранах с большой высотой подъема возникла необходимость в плавном регулировании скорости механизма поворота, поэтому на этих кранах применяют специальные схемы электроприводов. В схеме на рис. 99 механизм поворота приводится асинхронным электродвигателем Ml с фазным ротором, управляемым с помощью тиристоров.

Рис. 99. Электропривод механизма поворота с тиристорным управлением:

а — функциональная электрическая схема, б — механические характеристики привода; ГПН — блок генератора пилообразного напряжения, ФИ — блок формирования импульсов, УМ И — блок усиления мощности импульсов, БТР — блок тормозного режима, ОВГ — обмотка возбуждения тахогенератора; G — тахогенератор, V9 — выпрямитель цепи обратной связи по току, U — задающее напряжение

В приводе использован параметрический способ регулирования скорости, основанный на изменении напряжения, подводимого к статору электродвигателя. Развиваемый электродвигателем вращающий момент пропорционален квадрату подводимого напряжения, поэтому изменение напряжения на зажимах электродвигателя вызывает изменение частоты вращения его ротора.

На схеме тиристоры VI — V6 включены встречно-параллельно в каждую фазу статора электродвигателя и выполняют роль быстродействующих бесконтактных переключателей. Напряжение, подводимое к электродвигателю, изменяется управлением проводимости тиристоров. Для получения жестких механических характеристик в схеме предусмотрена обратная связь по частоте вращения, выполненная с помощью тахогенератора G, и динамическое торможение асинхронного электродвигателя, которое осуществляется с помощью тиристоров V7 и V8, причем переход от двигательного режима работы электродвигателя к тормозному режиму происходит автоматически с помощью блока тормозного режима БТР.

Тиристорами управляют с помощью электронной схемы. Управляющее напряжение постоянного тока снимается с резистора с переменным сопротивлением, подается в блок генератора пилообразного напряжения ГПН и сравнивается с пилообразным напряжением синхронным и синфазным с сетью. Резистор связан с командоконтроллером, и величина его сопротивления зависит от положения рукоятки управления. При установке рукоятки управления в одно из положений вправо (влево) в результате отклонения напряжения пилообразной формы относительно напряжения управления появляется импульс, длительность которого зависит от значения напряжения управления, т. е. от положения, в которое установлена рукоятка управления. Этот импульс поступает в блок формирования импульса ФИ, в котором происходит его предварительное усиление и преобразование в импульс соответствующей формы. Преобразованный импульс поступает в блок усиления мощности импульсов У МИ, где усиливается до значений, необходимых для надежного управления тиристорами, после чего поступает на управляющие электроды тиристоров. При этом открыты и управляются тиристоры VI — V6, тиристоры V7 и V8 заперты и электродвигатель Ml работает в двигательном режиме.

В двигательном режиме работы привода напряжение управления больше напряжения обратной связи, снимаемого с тахогенератора G, и ток протекает в соответствии с полярностью напряжения управления. Момент сопротивления механизма поворота в процессе работы крана может изменяться в зависимости от ветровой нагрузки и подветренной площади обрабатываемого груза. При изменении знака момента сопротивления на валу электродвигателя система начинает ускоряться. Напряжение обратной связи становится больше напряжения управления, вследствие чего изменяется направление тока в цепи и появляются импульсы в блоке БТР. Эти импульсы поступают в блок ФИ, который запирает тиристоры V2, V3, V5, V6 и открывает тиристоры V7, V8 (тиристоры VI и V4 остаются открытыми). Электродвигатель начинает работать в режиме динамического торможения, затормаживая механизм поворота. Когда частота вращения привода уменьшится до величины, заданной управлением, напряжение обратной связи снова станет меньше напряжения управления. При этом исчезнут импульсы в блоке БТР, блок ФИ запрет тиристоры V7 и V8, откроет тиристоры V2, V3, V5, V6 и электр двигатель автоматически перейдет в двигательный режим работы.

Механические характеристики привода (рис. 99, б) обеспечивают работу механизма поворота крана с различной скоростью, величина которой зависит от положения рукоятки командоконтроллера.

Основные сведения о частотно-регулируемом электроприводе

Частотник в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Читать еще:  Что такое вут в двигателе

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.

Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток). Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.

Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.

Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки Mс . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

Преимущества использования регулируемого электропривода в технологических процессах

Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

Перспективность частотного регулирования наглядно видна из рисунка 1

Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока. Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2). Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3). Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодули-рована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.

Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.

Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения. Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.

Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.

За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector