Sw-motors.ru

Автомобильный журнал
34 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы пуска электродвигателя на языке лестничных диаграмм LD для ПЛК

Схемы пуска электродвигателя на языке лестничных диаграмм LD для ПЛК

Этой статьей мы начинаем цикл материалов по обучению созданию программ для программируемых логических контроллеров (ПЛК) в среде CodeSys. Лучше всего изучать способы программирования ПЛК на реальных практических примерах.

Рассмотрим несколько простых программ, которые можно использовать для управления асинхронными двигателями с короткозамкнутым ротором. Для создания программ будем использовать язык лестничных диаграмм LD в CodeSys.

Всего рассмотрим 4 программы для 4-х схем:

1. Схема включения и выключения двигателя;

2. Схема управления реверсивным двигателем с использованием промежуточной копки «Стоп»;

3. Схема управления реверсивным двигателем без использования промежуточной копки «Стоп»;

4. Схема управления реверсивным двигателем c использованием путевых выключателей.

Приведенные ниже примеры имеют прежде всего учебную цель, т.к. для таких простых схем применять ПЛК нецелесообразно.

Язык лестничных диаграмм (Ladder Diagram , LD) в русскоязычной документации к ПЛК часто называется языком релейно-контактных схем (РКС). Этот графический язык был придуман в 70-х годах XX века и в первую очередь он был создан для электриков, которым в то время приходилось модернизировать релейно-контактные схемы с дискретными аппаратами (реле, таймерами, счетчиками и т.п.) в схемы с использованием программируемых контроллеров. Он был длительное время лидером по популярности среди всех МЭКовских языков программирования ПЛК.

Язык LD (РКС) почти полностью повторяет логику работы релейно-контактных электрических схем. Слева и справа находятся вертикальные цепи, которые считаются шинами питания. Между ними располагаются горизонтальные цепи, в каждой из которых слева находятся различные нормально разомкнутые и нормально замкнутые контакты, а в правой части – обмотки (катушки).

Каждому контакту соответствует своя логическая переменная (ON или OF), которые передают на катушку булевое состояние «Истина» или «Ложь». В первом случае катушка получает значение «включено» (ON), во втором – «отключено» (OFF).

На этом языке достаточно легко можно создавать сложные цепи включая в них различные функциональные блоки (триггеры, таймеры, счетчики и др.), что позволяет использовать этот язык для решения почти любых, даже очень сложных задач.

Схема включения и выключения двигателя

Первый вариант программы полностью повторяет самую распространенную схему с использованием двух кнопок и электромагнитного пускателя.

Кнопка «пуск» (B1) при нажатии подает значение логической единицы («Истина») через замкнутый контакт кнопки «стоп» (B2) на обмотку (К1). Контакт обмотки, подключенный параллельно к контакту первой кнопки включается и создает блокировочную цепь, которая питает обмотку при отпускании кнопки «пуск».

Эту схему можно упростить используя катушки «Set» и «Reset» (аналог триггера RS). Это очень часто используемые компоненты языка LD. В программах они предназначены для запоминания состояния включения и выключения электродвигателя или любого другого выходного элемента. Кроме управления электродвигателями другими исполнительными механизмами катушки «Set/Reset» часто используется для отслеживания деталей на станке.

Так как язык LD разработан на основе работы устройств релейно-контактной логики, то катушки «Set» и «Reset» имеют свой физический прототип реле в прошлом – так называемые «реле блокировки». Их часто использовали для запоминания состояния работы объекта управления при отключении электроэнергии.

Это были реле с двумя катушками установки и сброса. Когда подавали питание на установочную катушку, она смещала внутренний механизм в положение «включено» и это положение поддерживалось механически с помощью защелки.

Подача питания на катушку сброса приводило к смещению внутреннего механизма в положение «выключено». Если ни одна из катушек не была под напряжением, реле оставалось бы в своем последнем положении. Отсюда и название – «реле блокировки».

В приведенной ниже программе при подаче импульсного сигнала на катушку «Set» она срабатывает и остается во включенном состоянии пока не будет подан импульсный сигнал на катушку «Reset».

В этой схеме если одновременно нажаты две кнопки (активны оба режима «Set» и «Reset»), то катушка будет отключена. Можно также изменить логику и поменять приоритетность режимов «Set» и «Reset». В данном случае при одновременном нажатии двух кнопок катушка останется во включенном состоянии.

Схема в режиме эмуляции:

Для включения режима эмуляции в CodeSys нужно в пункте меню «Онлайн» поставить галочку «Режим эмуляции», затем «Старт» (F5) и установив нужные значения контактов записать эти значения в контроллер, в данном случае виртуальный нажав «Ctrl+F7».

Реверсивные схемы включения и выключения двигателя

Теперь перейдем к схемам управления реверсивным электродвигателем с короткозамкнутым ротором. Приведенная ниже программа позволяет производить реверс электродвигателя с помощью кнопок «Вперед» (B2) и «Назад» (B3) после нажатия промежуточной кнопки «Стоп» (B1) перед каждым изменением направления вращения.

Блокировочные нормально-замкнутые контакты K1 и K2 обеспечивают невозможность включения электродвигателя на короткое замыкание при одновременном нажатии кнопок «Вперед» и «Назад».

Любые дополнительные блокировочные контакты включаются последовательно с катушками, например в программе это контакты теплового реле КК.

HL1 и HL2 – катушки, отвечающие за включение сигнальных ламп. По ним можно определить когда в какую сторону вращается электродвигатель.

Часто для управления электродвигателем используется программа, которая повторяет релейно-контактную схему с использованием двух спаренных контактов на кнопках. Такая схема позволяет изменять направление вращения электродвигателя без использования промежуточной кнопки «Стоп». Эта кнопка используется только в случае полной остановки электродвигателя.

Пример такой схемы на LD в CodeSys:

Все приведенные выше программы на языке LD довольно просты и очень хорошо воспринимаются электриками. В заключение приведем более сложную программу с использованием таймеров (программные аналоги реле времени).

Эта программа позволяет управлять автоматическим движением реверсивного электродвигателя между двумя точками с выдержкой на упорах. После нажатия на кнопку «Пуск» (B2) механизм, управляемый электродвигателем перемещается из точки А в точку Б. Там он на 10 секунд останавливается и начинает движение в обратную сторону. В точке А новая остановка на 10 секунд и обратное движение в точку Б.

Управление движением осуществляется с помощью двух путевых выключателей (SQ1 и SQ2), а выдержки времени на упорах обеспечиваются с помощью двух таймеров TON. Про виды таймеров CodeSys и особенности их использования в программах мы расскажем в одной из следующих статей, посвященных обучению программированию ПЛК.

Structured Text

#2 — Structured Text // Создадим копию таймера TON и добавим к нему память. Автор — Сергей Романов

Книга «Изучаем Structured Text МЭК 61131-3»: Ссылка на книгу

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Как подключить магнитный пускатель

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Читать еще:  Шаговые двигателя драйвер контроллер схема

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

Устройство магнитного пускателя

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Так выглядит в разобранном виде

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Читать еще:  Что с двигателями mh17

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

1. Типовые схемы автоматического управления асинхронным двигателем с

2. Типовые схемы автоматического управления асинхронным двигателем с

Пункт 1 — Типовые схемы автоматического управления асинхронным

двигателем с короткозамкнутым ротором.

Управление асинхронными двигателями с короткозамкнутым ротором можно производить с помощью магнитных пускателей или контакторов. При применении двигателей малой мощности, не требующих ограничения пусковых токов, пуск осуществляется — включением их на полное напряжение сети. Простейшая схема управления двигателем представлена на рис. 1.

Рисунок 1 – Схема управления АД с короткозамкнутым ротором с нереверсивным

Для пуска схемы включается автоматический выключатель и тем самым подается напряжение на силовую цепь схемы и цепь управления. При нажатии кнопки SВ1 «Пуск» замыкается цепь питания катушки контактора КМ, вследствие чего его главные контакты в силовой цепи также замыкаются, присоединяя ста­тор электродвигателя М к питающей сети. Одновременно в цепи управления замыкается блокировочный контакт КМ, что создает цепь питания катушки КМ (независимо от положения контакта кнопки). Отключение электродвигателя осуществляется нажати­ем кнопки SВ2 «Стоп». При этом разрывается цепь питания кон­тактора КМ, что приводит к размыканию всех его контактов, двигатель отключается от сети, после чего необходимо отклю­чить автоматический выключатель QF.

В данной схеме предусмотрены следующие виды защит:

— от коротких замыканий — с помощью автоматического вы­ключателя QF и предохранителей FU;

— от перегрузок электродвигателя — с помощью тепловых реле КК (размыкающие контакты этих реле при перегрузках раз­мыкают цепь питания контактора КМ, тем самым отключая дви­гатель от сети);

— нулевая защита — с помощью контактора КМ (при сниже­нии или исчезновении напряжения контактор КМ теряет пита­ние, размыкая свои контакты, и двигатель отключается от сети).

Для включения двигателя необходимо вновь нажать кнопку SВ 1 «Пуск». Если прямой пуск двигателя невозможен и необхо­димо ограничить пусковой ток асинхронного короткозамкнутого двигателя, применяют пуск на пониженное напряжение. Для этого в цепь статора включают активное сопротивление или ре­актор либо применяют пуск через автотрансформатор.

На рис. 2 приведена схема управления асинхронным двига­телем с короткозамкнутым ротором с симметричными сопротивле­ниями в цепи статора. Включается автоматический выключатель QF, подается напряжение на силовую цепь и цепь управления. После нажатия на кнопку SВ 1 срабатывает контактор КМ 1, си­ловые контакты которого замыкаются и подключают двигатель к сети с активными сопротивлениями в цепи статора. Одновре­менно получает питание реле времени КТ, поскольку контакт КМ 1 в цепи реле КТ замыкается.

Рисунок 2 – Схема управления АД с короткозамкнутым ротором с симметричными

сопротивлениями в цепи статора

По истечении времени, равного выдержке времени реле КТ, замыкается контакт КТ, вследствие чего контактор КМ 2 сраба­тывает и своими контактами шунтирует сопротивления в цепи статора. Пуск заканчивается. Для остановки двигателя нажима­ется кнопка SВ 2 «Стоп» и отключается автоматический выклю­чатель QF.

На рис. 3 приведена схема управления асинхронным двига­телем с короткозамкнутым ротором с реверсивным магнитным пускателем. Схема позволяет осуществлять прямой пуск асин­хронного короткозамкнутого двигателя, а также изменять направ­ление вращения двигателя, т.е. производить реверс.

Пуск двигате­ля осуществляется включением автоматического выключателя QF и нажатием кнопки SВ 1, вследствие чего контактор КМ 1 получает питание, замыкает свои силовые контакты и статор двигателя подключается к сети. Для реверса двигателя необходимо нажать кнопку SВ 3. Это приведет к отключению контактора КМ 1, после чего нажимается кнопка SВ2 и включается контактор КМ 2.

Рисунок 3 – Схема управления АД с короткозамкнутым ротором с реверсивным

Таким образом, двигатель подключается к сети с изменением порядка чередования фаз, что приводит к изменению направле­ния его вращения. В схеме применена блокировка от возможно­го ошибочного одновременного включения контакторов КМ 2 и КМ 1 с помощью размыкающих контактов КМ 2, КМ 1. Отклю­чение двигателя от сети осуществляется кнопкой SВ 2 и автома­тическим выключателем QF. В схеме предусмотрены все виды зашит электродвигателя, рассмотренные в схеме управления асин­хронным двигателем с нереверсивным магнитным пускателем.

Пункт 2 — Типовые схемы автоматического управления асинхронным

двигателем с фазным ротором.

Пуск двигателя с фазным ротором осуществляется с введен­ными резисторами в цепи ротора. Резисторы в цепи ротора слу­жат для ограничения токов не только в процессе пуска, но и при реверсе, торможении, а также при снижении скорости.

Читать еще:  Что такое общепромышленный двигатель

По мере разгона двигателя для поддержания ускорения при­вода резисторы выводятся. Когда пуск закончится, резисторы полностью шунтируются, и двигатель перейдет работать на есте­ственную механическую характеристику. На рис. 4 приведена схема асинхронного двигателя с фаз­ным ротором, где с помощью релейно-контакторной аппаратуры осуществляется пуск двигателя в две ступени, причем напряже­ние подается одновременно на силовые цепи и цепи управления с помощью выключателя QF.

Рисунок 4 – Схема пуска АД с фазным ротором

Управление двигателем в рассматриваемой схеме осуществляется в функции времени. При подаче напряжения в цепь управления реле времени КТ 1, КТ 2 срабатывают и размыкают свои контакты. Далее нажимает­ся кнопка SВ 1. Это приводит к срабатыванию контактора КМ 3

и пуску двигателя с резисторами, введенными в цепи ротора, так как контакторы КМ 1 и КМ2 питания не получают. При включе­нии контактора КМ 3 реле КТ 1 теряет питание и замыкает свой контакт в цепи контактора КМ 1 через промежуток времени, рав­ный выдержке времени реле КТ 1. По истечении указанного вре­мени включается контактор КМ 1, шунтирующий первую пуско­вую ступень резисторов. Одновременно размыкающий контакт КМ 1 в цепи реле КТ 2 размыкается, реле КТ 2 теряет питание и с выдержкой времени замыкает свой контакт в цепи контакто­ра КМ 2, который срабатывает через промежуток, равный вы­держке времени реле КТ 2, и шунтирует вторую ступень резисто­ров в цепи ротора.

Схема управления асинхронным двигателем с фазным рото­ром в функции тока представлена на рис. 5. Для контроля пус­ка по току применяют токовые реле, которые срабатывают при пусковом токе и отпадают при минимальном токе переключе­ния.

Схема предусматривает пуск двигателя и его защиту без ре­версирования и торможения. Пуск двигателя осуществляется при включении в цепь автоматического выключателя QF и кон­тактора КМ 3, причем в цепь ротора полностью введены пуско­вые резисторы. Блокировочные контакты контактора КМ 3 шун­тируют кнопку SB 1 и создают цепь питания блокировочного реле KL. Замыкающий контакт реле KL подает питание на кон­такторы ускорения КМ 1, КМ 2. Собственное время срабатыва­ния реле тока КА 1 и КА 2 меньше, чем соответствующих контак­торов КМ 1 и КМ 2, поэтому реле тока срабатывает раньше, чем соответствующий контактор ускорения, и пуск двигателя осуще­ствляется с резисторами, введенными в цепь ротора.

Рисунок 4 – Схема пуска АД с фазным ротором в функции тока

При пусковом токе реле тока КА 1 срабатывает и размыкает свой контакт в цепи контактора КМ 1. По мере разгона двигателя ток ротора уменьшается. При токе переключения реле КА 1 отпа­дает и контакт КА 1 в цепи контактора КМ 1 замыкается, что при­водит к срабатыванию контактора КМ 1, который своими кон­тактами шунтирует первую ступень пускового резистора и реле КА 1. Одновременно замыкается блокировочный контакт КМ 1, что ставит катушку контактора КМ 1 на «самоподхват» при размы­кании контакта КА 1. При шунтировании первой пусковой сту­пени резистора ток возрастает до максимального значения, что приводит к срабатыванию реле КА 2, препятствуя включению контактора КМ 2. По мере разгона двигателя ток снова уменьша­ется до минимального значения, реле КА 2 отпадает, размыкаю­щий контакт КА 2 замыкается, создавая цепь питания катушки КМ 2. При этом шунтируется вторая ступень пускового резисто­ра. Остановить двигатель можно нажатием кнопки SВ2 «Стоп», в результате чего обесточивается контактор КМ 3 и двигатель от­ключается от сети.

Презентация-конспект урока Способы пуска асинхронных двигателей

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

Описание презентации по отдельным слайдам:

Способы пуска электрических двигателей переменного тока 18. 03.2017 года

Электропривод – это управляемая электромеханическая система, позволяющая преобразовывать электрическую энергию в механическую и обратно, а так же позволяющая управлять этим процессом. Электропривод имеет два канала — силовой и информационный (рис.1.1). По первому транспортируется преобразуемая энергия (широкие стрелки на рис. 1.1), по второму осуществляется управление потоком энергии, а также сбор и обработка сведений о состоянии и функционировании системы, диагностика ее неисправностей (тонкие стрелки на рис. 1.1). Силовой канал состоит из двух частей — электрической и механической и обязательно содержит связующее звено-электромеханический преобразователь. В электрическую часть силового канала входят устройства ЭП, передающие электрическую энергию от источника питания (шин промышленной электрической сети, автономного электрического генератора, аккумуляторной батареи и т.п.) к электромеханическому преобразователю ЭМП и обратно и осуществляющие, если это нужно, преобразование электрической энергии. Механическая часть состоит из подвижного органа электромеханического преобразователя, механических передач и исполнительного органа установки, в котором полезно реализуется механическая энергия.

При пуске двигателя в ход, по возможности должны удовлетворяться следующие основные требования: процесс пуска должен быть простым и осущесвляться без сложных пусковых устройств; пусковой момент должен быть достаточно большим, а пусковые токи — по возможности малыми. Иногда к этим требованиям добавляются и другие, обусловленные особенностями конкретных приводов, в которых используются двигатели: необходимость плавного пуска, максимального пускового момента и пр.

Прямой пуск пуск с переключением обмотки статора при пуске с рабочей схемы Δ на пусковую схему Y автотрансформаторный пуск В настоящее время в трубопроводном транспорте нефти, для пуска и управления АД электродвигателями переменного тока с кз ротором применяются три основных системы управления электроприводом:

Такой пуск применяется для асинхронных двигателей с короткозамкнутым ротором большой мощности, а также для двигателей средней мощности при недостаточно мощных электрических сетях. Понижение напряжения может осуществляться следующими способами: Прямой пуск

При включении обмотки статора по схеме Y напряжение, подаваемое на фазы этой обмотки, уменьшается в √3 раз, что обусловливает уменьшение фазных токов в √3 раз и линейных токов в три раза. По окончании процесса пуска и разгона двигателя до номинальной частоты вращения обмотку статора переключают обратно на схему Δ пуск с переключением обмотки статора при пуске с рабочей схемы Δ на пусковую схему Y

Подключение двигателя к сети через понижающий автотрансформатор АТр Последний может иметь несколько ступеней, которые в процессе пуска двигателя переключаются соответствующей аппаратурой. автотрансформаторный пуск

Недостатком указанных способов является значительное уменьшение пускового и максимального моментов двигателя, которые пропорциональны квадрату приложенного напряжения. Поэтому их можно использовать только при пуске двигателей без нагрузки.

Схема пуска асинхронного электродвигателя с фазным ротором в функции времени. QF- Трехфазный питающий автоматический выключатель SF- Однофазный автоматический выключатель для защиты цепей управления KM – Основной контактор KM1, KM2 – Дополнительные контакторы для управлением фазного ротора SB1 – Кнопка пуска SB2 – Кнопка стоп КТ1, КТ2 – Реле времени R1, R2- Блоки сопротивлений в цепи ротора Принцип действия схемы основан на ступенчатом отключении блоков сопротивлений R1 и R2 в цепи ротора с помощью реле времени КТ1 и КТ2. Схема пуска асинхронного электродвигателя с фазным ротором применяется в грузоподъемных механизмах, в которых необходимо регулировать скоростной режим при запуске.

Схема управления асинхронным электродвигателем

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector