Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики асинхронного двигателя

Характеристики асинхронного двигателя

Расчет исходных данных двигателя. Расчет и построение естественных механических характеристик асинхронного двигателя по формулам Клосса и Клосса-Чекунова. Искусственные характеристики двигателя при понижении напряжения и частоты тока питающей сети.

РубрикаФизика и энергетика
Видкурсовая работа
Языкрусский
Дата добавления30.04.2014
Размер файла264,0 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Характеристики асинхронного двигателя

Для асинхронного двигателя с короткозамкнутым ротором рассчитать и построить механические характеристики:

1. естественную по формуле Клосса;

2. естественную по формуле Клосса-Чекунова;

3. искусственную при понижении напряжения питающей сети до значения

4. искусственную при понижении частоты тока питающей сети до значения

5. искусственную при одновременном понижении напряжения и частоты тока питающей сети до значений и .

4. искусственную при понижении частоты тока питающей сети до значения

Каталожные (паспортные) данные асинхронного двигателя типа 4А180М8 ОМ2 такие (см. Приложение, таблица 1):

1. мощность = 15 кВт;

2. напряжение (линейное) = 380 В;

3. частота вращения = 735 об/мин;

4. номинальный ток = 32 А;

5. коэффициент мощности = 0,82;

6. кратность максимального момента 2;

7. кратность пускового момента = ;

8. кратность пускового тока = 6,5.

1. Расчет исходных данных двигателя

1. В условном обозначении типоразмера двигателя 4А180М8 ОМ2 число 8 — это число полюсов обмотки статора, т.е. 2р = 8, откуда число пар полюсов р = 4;

2. синхронная угловая скорость ротора

(радиан в секунду)

3. номинальная угловая скорость ротора

4. номинальное скольжение

5. критическое скольжение

6. критическая угловая скорость

7. номинальный момент двигателя (на валу)

8. максимальный момент двигателя

= 2*184,98 = 369,96 Нм

9. пусковой момент двигателя

10. пусковой ток двигателя

2. Расчет и построение естественной механической характеристики двигателя по формуле Клосса

В чистом виде уравнение электромеханической характеристики щ(М) неудобное для анализа, а тем более для расчета и построения её графика.

Поэтому на практике для построения механической характеристики двигателя используется довольно простая формула Клосса, представляющую собой зависимость электромагнитного момента от скольжения ротора, т.е. , а не щ(М):

Поскольку в теории электропривода механическая характеристика — зависимость угловой скорости от момента двигателя, т.е. , а формула Клосса — зависимость М(s), поступают так: задаются значениями скольжения от s = 0 (режим идеального холостого хода) до s = 1 (режим пуска) и подставляют эти значения одновременно в две формулы:

а) формулу Клосса, которая для данного случая имеет вид

б) формулу угловой скорости ротора, которая для данного случая имеет вид

В этом случае для каждого нового значения скольжения s рассчитываются два параметра: момент М и угловая скорость щ, представляющие собой координаты точек механической характеристики щ(М), что и требовалось найти.

Результаты расчета приведены в таблице 1.

Координаты точек механической характеристики асинхронного двигателя (формула Клосса)

График этой механической характеристики А1-В1-С1 обозначен на рис.1 цифрой «1».

Рис. 1. Механические характеристики асинхронного двигателя типа 4А200М6 ОМ2 естественные по формуле Клосса (1) и Клосса-Чекунова (2); искусственные при снижении напряжения (3), частоты тока (4) и одновременно напряжения и частоты тока (5)

На этой и остальных характеристиках буквенные обозначения соответствуют таким режимам:

точка А — пуск двигателя;

точка В — работа с критическими моментом и частотой вращения;

точка С — режим идеального холостого хода.

3. Расчет и построение естественной механической характеристики двигателя по формуле Клосса-Чекунова

Исходная формула Клосса позволяет с достаточной точностью построить механическую характеристику только на её рабочем участке, т.е. в пределах скольжения от до .

На участке при скольжении 0; (4.4).

Поэтому с точки зрения нагрева двигателя более опасны в рассматриваемых пределах отрицательные отклонения напряжения.

Снижение напряжения приводит также к заметному росту реактивной мощности, теряемой в реактивных сопротивлениях рассеяния линий, трансформаторов и АД.

Повышение напряжения на выводах двигателя приводит к увеличению потребляемой ими реактивной мощности. При этом удельное потребление реактивной мощности растет с уменьшением коэффициента загрузки двигателя. В среднем на каждый процент повышения напряжения потребляемая реактивная мощность увеличивается на 3 % и более (в основном за счет увеличения тока холостого хода двигателя), что в свою очередь приводит к увеличению потерь активной мощности в элементах электрической сети.

Читать еще:  Электрическая схема двигателя 2v78f

Рассмотрим случай, когда двигатель с постоянным моментом сопротивления на валу питается при номинальном напряжении от сети с частотой меньше номинальной. Уменьшение частоты вызовет увеличение магнитного потока и увеличение вращающего момента. Поскольку момент сопротивления остается постоянным, скольжение уменьшится так, чтобы сохранилось равновесие между вращающим моментом двигателя при пониженной частоте и моментом сопротивления. Вследствие увеличения потока уменьшится ток ротора, а ток холостого хода увеличится. Ток статора может увеличиться или уменьшиться, так же как для случая повышения напряжения. Таким образом, понижение частоты практически равнозначно увеличению напряжения.

Следовательно, если при понижении частоты соответственно уменьшить напряжение, то магнитный поток, а следовательно, и токи холостого хода, ротора и статора останутся такими же, как и при нормальной работе. При этом будет иметь место некоторое изменение потерь в стали, а следовательно, и активной составляющей тока холостого хода. Эти изменения практически не скажутся на токе статора. Однако существенным отличием от рассмотренных выше двух режимов будет значительное изменение угловой скорости ротора, практически пропорциональной частоте статора.

1.Чекунов К.А. Судовые электроприводы и электродвижение судов: Учебник. 4-е изд., перераб. и доп. — Л., Судостроение, 1986. — 352 с., ил. 214

2. Хализев Г.П. Электрический привод. М., «Высш. шк.», 1987. 256 с., ил.

3. Головин Ю.К. Судовые электрические приводы. М., Транспорт, 1991. — 376 с.

4. Васин В.М. Электрический привод. М., «Высш. шк.». — 1991. 231 с., ил.

5. Миронов В.В. Теория электропривода. Конспект лекций. — Херсон. Издательство ХГМИ, 2008. — 368 с., с ил.

6. Усатенко С.Т., Каченюк Т.К., Терехова М.В. “Выполнение электрических схем по ЕСКД”, М., Издательство стандартов, 1989 г.;

7. Правила классификации и постройки морских и речных судов (Правила Регистра), 2008 г.;

8. Правила технической эксплуатации морских и речных судов. Электрооборудование (Кодекс нормативных документов, раздел 3, КНДЗ 31.2.002.07-96).

9. Бабаев АМ., Ягодкин В.Я. Автоматизированные судовые электроприводы. М.: Транспорт, 1986. — 448 с.

10. Камнев В.Н. «Чтение схем и чертежей электроустановок», М., В.Ш., 1990 г.;

Размещено на Allbest.ru

Подобные документы

Расчет параметров обмотки статора и ротора асинхронного двигателя с короткозамкнутым ротором. Расчет механической характеристики асинхронного двигателя в двигательном режиме по приближенной формуле М. Клосса и в режиме динамического торможения.

курсовая работа [827,2 K], добавлен 23.11.2010

Параметры обмотки асинхронного двигателя. Построение двухслойной статорной обмотки с оптимально укороченным шагом. Построение рабочих характеристик. Механические характеристики асинхронного двигателя при неноминальных параметрах электрической сети.

курсовая работа [856,8 K], добавлен 14.12.2013

Определение тока холостого хода, сопротивлений статора и ротора асинхронного двигателя. Расчет и построение механических и электромеханических характеристик электропривода, обеспечивающего законы регулирования частоты и напряжения обмотки статора.

контрольная работа [263,5 K], добавлен 14.04.2015

Построения развернутой и радиальной схем обмоток статора, определение вектора тока короткого замыкания. Построение круговой диаграммы асинхронного двигателя. Аналитический расчет по схеме замещения. Построение рабочих характеристик асинхронного двигателя.

контрольная работа [921,2 K], добавлен 20.05.2014

Методы расчета мощности приводного двигателя лебедки и дополнительного сопротивления в цепи ротора. Использование формулы Клосса для определения механической характеристики асинхронного двигателя. Вычисление мощности двигателя центробежного вентилятора.

контрольная работа [248,8 K], добавлен 08.04.2012

Выбор основных размеров асинхронного двигателя. Определение размеров зубцовой зоны статора. Расчет ротора, магнитной цепи, параметров рабочего режима, рабочих потерь. Вычисление и построение пусковых характеристик. Тепловой расчет асинхронного двигателя.

курсовая работа [1,9 M], добавлен 27.09.2014

Расчет параметров схемы замещения асинхронного двигателя; мощности, потребляемой из сети. Построение механической и энергомеханической характеристик при номинальных напряжении и частоте. Графики переходных процессов при пуске асинхронного двигателя.

курсовая работа [997,1 K], добавлен 08.01.2014

Основные параметры электродвигателя

Основные параметры электродвигателя

  • Мощность электродвигателя
  • Номинальная частота вращения
  • Коэффициент полезного действия
  • Момент электродвигателя
  • Момент инерции ротора
  • Номинальное напряжение
  • Электрическая постоянная времени

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы.

  • где s – расстояние, м

Для вращательного движения

  • где θ – угол, рад

  • где ω – углавая частота, рад/с,
Читать еще:  Влияние термостат на работу двигателя

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Частота вращения

  • где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

  • где J – момент инерции, кг∙м 2 ,
  • m — масса, кг

1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )

Момент инерции связан с моментом силы следующим соотношением

  • где ε – угловое ускорение, с -2

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

  • где η – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (механическая), Вт
      При этом

потери в электродвигатели

    обусловлены:
  • электрическими потерями — в виде тепла в результате нагрева проводников с током;
  • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
  • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
  • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики.

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

  • где – постоянная времени, с

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

  • где M – вращающий момент, Нм;
  • F – сила, Н;
  • r – радиус-вектор, м

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин -1

Начальный пусковой момент — момент электродвигателя при пуске.

1 oz = 1/16 lb = 0,2780139 N (Н)
1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)
1 lb∙in = 0,112985 Nm (Нм)

Механическая характеристика

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии.

Характеристики электродвигателей

Правильный выбор электродвигателя для производственного механизма – залог его нормальной и экономичной работы. Если электродвигатель подобран правильно, это упростит систему управления электроприводом и возможно удешевит стоимость электропривода. Как известно электропривод должен обеспечивать не только постоянство установившихся значений (скорость, момент), но и динамических (переходных процессов, таких как ускорение, тормозной момент, пусковой момент и т.д.).

Основным критерием для подбора электродвигателей используют зависимость, на которой отображают значение момента М электродвигателя и скорости вращения вала n при действии этого момента. Такая зависимость имеет название механическая характеристика n=f(M). По механическим характеристикам производят анализ электромеханических свойств двигателя, а также оценивают целесообразность применения его для различного рода механизмов и устройств. Они могут быть двух видов: естественные и искусственные.

Естественные механические характеристики: они снимаются при влиянии на двигатель номинальных параметров (номинальный ток, сопротивление обмоток, напряжение, момент сопротивления и т.д.). То есть двигатель подключается к источнику питания без каких-либо преобразовательных устройств – прямым включением.

Искусственные механические характеристики: их снимают при введении в цепь двигателя дополнительных элементов (резистор добавочный) или при пониженном напряжении питания, частоте (если двигатель переменного напряжения) и т.д. То есть на механическую характеристику двигателя производят искусственное влияние.

Также различают механические характеристики по изменению скорости вращения вала в зависимости от увеличения момента. Они оцениваются по жесткости:

и крутизне наклона:

Чтоб определить жесткость механической характеристики необходимо знать изменение скорости и момента на заданном участке зависимости n=f(M). Соответственно все расчеты жесткости ведутся либо в процентах, либо в относительных единицах.

Читать еще:  Что такое egr двигатель d4cb

Также механические характеристики можно отсортировать по группам:

  • Абсолютно жесткая – при изменении момента нагрузки, скорость вращения вала остается неизменной. Как пример – характеристика синхронной машины.
  • Жесткая – когда скорость уменьшается немного при увеличении момента нагрузки. Как пример, двигатели постоянного тока независимого возбуждения ДПТ НВ или линейная часть характеристики асинхронного двигателя.
  • Мягкая – при увеличении момента нагрузки изменения в скорости вращения довольно существенные. К таким относят двигатели постоянного тока последовательного возбуждения ДПТ ПВ.

Ниже приведен график различных механических характеристик электродвигателей:

  1. – это абсолютно жесткая синхронной машины
  2. – жесткая ДПТ НВ
  3. — мягкая ДПТ ПВ
  4. – мягкая ДПТ смешанного возбуждения
  5. – асинхронного двигателя

Подбор электродвигателя определяется требованиями производственных механизмов. В таком производстве как прокатка металла, изготовление бумаги или картона, требуется четкое поддержание постоянства скорости, а такие механизмы, как подъемные и транспортные, не требуют жестких характеристик (в тяговых электроприводах используется ДПТ ПВ, также он применяется в некоторых крановых механизмах).

Электромеханическая характеристика асинхронного двигателя формула

Анализ работы асинхронного электродвигателя удобно про­водить на основе его механических характеристик, представ­ляющих собой графически выраженную зависимость вида п = f(М). Скоростными характеристиками в этих случаях пользуются весьма редко, так как для асинхронного электродвига­теля скоростная характеристика представляет собой зависи­мость числа оборотов от тока ротора, при определении которого встречается ряд трудностей, особенно, в случае асинхронных электродвигателей с короткозамкнутым ротором.

Для асинхронных электродвигателей, так же как и для электродвигателей постоянного тока, различают естественные и искусственные механические характеристики. Асинхронный электродвигатель работает на естественной механической ха­рактеристике в том случае, если его статорная обмотка подключена к сети трехфазного тока, напряжение и частота тока которой соответствует номинальным значениям, и если в цепь ротора не включены какие-либо дополнительные сопро­тивления.

На рис. 42 была приведена зависимость М = f(s), которая позволяет легко перейти к механической характеристике n = f( M ), так как, согласно выражению (82), от величины скольжения зависит скорость вращения ротора.

Подставив формулу (81) в выражение (91) и решив полу­ченное уравнение относительно п 2 получим следующее уравне­ние механических характеристик асинхронного электродвигателя

Член r 1 s опущен, ввиду его малости. Механические харак­теристики, соответствующие это­му уравнению, приведены на рис. 44.

Для практических построений уравнение (95) неудобно, поэто­му на практике обычно пользу­ются упрощенными уравнениями. Так, в случае работы электродвигателя на естественной ха­рактеристике при вращающем моменте, не превышающем 1,5 его номинального значения, сколь­жение обычно не превышает 0,1. Поэтому для указанного случая в уравнении (95) можно пренебречь членом x 2 s 2 /kr2 ·M , в результате чего получим следующее упрощенное уравнение естествен­ной характеристики:

являющееся уравнением прямой линии, наклоненной к оси абсцисс.

Хотя уравнение (97) является приближенным, опыт пока­зывает, что при изменениях момента в пределах от М = 0 до М=1,5М н характеристики асинхронных электродвигателей действительно прямолинейны и уравнение (97) дает результа­ты, хорошо согласующиеся с опытными данными.

При введении в цепь ротора дополнительных сопротивлений характеристику п = f(М) с достаточной для практических це­лей точностью также можно считать прямолинейной в указанных пределах для вращающего момента и производить ее построение по уравнению (97).

Таким образом, механические характеристики асинхронного электродвигателя в диапазоне от М = 0 до М = 1,5 М н при раз­личных сопротивлениях роторной цепи представляют семейство прямых, пересекающихся в одной точке, соответствующей син­хронному числу оборотов (рис. 45). Как показывает уравнение (97), наклон каждой характеристики к оси абсцисс определя­ется величиной активного сопротивления роторной цепи r2 . Очевидно, чем больше сопротивле­ние, введенное в каждую фазу ро­тора, тем больше наклонена к оси абсцисс характеристика.

Как указывалось, обычно на практике скоростными характери­стиками асинхронных электродвига­телей не пользуются. Расчет же пусковых и регулировочных сопро­тивлений производят с помощью уравнения (97). Построение естест­венной характеристики можно вы­полнить по двум точкам — по синхронной скорости n­ 1 = 60f /р при ну­левом моменте и по номинальной скорости при номинальном моменте.

Следует иметь в виду, что для асинхронных электродвигателей зависимость момента от тока ротора I 2 носит более слож­ный характер, чем зависимость момента от тока якоря для

электродвигателей постоянного тока. Поэтому скоростная ха­рактеристика асинхронного двигателя неидентична механиче­ской характеристике. Характеристика п = f(I 2 ) имеет вид, показанный на рис. 46. Там же дана характеристика n = f (I 1 ).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector