Sw-motors.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Возбуждение (электротехника)

Возбуждение (электротехника)

Возбуждение — в электротехнике: создание в электрической машине магнитного потока, с которым будет взаимодействовать магнитное поле якоря.

Устройство для создания потока возбуждения называется индуктором, им могут служить как постоянные магниты, так и электромагниты (обмотки). Индуктор может располагаться как на статоре машины (в машине постоянного тока, МПТ), так и на роторе (в синхронной машине), в этом случае якорем служит статор и переменный ток в нём создаётся внешним источником, тогда как в МПТ эту роль выполняет коллектор. От потока возбуждения генератора зависит его ЭДС, то есть выходное напряжение (согласно формуле E = CФω — конструктивный коэффициент машины умножить на магнитный поток умножить на угловую скорость вращения), от потока возбуждения двигателя — вращающий момент и частота вращения.

В случае электромагнитного возбуждения возможны разные варианты включения обмоток возбуждения (ОВ). В случае, если машина работает как генератор, ОВ может питаться как от самого генератора (самовозбуждение), в этом случае первоначальное возбуждение может происходить как за счёт кратковременной запитки ОВ от постороннего источника, так и за счёт остаточной намагниченности машины, а может всё время питаться от постороннего источника (независимое возбуждение). Роль этого источника может играть специальная электромашина, которая носит название возбудитель, или статический преобразователь с таким же названием. Такая схема в настоящее время широко распространена в электропередачах тепловозов [1] .

Также возможно комбинированное возбуждение, применяемое в некоторых авиационных электрогенераторах — основной поток создаётся постоянными магнитами, но для регулирования потока на статоре дополнительно намотаны обмотки, магнитный поток которых направлен против потока постоянных магнитов [2] . В этом случае при запуске на якорь действует полный магнитный поток, который по мере роста оборотов генератора ослабляется при помощи подачи тока в обмотки — для стабилизации напряжения на выходе генератора.

В двигателях также возможно как возбуждение от постоянных магнитов, так и электромагнитное. Первый вариант применяется в небольших коллекторных двигателях (к примеру, двигателях игрушек или двигателе насоса стеклоомывателя автомобиля), а также в синхронных двигателях компьютерных дисководов. При электромагнитном возбуждении возможно включение ОВ последовательно с якорем (в основном применяется в коллекторных двигателях, для такой схемы характерна мягкая характеристика двигателя — плавное нарастание момента при возрастании нагрузки на валу), параллельно (в этом случае х-ка жёсткая — при увеличении нагрузки резко возрастают якорный ток и с ним момент двигателя), а также независимое возбуждение — питание ОВ от постороннего источника. Существуют и двигатели смешанного возбуждения — как с несколькими обмотками индуктора, так и со сложным включением единственной обмотки. Например, двигатели электровозов 2ЭС4К и поздних ВЛ10К могут работать в режиме последовательного, независимого или смешанного возбуждения — в третьем случае ОВ включены последовательно с якорями, но параллельно подпитываются от преобразователей возбуждения [3] .

Двигатель параллельного возбуждения и его характеристики.

В двигателе \ возбуждения обмотка возбуждения включена на напряжение сети, т.е. \ обмотке якоря. Ток возбуждения составляет 3…5% от номинального значения тока двигателя.

Рабочие характеристики двигателя— это зависимости частоты вращающего момента, тока якоря, потребляемой мощности и КПД от мощности на валу двигателя.

Механические характеристики двигателя- это зависимость частоты вращения от вращающего момента.

Чем больше сопротивление регулировочного реостата, тем круче механическая характеристика, тем в более широких пределах изменяется частота вращения двигателя.

Основные понятия и определения. Трансформаторы Яблочков 1878

Трансформатором— называют статическое устройство, имеющее 2 или больше индуктивно-связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько систем переменного тока.

Сделаны прежде всего для того, чтобы передавать электрическую энергию на большие расстояния.

Трансформаторы бывают повышающие , понижающие, одно, двух, многообмоточные, сухие, масляные, одно двух трехфазные.

Диапазон мощностей от долей вольт-ампера, до сотен мегавольт-ампер

Устройство и принцип действия трансформатора.

Основными элементами являются :

Первичная обмотка- принимает

Под дейчтвием напряжения в магнитопроводе возникает ток, который создает основной магнитный поток, замыкающийся по магнитопроводу. Этот магнитный поток оказывается сцеплен с первичной и вторичной обмотками, и по закону ЭМИ в магнитопроводе индуцируется ЭДС самоиндукции. Вторичная обмотка соединяется с приемником.

Действующее значение ЭДС самоиндукции

Коэф. Трансформации-

Холостой ход трансформатора.

Холостой ход— режим , когда вторичная обмотка разомкнута.

Читать еще:  Bmw e53 какой лучший двигатель

I1=I0 В мощных: I0=2-5%. В маломощных I0=10%.

Схема замещения трансформатора в холостом ходе , можно представить в виде одного элемента, обусловленного основным магнитным потоком.

В режиме холстого хода рассматривается 2 зависимости

1) Тока холл. Хода от входного напряжения

Поэтому все мощности измеренные ваттметром –мощность потерь энергии трансформатора. Потери на нагрев обмоток(электрические потери)=0.

Есть только потери на нагрев магнитопровода, которые прямопропорциональны магнитному потоку.В результате:

Двигатель параллельного возбуждения

Схема включения в сеть двигателя параллельного возбужде­ния показана на рис. 22, а. Характерной особенностью этого двигателя является то, что ток в обмотке возбуждения (ОВ) не за­висит от тока нагрузки (тока якоря). Реостат в цепи возбуждения rрг служит для регулирования тока в обмотке возбуждения и маг­нитного потока главных полюсов.

Эксплуатационные свойства двигателя определяются его ра­бочими характеристиками, под которыми понимают зависимость частоты вращения n, тока I, полезного момента М2, вращающего момента М от мощности на валу двигателя Р2при U = const и Iв = const (рис. 22, б).

Для анализа зависимости n = f(P2), которую обычно называ­ют скоростной характеристикой, обратимся к формуле (29.5), из которой видно, что при неизменном напряжении U на частоту вращения влияют два фактора: падение напряжения в цепи якоря IaSr поток возбуждения Ф. При увеличении нагрузки умень­шается числитель ( U – 1аSr), при этом вследствие реакции якоря уменьшается и знаменатель Ф. Обычно ослабление потока, вы­званное реакцией якоря, невелико и первый фактор влияет на час­тоту вращения сильнее, чем второй. В итоге частота вращения двигателя с ростом нагрузки Р2уменьшается, а график n = f(P2) приобретает падающий вид с небольшой выпуклостью, обращен­ной к оси абсцисс. Если же реакция якоря в двигателе сопровож­дается более значительным ослаблением потока Ф, то частота вращения с увеличением нагрузки будет возрастать, как это пока­зано штриховой кривой на рис. 22, б. Однако такая зависимость n = f(P2) является нежелательной, так как она, как правило, не удовлетворяет условию устойчивой работы двигателя: с ростом нагрузки на двигатель возрастает частота вращения, что ведет к дополнительному росту нагрузки и т. д., т. е. частота вращения n двигателя неограниченно увеличивается и двигатель идет «в разнос». Чтобы обеспечить характеристике частоты вращения форму падающей кривой, в некоторых двигателях параллельного возбу­ждения применяют легкую (с небольшим числом витков) последо­вательную обмотку возбуждения, которую называют стаби­лизирующей обмоткой. При включении этой обмотки согласованно с параллельной обмоткой возбуждения ее МДС компенсирует размагничивающее действие реакции якоря так, что поток Ф во всем диапазоне нагрузок остается практически неизменным.

Рис. 22. Схема двигателя параллельного возбуждения (а) и его рабочие характеристики (б)

Изменение частоты вращения двигателя при переходе от но­минальной нагрузки к х.х., выраженное в процентах, называют номинальным изменением частоты вращения:

(29.8)

где n – частота вращения двигателя в режиме х.х.

Обычно для двигателей параллельного возбуждения Dnном = 2¸8%, поэтому характеристику частоты вращения двигателя па­раллельного возбуждения называют жесткой.

Зависимость полезного момента М2от нагрузки установлена формулой М2= 9,55Р2/п. При п = const график М2 =¦(P2)имел бы вид прямой. Однако с увеличением нагрузки частота вращения двига­теля снижается, и поэтому зависимость М2 =¦(P2)криволинейна.

При n = const вращающий момент двигателя М = М + М2. Так как рабочие характеристики двигателя строят при условии Iв = const, что обеспечивает постоянство магнитных потерь в двига­теле, то момент х.х. M = const. Поэтому график зависимости М =¦(P2)проходит параллельно кривой М2 =¦(P2). Если принять по­ток Ф = const, то график М2 =¦(P2)является в то же время выраже­нием зависимости I =¦(P2), так как M = cмФIa.

Для получения аналитического выражения механической характеристики n = ¦(M) преобразуем выражение (29.5):

(29.9)

подставив в него из (25.24) значение тока якоря

(29.11)

где n – частота вращения в режиме х.х.; Dn – изменение часто­ты вращения, вызванное изменением нагрузки на валу двигателя.

Рис. 23. Механические характеристики двигателя параллельно­го возбуждения:

а – при введении в цепь якоря добавочного сопротивления;

б – при изменении основного магнитного потока;

в – при изменении напряже­ния в цепи якоря

Если пренебречь реакцией якоря, то (так как Iв = const) можно принять Ф = const. Тогда механическая характеристика двигателя параллельного возбуждения представляет собой прямую линию, не­сколько наклоненную к оси абсцисс (рис. 23, а). Угол наклона меха­нической характеристики тем больше, чем больше значение сопротивления, включенного в цепь якоря. Механическую характери­стику двигателя при отсутствии дополнительного сопротивления в цепи якоря называют естественной (прямая 1). Механические харак­теристики двигателя, полученные при введении дополнительного со­противления в цепь якоря, называют искусственными (прямые 2 и 3).

Читать еще:  Электрическая схема пуска дизельного двигателя

Вид механической характеристики зависит также и от значе­ния основного магнитного потока Ф. Так, при уменьшении Ф уве­личивается частота вращения х.х. пи одновременно увеличивает­ся Dn, т. е. увеличиваются оба слагаемых уравнения (29.11). Это приводит к резкому увеличению наклона механической характе­ристики, т. е. к уменьшению ее жесткости (рис. 23, б).

При изменении напряжения на якоре U меняется частота вра­щения п,а Dn остается неизменной. В итоге жесткость механиче­ской характеристики (если пренебречь влиянием реакции якоря) не меняется (рис. 23, в), т. е. характеристики смещаются по вы­соте, оставаясь параллельными друг другу.

Дата добавления: 2016-10-18 ; просмотров: 1675 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Характеристики двигателей постоянного тока

Классификация и основные уравнения двигателей постоянного тока

Двигатели постоянного тока находят широкое применение в тех случаях, когда по условиям работы исполнительного механизма требуется широкое изменение частоты вращения, и при этом часто имеют преимущества по сравнению с двигателями переменного тока. Используются они в металлургической промышленности, стан­костроении, системах автоматического регулирования, широко применяются на электрическом транспорте, в авиации и автомо­билестроении. Двигатели постоянного тока могут иметь мощность в пределах от нескольких ватт до нескольких тысяч киловатт.

Как и генераторы, двигатели постоянного тока классифициру­ют по способу включения обмотки возбуждения. Различают дви­гатели независимого, параллельного, последовательного и сме­шанного возбуждения. Электрические схемы этих двигателей ана­логичны схемам соответствующих генераторов. Отличие заключается в том, что ток якоря Iа в двигателях незави­симого и последовательного возбуждения равен сетевому току I, а в двигателях параллельного и смешанного возбуждения из сети потребляется и ток возбуждения Iв.

Рассмотрим основные уравнения двигателей постоянного тока.

1. Уравнение равновесия напряжений для цепи якоря в режиме двигателя:

(24.1)

Упрощение уравнения производится так же, как для ге­нераторов:

(24.2)

2. Уравнение баланса токов для двигателей параллельного и смешанного возбуждения:

(24.3)

3. Уравнение движения:

(24.4)

где J — момент инерции якоря двигателя и вращающихся частей приводного механизма; М— электромагнитный момент, развива­емый двигателем, Мс — момент сопротивления, равный сумме моментов приводимого механизма М2 и тормозного мо­мента Mo, обусловленного потерями внутри самого двигателя.

Уравнение частоты вращения двигателя можно получить если в(24.2) подставить вместо ЭДС его значение

.

Разрешив полученное уравнение относительно n получим

(24.5)

Характеристики двигателей постоянного тока

Основными характеристиками, по которым оценивают рабо­чие свойства двигателей, являются:

скоростная — зависимость частоты вращения от тока якоря,

моментная — зависимость электромагнитного момента от тока якоря,

механическая— зависимость частоты вращения от электромаг­нитного момента, п =f(M).

Двигатели независимого и параллельного возбуждения.Все ха­рактеристики этих двигателей получают при постоянных значе­ниях напряжения сети и тока возбуждения, обычно соответству­ющих своим номинальным значениям: U= U ном; IB = Iв.ном.

1. Скоростная характеристика n=f(Ia). Выражением, определя­ющим эту характеристику, является уравнение (24.5). Как следует из этого уравнения, если магнитная цепь двигателя ненасыщена и магнитный поток Ф = const, то зависимость п(Iа) линейная и с ростом тока якоря частота вращения уменьшается. Этому случаю соответствует сплошная линия на рис. 24.1.

Поток якоря вызывает умень­шение потока возбуждения ( ), то выражение для часто­ты вращения будет иметь вид

(24.6)

Рис.24.1. Скоростная(механическая)характеристика двигателя независимого возбуждения

где Ф — магнитный поток, соответствующий номинальному току возбуждения 1В ном при холостом ходе двигателя; — уменьшение маг­нитного потока из-за размагничива­ющего действия реакции якоря.

Как следует из формулы (24.5), при возрастании тока якоря в резуль­тате падения напряжения ча­стота вращения п снижается, а при уменьшении потока Ф — увеличи­вается. Это показано на рис. 24.1 штриховой линией.

Если относительное значение суммарного сопротивления цепи якоря больше относительного значения уменьшения потока , то частота вращения с ростом тока якоря будет уменьшаться. Если же

Двигатели последовательного и смешанного возбуждения.Осо­бенностью двигателя последовательного возбуждения является то, что его ток возбуждения равен току якоря (IВ = Iа), и поэтому для вывода выражений, определяющих вид его характеристик, пред­варительно необходимо определить связь между магнитным пото­ком Ф и током якоря Iа = Iв. Зависимость Ф =f(Ia) называется маг­нитной характеристикой. Идеальная магнитная характеристика (без учета размагничивающего действия реакции якоря) показана рис. 24.3 сплошной линией, а реаль­ная (с учетом реакции якоря) — штри­ховой.

Читать еще:  Шаговые двигатели для принтеров характеристики

Рис. 24.3. Магнитная характеристика двигателя последовательного вобуждения

Все характеристики двигателя по­следовательного возбуждения получа­ют при постоянном напряжении пи­тания (обычно при U= UHM).

1. Скоростная характеристика п = f(Ia). Подставив в уравнение (24.5) выражение для потока в зависимости от тока якоря в соответствии с маг­нитной характеристикой, получим формулу скоростной характеристики двигателя. Для упрощения анализа пренебрежем насыщением магнитной цепи и будем считать магнитную ха­рактеристику линейной:

(24.9)

Рис.24,4. Скоростная характеристика двигателя последовательного возбуждения

Рис.24.5. Моментная характеристика двигателя последовательного возбуждения

Тогда, подставив выражение (24.9) в уравнение (24.5), полу­чим

(24.10)

Из уравнения (24.10) следует, что скоростная характеристика имеет гиперболический вид; на рис.24.4 она изображена сплош­ной линией. Особенностью скоростной характеристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из уравнения (24.10)следу­ет также, что ось ординат (ось п) является для этой характеристи­ки асимптотой.

Реальная скоростная характеристика с учетом размагничиваю­щего действия реакции якоря будет отклоняться от гиперболи­ческой кривой вверх, как показано штриховой линией на рис. 24.4.

2. Моментная характеристика M-f(Ia). Подставив в уравнение для момента выражение (24.9), получим формулу для электромагнит­ного момента двигателя с последовательным возбуждением:

(24.11)

Из выражения следует, что электромагнитный момент двигателя последовательного возбуждения пропорционален квад­рату тока якоря, т.е. моментная характеристика имеет параболи­ческий вид; на рис.24.5 она изображена сплошной линией. С учетом размагничивающего действия реакции якоря момент в области боль­ших токов будет меньше момента, получаемого по выражению (24.11) (штриховая линия на рис. 24.5).

3.Механическая характеристика п =f(М). Из выражения (24.11) ток якоря

(24.12)

Тогда, подставив (24.12) в (24.10), получим аналитическое вы­ражение для механической характеристики:

(24.13)

Из выражения (24.13) следует, что механическая характерис­тика двигателя последовательного возбуждения при U= const так же, как и его скоростная характеристика, имеет практически ги­перболический вид (рис.24.6).

Рис. 24.6. Механическая характеристика двигателя последовательного возбуждения

Особенностью механической харак­теристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из урав­нения (24.13) следует также, что ось ординат (ось п) является асимптотой для этой характеристики.

При частота вращения двигателя стремится к бесконеч­ности. В этом случае говорят, что двигатель идет вразнос. Чрезмер­ное повышение частоты вращения опасно для механической проч­ности якоря, так как из-за больших значений центробежных сил, возникающих в этом случае, может нарушиться целость банда­жей, удерживающих обмотку якоря, и произойти разрушение коллектора. Следовательно, нельзя допускать работу двигателя последовательного возбуждения при холостом ходе и малых на­грузках, т. е. нагрузка не должна быть меньше 25. 31 % номиналь­ной. Лишь для двигателей малой мощности (десятки ватт) допус­тима работа при холостом ходе, так как их собственный момент потерь М достаточно велик.

Вследствие сильной зависимости частоты вращения от нагруз­ки механические и скоростные характеристики двигателей после­довательного возбуждения называют мягкими.

Характеристики двигателей сме­шанного возбуждения занимают про­межуточное положение между соот­ветствующими характеристиками двигателей параллельного и последо­вательного возбуждения. При слабой последовательной обмотке они будут приближаться к характеристикам дви­гателя параллельного возбуждения, а при сильной — к характеристикам двигателя последовательного возбуж­дения.

Сравнение характеристик двигате­лей.Двигатели параллельного (неза­висимого) возбуждения имеют жест­кую механическую характеристику и поэтому применяются в установках, где необходимо поддерживать постоянную частоту вращения при изменении момента нагрузки, на­пример, в станках, прокатных станах, вентиляторах и т.д. Они также широко применяются при необходимости регулирования частоты вращения в широком диапазоне. В этом случае подводи­мое к якорю двигателя напряжение изменяется в широких пре­делах, в то время как напряжение возбуждения остается неиз­менным.

В двигателях последовательного возбуждения электромагнитный момент имеет квадратичную зависимость от тока якоря, поэтому их применение предпочтительно, когда требуются большие пус­ковые моменты и наблюдаются частые перегрузки по моменту. Связано это с тем, что при одних и тех же колебаниях момента сопротивления ток и потребляемая мощность у двигателей после­довательного возбуждения изменяются существенно меньше, чем у двигателей параллельного возбуждения. Двигатели последова­тельного возбуждения находят широкое применение на электриче­ском транспорте и в подъемных устройствах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector