Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромеханические характеристики асинхронных двигателей

Электромеханические характеристики асинхронных двигателей

Для вывода уравнения механической характеристики воспользуемся упрощенной схемой замещения двигателя (см. рис. 3.3), где обозначено: – фазное напряжение; – фазный ток статора и приведенный фазный ток ротора соответственно; – ток намагничивания, приблизительно равный току холостого хода двигателя; x1,x2 – индуктивное сопротивление рассеяния обмотки статора и приведенное индуктивное сопротивление обмотки ротора; R1,R2 – активное сопротивление обмотки статора и приведенное сопротивление обмотки ротора; Rμ,xμ – активное и реактивное сопротивление контура намагничивания, которые определяются параметрами взаимоиндукции статорной и роторной цепей. Такую схему замещения можно построить на основании уравнений (3.6), если принять

где C1 – модуль комплексного коэффициента, характеризующего соотношение сопротивлений статорной цепи и цепи контура намагничивания.

Рис. 3.3. Схема замещения асинхронного двигателя

В соответствии со схемой замещения можно получить выражение для тока ротора:

Электромагнитная мощность, передаваемая через воздушный зазор, определяется выражением

где M – момент на валу двигателя. Механическая мощность на валу двигателя определяется выражением

Потери мощности в цепи ротора представим в виде

С другой стороны, потери мощности в цепи трехфазного ротора определяются выражением

ΔP=3(I2) 2 R2.

Приравнивая правые части уравнений (3.2) и (3.3), выразим момент двигателя через ток ротора:

Подставляя в последнее выражение I2 из (3.7), получим

Выражение (3.10) является механической характеристикой асинхронного двигателя. Нетрудно заметить, что при s→0 и при s→∞ момент M→0, следовательно, функция момента имеет максимум. Известным способом, из уравнения ∂M/∂s=0 определим значение критического скольжения sк, при котором двигатель развивает максимальный (критический) момент:

Подставляя полученное значение sк в (3.10), получим выражение для критического момента

Здесь знак «+» соответствует двигательному режиму, а знак «–» – генераторному.

Если выражение (3.10) разделить на (3.12), то после преобразований получим уравнение приведенной механической характеристики

Рис. 3.4. Механическая и электромеханическая характеристики асинхронного двигателя

Механическая характеристика, соответствующая (3.13), представлена на рис. 3.4.а. Она имеет несколько характерных точек:

1. s=0,M=0 – точка холостого хода, скорость равна синхронной;

2. s=sн,M=Mн – точка номинального режима, скорость равна номинальной;

3. s=sкд,M=Mкд – точка максимального момента в двигательном режиме;

4. s=−sкг,M=Mкг – точка максимального момента в генераторном режиме;

5. s=1,M=Mп – точка пускового режима.

Существуют асинхронные двигатели, у которых механическая характеристика дважды меняет знак жесткости. Тогда выделяют точки минимального момента для двигательного и генераторного режимов.

Значение пускового момента просто получить из (3.13), принимая s=1:

В ряде случаев, пренебрегая активным сопротивлением обмотки статора, при s

Искусственные характеристики асинхронного двигателя получим из уравнений (3.11) и (3.12), согласно которым sк и Mк изменяются при изменении следующих параметров: фазного напряжения, активного сопротивления цепи ротора, индуктивного и активного сопротивления цепи статора, и, в неявном виде, при изменении частоты питания двигателя. Соответствующее этим изменениям семейство искусственных характеристик в первом квадранте плоскости sMпредставлено на рис. 3.5.

Можно отметить, что согласно (3.11) и (3.12) при изменении активного сопротивления в цепи ротора момент критический не изменяется, а скольжение увеличивается при увеличении сопротивления – рис. 3.5.а, т.е. при введении добавочного сопротивления в цепь ротора жесткость механической характеристики уменьшается.

При изменении фазного напряжения неизменным остается критическое скольжение, критический момент уменьшается при уменьшении напряжения, т.е. жесткость механической характеристики также уменьшается, рис. 3.5.б.

При увеличении индуктивного сопротивления обмотки статора, например, путем введения в его цепь реактора (дросселя) примерно пропорционально уменьшаются и скольжение и критический момент, поэтому жесткость уменьшается, рис. 3.5.в.

При изменении частоты напряжения питания двигателя, во-первых, пропорционально изменяется скорость вращения поля статора, во-вторых, одновременно меняются и скольжение, и критический момент, рис. 3.3.г. Более подробно характеристики двигателя при изменении частоты мы рассмотрим ниже.

Рис. 3.5. Искусственные механические характеристики асинхронного двигателя

Основные характеристики асинхронных электродвигателей

1. Виды электродвигателей

Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.

Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.

Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.

Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам

Рис. 1. Кривые моментов M = f(S) асинхронных электродвигателей

различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока (рис. 1).

Читать еще:  Ваз 211440 какой двигатель установлен

2. Основные характеристики электродвигателей

Номинальный режим электродвигателя соответствует данным, указанным на его щитке (паспорте). В этом режиме двигатель должен удовлетворять требованиям, установленным ГОСТом.

Существует восемь различных режимов работы, из них основными можно считать:

· продолжительный номинальный режим;

· кратковременный номинальный режим с длительностью рабочего периода 10, 30 и 90 мин;

· повторно-кратковременный номинальный режим с продолжительностью включения (ПВ) 15, 25, 40, 60%, с продолжительностью одного цикла не более 10 мин.

Номинальной мощностью Рн электродвигателя называется указанная на щитке полезная механическая мощность на валу при номинальном режиме работы. Номинальная мощность выражается в Вт или кВт.

Номинальная частота вращения nн вала электродвигателя называется указанное на щитке число оборотов в минуту, соответствующее номинальному режиму.

Номинальный момент вращения — момент, развиваемый двигателем на валу при номинальной мощности и номинальной частоте вращения:

Мн — номинальный момент вращения, Н·м (1 кгс·м = 9,81 Н·м ≈ 10 Н·м);

Рн — номинальная мощность, кВт;

nн — номинальная частота вращения, об/мин.

Номинальный к.п.д. hн электродвигателя — отношение его номинальной

мощности к мощности, потребляемой им из сети при номинальном напряжении:

Рн — номинальная мощность, кВт;

Uн — номинальное (линейное) напряжение, В;

Iн — номинальная сила тока, А;

cosφн — номинальный коэффициент мощности.

Номинальной силой тока электродвигателя называется сила тока, соответствующая номинальному режиму. Действительное значение силы тока при номинальном режиме может отличаться от указанного на щитке электродвигателя в пределах установленных допусков для к.п.д. и коэффициента мощности.

Максимальный вращающий момент электродвигателя — наибольший вращающий момент, развиваемый при рабочем соединении обмоток и постепенном повышении момента сопротивления на валу сверх номинального при условии, что напряжение на зажимах двигателя и частота переменного тока остаются неизменными и равными номинальным значениям.

Начальный пусковой вращающий момент электродвигателя — момент вращения его при неподвижном роторе, номинальных значениях напряжения и частоты переменного тока и рабочем соединении обмоток.

Минимальным вращающим моментом электродвигателя в процессе пуска называется наименьший вращающий момент, развиваемый двигателем при рабочем соединении обмоток и частоте вращения в пределах от нуля до значения, соответствующего максимальному вращающему моменту (напряжение на зажимах двигателя и частота переменного тока должны оставаться неизменными и равными их номинальным значениям).

Номинальная частота вращения вала электродвигателя является следующим за мощностью параметром, от которого в значительной мере зависят конструктивное оформление, габариты, стоимость и экономичность работы электропривода. Наиболее приемлемыми в диапазоне мощностей от 0,6 до 100 кВт являются частоты вращения 3000, 1500 и 1000 об/мин (синхронные). Электродвигатели с частотой вращения 750 об/мин (восьмиполюсные) малых мощностей имеют низкие энергетические показатели. При одинаковой мощности электродвигатели с более высокой частотой вращения имеют более высокие значения к.п.д. и cosφ, а также меньшие размеры и массу, что определяет их меньшую стоимость.

Сила тока холостого хода I в значительной мере определяется силой намагничивающего тока I. приближенно можно считать I = I0P . Для машин

основного исполнения относительное значение силы тока холостого хода

I = (0,2—0,6)Iн (оно тем больше, чем меньше номинальная частота вращения и мощность электродвигателя). Зависимость тока холостого хода от частоты вращения электродвигателя приведена в таблице 2.1.

Таблица 2.1. Токи холостого хода для двигателей основного исполнения

Среднее значение токов холостого хода

(в долях от силы номинального тока) при синхронной частоте вращения, об/мин

Краткие теоретические сведения. В электроприводах постоянного тока в настоящее время используются двигатели

В электроприводах постоянного тока в настоящее время используются двигатели постоянного тока с независимым возбуждением (ДПТ НВ). Схема включения ДПТ НВ приведена на рисунке 8. Особенностью этого двигателя является то, что якорь ДПТ и обмотка возбуждения получают питание от различных (независимых) источников энергии.

Рисунок 8 – Схема включения ДПТ НВ

Для анализа работы ДПТ НВ в установившемся режиме работы используют его статические электромеханические и механические характеристики.

Статическая электромеханическая характеристика ДПТ НВ w=f(Iя) представляет собой зависимость угловой скорости от тока якоря в установившемся режиме работы. Электромеханическая характеристика позволяет оценить загрузку двигателя по току.

Выражение статической электромеханической характеристики ДПТ НВ для двигательного режима работы имеет вид:

, (1)

где UЯ – напряжение на якоре, В;

RЯ – сопротивление якорной цепи для нагретого состояния, Ом;

IЯ – ток якорной цепи, А;

k – конструктивный коэффициент двигателя;

Ф – полезный поток, Вб,

k×Ф – коэффициент ЭДС и момента (электромагнитного); при номинальном и неизменном потоке возбуждения (k×ФНОМ = СНОМ).

Статическая механическая характеристика ДПТ НВ w=f(М) представляет собой зависимость угловой скорости от момента в установившемся режиме работы. Механическая характеристика позволяет определить скорость, с которой будет вращаться вал двигателя при изменении нагрузки на валу. Статическая механическая характеристика – есть множество точек установившегося режима работы электрической машины. По статической механической характеристике анализируют установившиеся режимы работы привода.

Выражение статической механической характеристики ДПТ НВ для двигательного режима работы имеет вид:

Читать еще:  Что такое паразитный двигатель

. (2)

В выражениях (1) и (2) угловая скорость w является функцией; IЯ и М являются аргументами, а все остальные величины, входящие в выражения характеристик, называют параметрами двигателя.

Статические характеристики (электромеханические и механические) рассчитанные и построенные при номинальных параметрах для нормальной схемы включения ДПТ НВ (отсутствуют добавочные сопротивления) носят название естественные характеристики. Выражения естественных статических электромеханической и механической характеристик имеют вид:

, (3)

. (4)

Параметры, входящие в выражения этих характеристик определяются следующим образом:

— номинальное напряжение на якоре задается в справочниках и указывается на табличке двигателя;

— сопротивление якорной цепи определяется выражением:

, (5)

где RОЯ – сопротивление обмотки якоря, Ом;

RОДП – сопротивление обмотки дополнительных полюсов, Ом;

RКО – сопротивление компенсационной обмотки, Ом;

RЩК – сопротивление щеточного контакта, Ом;

1,2 – коэффициент приведения сопротивлений к нагретому состоянию (в случае класса изоляции В).

Если сопротивления обмоток якоря, добавочных полюсов и компенсационной обмотки приведены в справочнике уже для нагретого состояния, то при расчете сопротивления якорной цепи следует вместо коэффициента 1,2 использовать коэффициент равный 1.

У двигателей небольшой мощности компенсационная обмотка может отсутствовать, тогда при расчете сопротивления якорной цепи в формуле (5) следует положить RКО = 0.

Сопротивление щеточного контакта определяется по формуле:

, (6)

где DUЩ – падение напряжения на щеточном контакте, В; (DUЩ = 0,6 В – для медно-графитовых щеток, DUЩ = 2 В – для графитовых щеток);

IЯном – номинальный ток якоря двигателя, А.

Обычно номинальный ток якоря приводится в справочнике или на табличке двигателя. Если ток якоря номинальный неизвестен, то его можно определить по формуле:

, (7)

где Р2ном – номинальная мощность на валу двигателя, Вт;

hном – номинальный коэффициент полезного действия, о.е.;

RОВ – сопротивление обмотки возбуждения, Ом.

В случае, если в справочнике не заданы сопротивления обмоток двигателя, то сопротивление якорной цепи можно оценить по приближенной формуле, считая, что половина всех потерь в двигателе приходится на долю переменных потерь:

; (8)

— коэффициент ЭДС и момента может быть определен из выражения естественной электромеханической характеристики, записанной для номинального режима работы двигателя. Выражение для определения этого коэффициента имеет вид:

, (9)

где wном – номинальная угловая скорость вала (якоря) двигателя, рад/с.

В справочнике и на табличке двигателя обычно указывается номинальная частота вращения вала двигателя nном [об/мин]. Угловая скорость и частота вращения связаны следующим выражением:

. (10)

При изменении хотя бы одного из параметров, входящих в выражения механической и электромеханической характеристик (напряжения на якоре, потока двигателя, добавочных сопротивлений) получают характеристики отличные от естественной. Такие характеристики называют искусственными. Естественная характеристика у двигателя одна, искусственных – множество. Искусственная характеристика, полученная введением в цепь якоря добавочного сопротивления (реостата) носит название – реостатная механическая (или электромеханическая) характеристика. Реостатная статическая механическая характеристика имеет вид:

, (11)

где RЯдоб – величина добавочного сопротивления, Ом.

Характеристики, полученные уменьшением напряжения на якоре ДПТ НВ или ослаблением потока, называют искусственными характеристиками при пониженном напряжении и искусственными характеристиками при ослабленном потоке соответственно.

Чтобы определить величину сопротивления, включенного в цепь якоря, нужно в выражение реостатной характеристики вместо w и М подставить их значения для заданного статического режима работы wС и МС и решить относительно RЯдоб. Аналогично поступают для определения требуемого напряжения или требуемого потока двигателя, для обеспечения работы привода с требуемой скоростью при заданном моменте нагрузки.

Формулы для определения требуемого добавочного сопротивления и требуемого напряжения на якоре имеют вид:

, (12)

. (13)

Из анализа выражений электромеханической и механической характеристик видно, что они линейны. Для двигательного режима работы ДПТ НВ угловая скорость и ток (момент) имеют одинаковые знаки. Характеристики двигательного режима работы располагаются в I–III квадрантах плоскости (w, М). Так как характеристики линейны, то для построения их достаточно рассчитать две точки. Подставляя в выражение требуемой характеристики два значения тока (момента) определяют угловые скорости, соответствующие этим токам (моментам). По полученным двум точкам на плоскости <(w, IЯ) или (w, М)> строят требуемую электромеханическую или механическую характеристику. Обычно для расчета первой точки электромеханической (механической) характеристики принимают IЯ = 0 (М = 0), при этом скорость вала двигателя будет равна скорости идеального холостого хода (w = w). Скорость идеального холостого хода определяется выражением:

. (14)

Для расчета второй точки электромеханической (механической) характеристики принимают номинальное значение тока (момента) двигателя и рассчитывают угловую скорость.

При расчете статических механических характеристик двигателя следует иметь ввиду различие между моментом двигателя электромагнитным и моментом на его валу. Это разные моменты. Ввиду наличия механических потерь в двигателе (трение в подшипниках, вентиляционные потери) момент электромагнитный отличается от момента на валу на величину момента потерь вращения. Соотношение электромагнитного момента, момента на валу и момента потерь вращения имеет вид:

, (15)

где М – электромагнитный момент двигателя, Н×м;

МВ – момент на валу двигателя, Н×м;

DМ – момент потерь вращения, Н×м.

В выражении (15) знак «+» относится к двигательному, знак «-» – к тормозным режимам работы.

При совместном рассмотрении механических механизма w = f(MC) и характеристик двигателя w = f(MВ), в качестве последней следует рассматривать зависимость угловой скорости в функции момента на валу. Вместе с тем, эта зависимость имеет разрыв первого рода, обусловленный влиянием момента потерь вращения. Поэтому при решении задач в области автоматизированного электропривода лучше рассматривать механические характеристики двигателя w = f(M) (где М – электромагнитный момент), отнеся момент потерь вращения DМ, если его величина существенная (>5% от номинального момента), к нагрузке МС, или пренебрегая им в случае его малости (

Читать еще:  Что такое шунтовой двигатель

Механические и электромеханические характеристики двигателей постоянного тока независимого возбуждения

Схемы включения двигателя постоянного тока независимого и параллельного возбуждения представлены на рис.2.1. При независимом возбуждении (рис.2.1а) обмотка якоря двигателя М и обмотка возбуждения ОВ питаются от разных, независимых друг от друга источников напряжения U и U в, а при параллельном возбуждении (рис.2.1б) — от одного и того же источника U. На практике чаще всего используется схема с параллельным возбуждением.

Аналитическое выражение механической характеристики двигателя можно получить из уравнения равновесия напряжений, составленного для якорной цепи по схеме рис.2.1а. При установившимся режиме работы двигателя (магнитный поток возбуждения и угловая скорость якоря постоянны) приложенное напряжение U уравновешивается падением напряжения в якорной цепи IЯR и электродвижущей силой(ЭДС) Е, наведенной в якоре в процессе его вращения, т.е.

, (2.1)

где IЯ – ток в якорной цепи двигателя; R=RД+Rя — общее сопротивление якорной цепи, включающее в общем случае внутреннее сопротивление всей якорной цепи двигателя Rя и внешнее добавочное сопротивление RД.

Рис.2.1. Схема включения двигателя постоянного тока: а — независимого возбуждения; б – параллельного возбужденияРис.2.2. Механическая характеристика двигателя постоянного тока независимого возбуждения

Значение ЭДС определяется по выражению

где k – коэффициент, зависящий от конструктивных параметров двигателя, (р — число пар полюсов; N — число активных проводников обмотки якоря; а – число пар параллельных ветвей обмотки якоря); Ф, w – соответственно магнитный поток и угловая скорость двигателя.

Если в (2.1) подставить (2.2) и решить полученное уравнение относительно Iя=I, то получим

. (2.3)

Уравнение (2.3) представляет собой зависимость тока якоря от скорости двигателя I=f(w), которая называется электромеханической характеристикой двигателя. Электромеханическая характеристика (по устаревшей терминологии скоростная характеристика) отражает связь между электрической и механической величинами электродвигателя.

Для получения уравнения механической характеристики воспользуемся известной зависимостью момента двигателя от магнитного потока и тока якоря:

Подставив в (2.4) значение тока I, определяемое по выражению (2.3), получим уравнение механической характеристики:

(2.5)

(2.6)

где С=kФ – коэффициент.

При неизменных параметрах U, Ф и R выражение (2.5) можно записать в виде

где ; — постоянные коэффициенты.

Анализ уравнений (2.5, 2.6, 2.7) показывает, что механическая характеристика двигателя с независимым возбуждением имеет линейную зависимость и представляет собой прямую линию (рис.2.2).

Все электромеханические и механические характеристики электродвигателей разделяют на естественные и искусственные. Характеристики, полученные при номинальных параметрах электродвигателя и отсутствии в его цепях добавочных сопротивлений, называются естественными. Характеристики, полученные при несоблюдении хотя бы одного из этих условий, называются искусственными.

Искусственные механические характеристики двигателя постоянного тока, как видно из уравнения (2.5), можно получить за счет изменения напряжения питающей сети U или магнитного потока возбуждения Ф, или сопротивления якорной цепи R путем включения изменения RД в цепь якоря двигателя. Рассмотрим влияние U, Ф, RД на механические характеристики двигателя более подробно.

Введение добавочного сопротивления в цепь якоря двигателя. На рис.2.3 представлены механические характеристики двигателя постоянного тока независимого возбуждения при изменении добавочного сопротивления в цепи якоря. Анализ уравнения (2.5), показывает, что при М=0 все характеристики проходят через одну точку, лежащую на оси абсцисс. Угловая скорость в этой точке имеет вполне определенное значение, не зависящее от сопротивления якорной цепи; она называется скоростью идеального холостого ходаwо; определяется по выражению (2.8) путем преобразования уравнения (2.5) при М=0:

. (2.8)

Наклон механической характеристики, или ее жесткость, согласно (2.7) зависит от величины добавочного сопротивления в цепи якоря и других параметров. На рис.2.3 показано влияние введенных добавочных сопротивлений в цепь якоря двигателя на его механические характеристики.

Введение добавочного сопротивления в якорную цепь используется на практике для регулирования скорости вращения двигателя и ограничения пусковых токов и моментов при его пуске.

Изменение напряжения питающей сети. Анализ уравнений (2.5) и (2.8) показывает, что при изменении напряжения, приложенного к якорной цепи двигателя, пропорционально меняется скорость идеального холостого хода. Наклон характеристик остается постоянным. Следовательно, механические характеристики, соответствующие различным значениям напряжения сети, будут между собой параллельны (рис.2.4.), т.е. при изменении U изменяются пусковой ток и момент, скорость идеального холостого хода двигателя. Угол наклона характеристик (жесткость) не меняется.

Рис.2.3. Механические характеристики двигателя постоянного тока независимого возбуждения при включении в цепь якоря добавочного сопротивленияРис.2.4. Механические характеристики двигателя постоянного тока при изменении напряжения питающей сети

Изменение магнитного потока возбуждения. Анализ уравнений (2.5) и (2.8) показывает, что изменение магнитного потока двигателя оказывает влияние как на первое, так и на второе слагаемое, т.е. изменяются скорость идеального холостого хода и жесткость характеристики. Чем меньше магнитный поток, тем выше скорость идеального холостого хода и тем меньше жесткость механической характеристики. Искусственные механические характеристики двигателя, соответствующие различным величинам магнитного потока возбуждения, представлены на рис.2.5.

Рис.2.5. Механические характеристики двигателя постоянного тока независимого возбуждения при изменении магнитного потока возбужденияРис.2.6. Естественная механическая характеристика двигателя постоянного тока, построенная по координатам двух точек 1 и 2

Дата добавления: 2019-02-08 ; просмотров: 1458 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector