Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронные схемы зажигания для двигателя

Электронные схемы зажигания для двигателя

Николаем Новиковым (г.Рыбинск) уже давно была разработана и с успехом применяется электронная бесконтактная тиристорная система зажигания.
Система предназначена, в основном, для использования на моторах Д6 – Д8.
Основное отличие данной системы от прочих состоит в том, что в ней реализовано автоматическое изменение угла опережения зажигания, в зависимости от оборотов двигателя.
Система получает управляющий сигнал, для определения момента зажигания искры, непосредственно с катушки возбуждения. То есть система работает без отдельного датчика момента зажигания.
Хотя система и аналоговая, но она обеспечивает характеристику АУОЗ, приближенную к оптимальной на всех режимах – от холостого хода, до максимальных оборотов.
Схема зажигания собирается из минимального количества доступных и недорогих радиодеталей. Она не сложна в изготовлении и не требует наладки и обслуживания.

Николаем было собрано уже более 200 экземпляров. Они устанавливались многими мотолюбителями Рыбинска и района на различную технику и показали себя с лучшей стороны.
Система была протестирована испытательной станцией завода по изготовлению снегоходов «Буран», входящего в состав Рыбинского производственного объединения моторостроения (сейчас – НПО «Сатурн» им. П.А. Люлька и «Русская Механика»). Было получено положительное заключение, подтверждающее заявленные мною параметры.

Пример практического использования данной системы на личном мопеде Новикова — Рига-13:
Двигатель легко заводится в любое время года, холодный или прогретый.
Раскручивается до 7000 оборотов в мин.
Мопед уверенно тянет как на малом газу, так и при полностью открытом дросселе.
Скорость мопеда возросла до 55 км/ч.
Перегревов двигателя не происходит, даже при продолжительном движении с максимальной скоростью.

Эту систему бесконтактного электронного зажигания так же можно использовать в любой технике с магдино и датчиком момента зажигания. К таким относятся, например, мопеды с моторами V50 и Ш62, снегоход «Буран», лодочные моторы, импортные скутеры, и многие другие конструкции с двухтактными двигателями. Для установки системы нужно к выводу 2 коммутатора, подключить провод от управляющего датчика штатного зажигания.

Также, силами участников форума ДЫРЧИК.РУ, эта система устанавливалась и на двигатели Д4–Д5.
===========================================

1 – общий вывод; 2 – вывод датчика; 3 – вывод заряда;
4 – вывод ВВ катушки; 5 – лампа фары: 2,5В, 0,72А;
Т1 – Катушка магнето Д8; Т2 – Высоковольтная катушка.
С1 – 3,3мФ; С2 – 0,068 мФ;
V1 – КД105Г; V2 – КД105Г; V3 – КД521;
V4 – КТ361; V5 – КТ315;
V6 – КД521; V7 – КУ201; V8 – КД105Г; V9 – КД202;
R1 – 30К; R2 – 3,9К; R3 – 1,8К; R4 – 20К;

Провод штатной катушки зажигания Т1, который раньше подключался к кулачкам прерывателя, теперь используется для получения сигнала управления. (Вывод 2)
Сигнал поступает на пороговое устройство V4–V5, формирующее импульс для открытия тиристора V7.
Во время прохождения отрицательной полуволны, через вывод 2, через резистор R1 и диод V6, заряжается конденсатор С2.
Пороговое в это время заперто резистором R2.
Далее, при смене полярности входного напряжения (положительная полуволна), при достижении 0,5…0,7 В., через резисторы R2, R3 и эмиттерный переход транзистора V4 открывается пороговое устройство V4–V5.
Таким образом, энергия (с левой по схеме обкладки) конденсатора С2 со знаком «минус», через транзисторы V5, V4 и диод V3 замыкается на правую обкладку, а энергия заряда С2 со знаком «плюс» (с правой обкладки) открывает тиристор V7.
При этом конденсатор С1 через тиристор V7 замыкается на катушку зажигания. Колебательный процесс, происходящий в контуре первичной обмотки ВВ катушки Т2, сначала вызывает высокое напряжение на вторичной обмотке, а затем выдает импульс тока обратного напряжения.
Этот импульс запирает тиристор V7, и через диод V8 немного заряжает С1.
В следующий момент, продолжающийся рост напряжения на катушке Т1 вывод 3 (положительная полуволна), вновь заряжает С1.

Далее процесс повторяется.

Ротор, относительно катушки, установлен так, что, в момент приближения поршня к точке вспышки, напряжение положительной полуволны только начинает расти от ноля.
Рост напряжения, на этом участке поворота ротора, происходит по пологой кривой.

При росте частоты оборотов, кривая становится круче.
Напряжение срабатывания порогового устройства V4–V5 (равное 0,5…0,7В) достигается раньше – относительно угла поворота ротора (коленвала).
Использование области малых напряжений, для управления моментом зажигания, обеспечивает широкий сектор изменения угла опережения зажигания.
Таким образом, реализуется автоматический УОЗ.
Удаленность этого рабочего участка от верхней границы напряжения полуволны позволяет получить характеристику роста УОЗ, практически — на любых оборотах

Замечу, что на отрицательную полуволну магнето нагрузку давать нельзя!
В этом случае произойдет разбалансировка колебательного процесса, и момент искрового разряда будет смещен.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Блок зажигания выполнен навесным монтажом прямо с выводов тиристора V7.
Сборка помещена в трубку из пластмассы диаметром 32мм и длиной 100мм и залита эпоксидным компаундом.
Система чувствительна к воде, поэтому после проверки заливать ёё обязательно!

Высоковольтные катушки лучше применять автомобильные – от транзисторных систем, с высоким коэффициентом трансформации. Они, при той же стоимости что и ТЛМ, имеют больший КПД и значительно надежнее в эксплуатации.
—————————————————————————————

Присутствие диода V9 позволяет использовать положительную полуволну для питания лампы фары от вывода 2.
Прямое напряжение этого диода равно 1 В и нагрузка от ламп не повлияет на работу системы зажигания, так как напряжение для ее срабатывания равно 0,5…0,7 В.
Напряжение в цепи фары оказывается стабилизированным 2,5…3В.
Мощность по свету – примерно 3Вт.
Превышение этой мощности ведет к снижению яркости света.
Для яркого уверенного света надо иметь фару с лампой 2,5…3В Х 1,0А. Правда, такой лампы я пока не нашел.
Или можно использовать 2 фары с лампами 2,4В Х 0,5А. Эти лампы в продаже есть.
На задний габарит останется 2,4В Х 0,25А.
Возможны и иные варианты, главное – не превышать общую нагрузку на катушку более 3Вт.

Дополнительно можно использовать энергию обратной индуктивности, которая теряется в ВВ катушке после искры:

ВАЖНОЕ ЗАМЕЧАНИЕ!
В обоих случаях, при заведенном моторе фара должна быть включена постоянно ! Либо не должна быть включена совсем.
Нельзя ставить выключатель и включать – выключать фару при работе. Это может привести к пробою системы!
————————————————————————————

Ввиду того, что магнето, изначально, было предназначено для контактного зажигания, требуется произвести несколько несложных доработок его конструкции.

Для получения оптимального сигнала от катушки необходимо добиться такого положения ротора относительно катушки в требуемый момент, чтобы тиристор, на холостых оборотах, открывался бы с опережением 10º, а при увеличении оборотов – УОЗ увеличивался плавно, пропорционально оборотам.
Это положение ротора было установлено опытным путем.
Для обеспечения такого положения придется произвести небольшую доработку магнето.
При этом можно обойтись минимальным вмешательством в конструкцию магнето и избежать сложной доработки деталей.

Доработка катушки зажигания:

1. На фланце крепления «подковы» необходимо выполнить новые крепежные отверстия и срезать верхний правый угол.

Уточнение размеров требуется в связи с тем, что детали изготовлены заводом с очень большими разбросами допусков.

2. На сердечнике – «подкове» также необходимо срезать правый верхний угол. Удобнее это сделать на электронаждаке.

Такое положение должен занять статор магнето на двигателе.

В отсеке картера обычно ничего дорабатывать не надо, «подкова» свободно входит на свое новое место. Иногда приходится немного (0,5мм) подпилить бобышку крепления крышки. Но, лучше сначала попробовать спилить металл с «подковы».

Если обмотка штатной катушки была повреждена, то ее нужно удалить и намотать новую.
Рекомендуемые параметры:
Низковольтная обмотка (1-2) – 180 витков, провод 0,62мм.
Высоковольтная обмотка (2-3) – 5000 витков, провод 0,15…0,18мм.
Направление витков

Катушку мотать виток – к витку, а высоковольтную обмотку изолировать послойно и пропитать лаком.
Данное количество витков получено исходя из максимального заполнения имеющегося объема обмоткой, а следовательно, катушка с такими параметрами имеет максимальный КПД, возможный для данной конструкции.

Такая катушка, будет работать лучше штатной.

Но если имеется неповрежденная штатная катушка, то можно использовать ее.

Катушку двигателя Д8 можно использовать без доработок.

Катушка двигателя Д6 требует небольшой доработки.
Во-первых, наружную изоляцию нужно размотать и вывод сделать не язычком, а проводом. Он пойдет на конденсатор С1. (вывод 3)
Во-вторых массу нужно отпаять от подковы и натянуть на нее кембрик, чтоб гарантированно заизолировать от массы. Это будет датчиковый/световой провод (вывод 2).
Провод, который штатно шел на кулачки, теперь – на массу. (вывод 1)

Ротор магнето теперь должен устанавливается лицевой стороной вовнутрь, на ту же шпонку.
Это поворачивает его на 90 градусов от штатного положения. Сравните картинку выше и картинку ниже. Они обе прорисованы для одного положения коленвала. На верхней — перевернутый ротор, на нижней — ротор в штатном положении.

Но при этом нужно учесть, следующий момент.
Довольно часто встречаются ротора намагниченные с разным расположением магнитных полюсов относительно шпоночного паза. Это делалось потому, что контактной системе зажигания безразлично, какова полярность полюсов у ротора.

В разработанной системе, как основной используется ротор с такой полярностью:
Это схема положения ротора в контактной СЗ!

Здесь:
Мотор — в ВМТ, в этот момент «правильный» ротор — ЮЖНЫМ полюсом (S) — справа от шпонки, начинает входить в нижний полюс сердечника катушки;
Если же у вас не маркированный ротор, то воспользуйтесь компасом или маркированным магнитом.
Все помним, что полюса одной полярности отталкиваются, разной — притягиваются. Пометьте полюса ротора маркером.

Читать еще:  Что такие четерех двигатель

Имея «правильный» ротор система не требует более никаких доработок.

Если же ротор с «неправильной» ориентацией полюсов использовать с этой схемой, то момент образования искры развернется на 180º и будет происходить перед НМТ. Тогда мотор просто не заведется.
Менять местами выводы катушки бессмысленно — это другая система, здесь так просто не получится!

—>Автозапчасти и СТО —>

Существует несколько способов распределение высокого напряжения по свечам зажигания в бензиновом двигателе. Ранее самым распространённым и единственным было роторное или высоковольтное распределение. Его основным узлом являлся трамблёр (прерыватель-распределитель или датчик-распределитель). Распределитель состоит из крышки трамблёра и бегунка (ротора).

Со вторичной обмотки катушки зажигания на центральный электрод распределителя подаётся высокое напряжение, которое при помощи бегунка передаётся на боковые электроды распределителя. Скорость вращения бегунка равна скорости вращения распредвала и относится к оборотам коленвала в отношении 1:2.. боковые электроды крышки трамблёра соединены со свечами зажигания по средствам высоковольтных проводов. Основным недостатком этой системы является трудности в обеспечении своевременной подачи напряжения на свечи зажигания при разных оборотах и режимах работы двигателя. Частично эта проблема решалась применением центробежного и вакуумного регулятора угла опережения зажигания, а в последствии применением электронных блоков, но полностью проблему не решало. Кроме того система имеет множество соединений и изнашивающихся контактов, что значительно снижает надёжность.

Типовая система зажигания


Компоненты системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя.

Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Виды систем зажигания

  • контактная (контактно-транзисторная);
  • бесконтактная (транзисторная);
  • электронная (микропроцессорная).

Особенности контактной системы

Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом — замыканием и размыканием контактов цепи прерывателем-распределителем.


Устройство контактной системы зажигания

Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.

Угол опережения зажигания — определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.

Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.

При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.

Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс. В чем отличия контактно-транзисторной системы зажигания Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

Контактно-транзисторная система зажигания

Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

С развитием электронных систем появились низковольтные или статические системы распределения зажиганием, то есть не подвижные. Это стало возможным благодаря коммутации высоковольтных катушек электронными блоками. Эта система полностью подстраивает момент искрообразования в зависимости от оборотов и нагрузки на двигатель. Существует несколько схем исполнения статического распределения. В первом варианте два цилиндра с моментом зажигания, смещённым на 360 гр. по коленчатому валу одновременно получают высокое напряжение от катушки зажигания. В этом случае в двух цилиндрах одновременно происходит искрообразование. Так как свечи соединены последовательно с вторичной обмоткой катушки зажигания, то искровой разряд на свечах будет являться одним и тем же разрядом в последовательно соединённых искровых промежутках, и протекать будет в одном направлении. Следовательно, если на одной свече из пары дуга искрового разряда направлена от центрального электрода к боковому, то на другой свече, наоборот, от бокового к центральному. В то же время энергия искры будет различна. Это связано со средой, в которой образовалась искра. Когда одна свеча зажигания находится в цилиндре, в котором происходит такт сжатия, другая находится в цилиндре, где происходит конец такта выпуска. На одну из свечей воздействует высокое давление, и она воспламеняет смесь, искра на другой свече проскакивает в холостую. Энергия искрового разряда, не воспламеняющего смесь, такая же, как суммарная потеря тока в искровых промежутках между ротором и боковыми контактами при высоковольтном распределении зажигания. Картина меняется на противоположную через один такт. При этом способе используется одна катушка в двухцилиндровом двигателе и две катушки в четырёх цилиндровом, работающие попарно 1 – 4 и 2 – 3 цилиндры. Управление катушками осуществляется двухканальным коммутатором по команде контроллера. Часто ключ управления катушками встраивают в контроллер.


Контактно-транзисторная система зажигания

За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.

При повороте ключа через транзистор начинают проходить два типа токов:

  • управления;
  • основной ток первичной обмотки.

Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.

Принцип работы бесконтактной системы

Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.

Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:

  • Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
  • Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
  • Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.

Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика. В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.

Электронная и микропроцессорная системы

Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.

В этой системе практически не существует потерь напряжения, как в предыдущих, и работа каждой свечи не зависит от работы других свечей, как в первом и втором вариантах статического зажигания. Кроме того в этом случае осуществляется точная подстройка угла опережения зажигания непосредственно в каждом цилиндре, что позволяет осуществлять полное сжигание топлива снижая тем самым выброс вредных веществ в атмосферу.

Читать еще:  Водный вечный двигатель своими руками


Электронная система зажигания

Выделяют два типа электронных бесконтактных систем зажигания:

  • С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
  • Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.

Помимо базовых элементов электронная система зажигания включает:

  • Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
  • Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
  • Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом — отсечку и формирование высокого напряжения на вторичной обмотке катушки.

Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.

Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.

Как работает система зажигания

самодельное зажигание.

Тема раздела Бензиновые двигатели в категории Cамолёты — ДВС; Не буду рассказывать историю про зажигание, она такая же как и у всех. Покупать очередного кота в мешке не имело .

Опции темы
  • Версия для печати
  • Отправить по электронной почте…
  • Подписаться на эту тему…

самодельное зажигание.

Не буду рассказывать историю про зажигание, она такая же как и у всех. Покупать очередного кота в мешке не имело смысла. Хотелось уже чего-то определенного. Короче, собрал я самостоятельно зажигалку и, думаю, решил для себя эту проблему. Схема 1или2 (нашел их в разделе про бензопилу) простая, как детекторный приемник. Но пытка повторить ее не привела к успеху, схема работала очень плохо, двигатель трясло, особенно на малых и средних оборотах. Все дело в том, что высоковольтный блок сбивает работу микроконтроллера и ни какие развязки по питанию эту проблему не решали. Пришлось гальванически развести эти два блока, убрать общую землю, подать на каждый блок свое питание, а управлять тиристором через оптопару (схема 1111). После этого двигатель просто пел.

А теперь конкретные наработки. Транзистор в высоковольтном блоке (самое слабое звено во всех зажигалках) взял наш, толстый, металлический 2Т818…(здесь могут быть варианты, все зависит от ваших предпочтений). Установил его на металлическом корпусе блока для лучшего охлаждения. Максимальный ток потребления получился порядка 380 мА. Транзистор чуть греется, но ему не страшны и 5 банок аккумуляторов. Тиристор охлаждать не надо, он холоден как покойник, ничего ему не делается (но если его неправильно впаять, то сгорит моментально).

Трансформатор преобразователя лучше мотать на ферритовых Ш-образных трансформаторах от БП компьютера. Аккуратно выпаять из платы подходящий по размерам ( примерно 15х15х15 мм) трансформатор и греть его в микроволновке по 5 секунд, пока клей в местах склейки феррита не разойдется. Величина напряжения преобразователя влияет на работу двигателя. При недостаточном напряжении, на максимальных оборотах возможны пропуски зажигания. Поэтому вторичную обмотку я мотал чуть больше, не 450 витков (второй вариант, нижний), а 500….600 (чем меньше феррит, тем больше). Напряжение на выпрямительном мосте (с отключенным тиристором) + 550…600 вольт. Это вам гарантирует, что пропусков искры не будет и при 12 000 об/мин.
А вообще на тиристоре с увеличением оборотов напряжение падает с 120…130 Вольт, до 40…50 на максимальных, а при 30 Вольтах уже появляются пропуски.
Еще одно замечание, вторичную обмотку трансформатора надо мотать аккуратно, лучше виток к витку. Начальные и конечные витки желательно развести как можно дальше друг от друга, так чтобы в трансформаторе они нигде не соприкасались. Так можно избежать пробой изоляции провода и короткого замыкания вторичной обмотки.

При желании и наличии звукового генератора, работу высоковольтного блока можно проверить. Для этого к блоку подключить бобину со свечей, а на управляющий электрод тиристора со звукового генератора через емкость 0,1мкФ подать сигнал до 5-ти вольт. Тиристор работает как от синусоиды, так и от прямоугольных импульсов (последний вариант предпочтительней). Если искра пошла, то хорошо. Теперь проверьте максимальную частоту работы устройства. Если на частоте 200 Гц (12 000 об/мин) искра ровная и без пропусков, то задача выполнена.

Бобину я не мотал (к стати еще один ненадежный элемент), как на заводе намотать трудно, поэтому взял от мотокультиватора «КРОТ», расположил его возле двигателя, он там себя хорошо чувствует. Фото1, 2.

Теперь об автомате угла опережения зажигания. Можно собрать по первому варианту на микроконтроллере PIC16f628a, залить в нее прошивку testfunc4.hex. И возможно вам это понравится, так сказать для непривередливых. Люди другой раз ждут заказанную зажигалку месяцами и когда она приходит и к тому же еще и работает, такие мелочи как вибрация на средних оборотах это уже ничто, одна мысль, завтра в поле.

Ну а если вас что-то не устраивает, можно поупражняться с углом опережения. Для этого собрать схему по второму варианту на микросхеме PIC16f 84a.
Для расчета времени задержки воспользуйтесь файлом РАСЧЕТ УГЛА.XLS. В этом файле надо поставить свои значения угла установки датчика холла и желаемый угол опережения зажигания и калькулятором HC пересчитать новые данные для задержки зажигания.
Пример: Если задержка для контроллера 2,7 мс, то 2,7 умножаем на 10 и для числа 27 калькулятором считаем его шестнадцатиричный код, это 1b (если калькулятор при других значениях выдаст просто b, добавить 0 и записать 0b).

Новые данные задержки вносятся в файл с расширением asm. Для этого надо запустить редактор ConText.( выбор редактора не критичен, найдите другой, если этот не нравится) Загрузить в него файл, например 8-32.asm и сделать изменения как на рисунке 12222. После всех изменений сохранить файл в asm формате.
А дальше нужно получить новую прошивку к контроллеру, для этого запускаем преобразователь (кампилятор по научному) MPASMWIN, загружаем в него новый файл ….asm, преобразовываем в HEX файл. Все, а дальше любым программатором прошить контроллер новой прошивкой.

Как и высоковольтный блок автомат опережения угла тоже можно проверить, нужен еще дополнительно осциллограф, желательно двухлучевой (1вход-генератор, 2вход- сигнал на тиристор), тогда хорошо видно как меняется время задержки от частоты (оборотов).

Теперь немного о том где искать золотую середину. На рисунке ПРИМЕРЫ РЕГУЛИРОВОК нарисовано где и что. Я не претендую на истину в изысканиях. Но то что у меня получилось мне пока нравится.

В заключение.
Конечно такое простое устройство на микроконтроллере не может довольно точно управлять зажиганием. Посудите сами, для примера задержка 2.7мс, этому значению соответствует угол опережения от 8 до 6 градусов. Та скорость с которой работает микроконтроллер, его возможности не позволяют получить большего.

Вообще в этой теме я не открыл ничего нового, все это есть на зарубежных сайтах. Просто мы не совсем любим читать на своем языке (БУКЫФ много), тем более на иностранном.

Система зажигания:описание,принцип работы,устройство,фото,видео.

Главной функцией системы зажигания в бензиновом двигателе, является подача искры на свечи зажигания во время определенного такта его работы. Система зажигания дизельного двигателя устроена по-другому, оно происходит момент, когда топливо впрыскивается в такт сжатия.

Система зажигания

Система зажигания автомобиля — это достаточно сложная совокупность приборов, отвечающая за появление искры в тот момент, который соответствует режиму работы силовой установки. Данная система является частью электрооборудования. Самые первые двигатели, такие как агрегат Даймлера, в качестве системы для зажигания применяли калильную головку – это первое устройство системы зажигания, которое не лишено было недостатков. Их суть заключалась в том, что воспламенение осуществлялось в самом конце такта, так как камера раскалялась до достаточно высокой температуры.

Перед стартом всегда нужно было прогреть саму калильную головку и только потом запускать двигатель. В дальнейшем головка разогревалась за счет поддержания температуры от сгораемого топлива. В современных условиях такой принцип системы зажигания может использоваться только в микродвигателях, применяемых в моделях авто и прочей техники, используемой ДВС. Такое исполнение позволяет уменьшить габаритные размеры, но при этом вся конструкция может быть дороже. В небольших моделях это малозаметно, а вот в полноразмерном автомобиле может очень сильно сказаться на цене. Во всех авто схема системы зажигания практически одинаковая. Некоторые отличия диктуются только видом исполнения.

ВИДЫ СИСТЕМ ЗАЖИГАНИЯ

В зависимости от того, как происходит процесс образования искры, выделяют несколько систем: бесконтактная (с участием транзистора), электронная (с помощью микропроцессора) и контактная.

В бесконтактной схеме, для взаимодействия с датчиком импульсов, использован транзисторный коммутатор, выполняющий функцию прерывателя. Высокое напряжение регулирует механический распределитель.

Электронная система зажигания двигателя накапливает и распределяет электрическую энергию с помощью электронного блока управления. Ранее конструктивная особенность этого варианта позволяла электронному блоку отвечать одновременно за систему зажигания и за систему впрыска топлива. Сейчас система зажигания является элементом системы управления двигателем.

В контактной системе электрическая энергия распределяется с помощью механического устройства – прерывателя-распределителя. Дальнейшим ее распространением занимается контактная транзисторная система.

Читать еще:  Что такое помпаж двигателя вертолета

Устройство системы зажигания

Схема системы зажигания: 1 — замок зажигания; 2 — катушка зажигания; 3 — распределитель, 4 — свечи зажигания; 5 — прерыватель, 6 — масса.

Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят:

  1. Источник питания для системы зажигания, это аккумуляторная батарея (в момент запуска двигателя), и генератор(во время работы двигателя).
  2. Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле стартера автомобиля.
  3. Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно накопители энергии можно разделить на индуктивный и емкостный.
    1. Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи.
    2. Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания
  4. Свечи зажигания , представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Это фарфоровый изолятор, насаженный на металлическую резьбу. В центре находится центральный проводник, который служит электродом, вторым электродом является резьба.
  5. Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания.
    1. Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют.
    2. Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции.
    3. Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала.
  6. Высоковольтный провод — это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне.

ПРИНЦИП РАБОТЫ СИСТЕМЫ ЗАЖИГАНИЯ

Рассмотрим подробнее распределитель зажигания, чтобы определить технологию направления электрического импульса на каждый цилиндр отдельно. Сняв крышку трамблера можно увидеть вал с пластиной в центре и расположенные по кругу медные контакты. Эта пластина и есть бегунок, он обычно пластиковый или текстолитовый и в нем стоит предохранитель. Медный наконечник с одного края бегунка по очереди касается медных контактов, раздавая электрические разряды на провода к цилиндрам в необходимое время такта работы двигателя. Пока бегунок совершает свое движение от одного контакта к другому, в цилиндрах готовится новая порция горючей смеси для воспламенения.

Чтобы исключить постоянную подачу тока, в трамблер устанавливается прерыватель – контактная группа. Кулачки расположены на валу эксцентрично, и при вращении замыкают и размыкают электрическую сеть.

Необходимым условием правильной работы и эффективного сгорания смеси является произошедшее строго в определенный момент самовозгорание. Процесс возгорания очень сложен с технической точки зрения, так как в цилиндрах образуется большое количество дуговых разрядов, которые зависят от оборотов двигателя. Разряды должны быть так же равны определенным значениям: от 0,2 мдж и выше (в зависимости от топливной смеси). В случае недостаточной энергии, смесь не загорится, и появятся перебои в работе двигателя, он может не запуститься или заглохнуть. Работа катализатора так же зависит от исправности системы зажигания двигателя. Если система работает с перебоями, остатки топлива будут попадать в катализатор и догорать там, что приведет к перегреву и прогоранию металла катализатора как снаружи, так и выходу из строя внутренних перегородок. Прогоревший внутри катализатор не сможет выполнять свои функции и потребуется замена.

Наиболее характерные неисправности зажигания

Неисправности системы зажигания могут повлечь за собой выход из строя и остальных устройств, используемых для нормальной работы машины. Выделяют отдельный список часто встречаемых неисправностей, при которых затрудняется работа системы воспламенения рабочей смеси: — Возможны замыкания первичной обмотки катушки зажигания на массу, а также замыкание вторичной на первичную. В результате происходит перегорание дополнительного резистора и появляются характерные трещины в изоляторе, а также в крышке катушки. В этом случае необходима замена поврежденных элементов, если же катушка практически разрушена — то замена всего узла. — Характерные неисправности прерывателя: возможно обгорание либо загрязнение маслом контактов внутри прерывателя; нарушение стандартного зазора между контактами, что приводит к перебоям в переключении между свечами. Обгорание либо замасливание контактов может вызвать очень резкое увеличение уровня сопротивления между ними, из-за этого уменьшается ток, создаваемый в первичной обмотке, и как результат — снижается мощность искры, которую создают свечи.

Нарушение зазора также приводит к ухудшению образованию искры, которая создается между электродами свечи. Как результат — перебои в нормальной работе двигателя. — Свечи: возможно появление нагара на внутренней поверхности, а также обильное загрязнение снаружи. Нарушение зазора между электродами, различные трещины в изоляторе, неисправность бокового электрода — все это приводит к плохой подаче искры либо вовсе ее отсутствию. Это вызывает нестабильную, неравномерную и неустойчивую работу мотора, снижает его мощность. Возможна и остановка при повышении нагрузки.

Нормальная работа свечей зажигания возможна только в случае, если: — поверхность резьбы сухая (ни в коем случае не мокрая); — присутствует очень тонкий слой нагара либо копоти; — цвет электродов, а также изолятора должен быть от светло-коричневого до светло-серого, почти белого. Обо всех неисправностях может рассказать мокрая поверхность резьбы — это может быть как бензин, так и масло. У неисправной свечи электроды и часть изолятора покрыты толстым слоем нагара и мокрые.

Замасленные свечи и другие признаки неисправности

Если двигатель обладает очень большим пробегом, и при этом все свечи были заменены в одно и то же время, то главной виной такого состояния является повышенный износ цилиндров, колец или поршней. Возможно появление масла на поверхности свечи в период, когда автомобиль проходит обкатку. Это со временем проходит. Если же масло было обнаружено только на одной свече, то причиной этого, скорее всего, может быть неисправность выпускного клапана, он может прогореть. Чтобы это определить, нужно хорошо прислушаться к работе двигателя, на холостом ходу он работает неравномерно. В этом случае нельзя откладывать с проведением ремонтных работ, так как потом прогорит и седло, и ремонт будет еще дороже. Выгоревшие либо очень сильно корродированные электроды говорят только о перегреве свечи. Такое возможно, если был использован низкооктановый бензин, либо была неправильная установка момента произведения зажигания.

Слишком обедненная смесь — тоже результат оплавки электродов. Возможны различные механические повреждения на поверхности свечи. Она может иметь изогнутый вид, или же будет деформирован электрод, расположенный в боковой части свечи. Последствия такой работы — перебои в зажигании. Причиной возникновения таких неприятностей может быть неправильно выбранная длина свечи, либо же длина резьбы не соответствует посадочному месту в головке мотора. В таком случае стоит подобрать стандартную свечу, рекомендуемую заводом-изготовителем. Если ее длина была выбрана правильно, стоит обратить внимание на присутствие посторонних механических элементов во внутренней части цилиндра. После того как свечи были поменяны местами, можно узнать очень большое количество информации об их состоянии. Если свеча продолжает покрываться нагаром уже в другом цилиндре — это говорит о её неисправности. Но если нормальная и исправная свеча одного из соседних цилиндров также начинает покрываться нагаром, как и её предшественница, тогда это неисправность непосредственно в кривошипно-шатунном устройстве этого цилиндра.

Выводы

Все системы, используемые для воспламенения топливной смеси, хороши в определенных областях машиностроения. Все не лишены своих недостатков. Не всегда нужно создавать сложную и высоконадежную систему, иногда гораздо дешевле использовать простые и более дешевые. Нет необходимости устанавливать дорогую систему зажигания на автомобиль, который по своей стоимости гораздо ниже, чем остальные в его классе. Такими действиями можно только поднять его стоимость, но качество, к сожалению, останется прежним. Зачем что-то менять, если работа системы зажигания показала только лучшие результаты на многих тестах?

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector