Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Управление вентилятором с двух мест: как организовать

Управление вентилятором с двух мест: как организовать?

Нередко, в процессе эксплуатации электрооборудования возникает необходимость управлять им с двух мест. Такая функция, способ управления наиболее часто бывает востребован на производстве и может быть связан с особенностями процессов производства.

В качестве примера можно привести электродвигатель, управляемый с двух мест двумя кнопочными постами. Схема подключения электродвигателя, управляемого с двух мест мало чем отличается от стандартной схемы подключения двигателя, управляемого одним постом:

Как видно из схемы, в неё лишь добавлены дополнительные кнопки «Пуск» и «Стоп» (посты отмечены красным и зеленым). Причем, кнопки “Стоп” подключаются последовательно в цепь управления (между собой), а кнопки “Пуск” – параллельно между собой.

Таким образом, при нажатии кнопки “Пуск” с любого поста цепь катушки замыкается, катушка втягивается, а при отпускании кнопки питающее напряжение катушки будет идти через блок-контакт КМ.

Прерывание цепи управления обеспечивается нажатием любой из последовательно соединенных кнопок “Стоп”.

Схема с проходными выключателями

Одной из наиболее старых и отменно зарекомендовавших себя схем, является использование так называемых проходных выключателей. Данный тип электроустановочных устройств отличается от обычных выключателей тем, что он имеет не два, а три контакта. Дабы понять принцип их действия, давайте обозначим эти контакты «1», «2» и «3».

Отличие обычного выключателя от проходного

К контакту номер 1, от распределительной коробки, как и в обычном выключателе, подключается фазный провод. При включённом положении выключателя, замкнуты контакты 1 и 2. Теперь мы отключаем выключатель.

В обычном коммутационном устройстве, в данном случае просто происходит размыкание контактов 1 и 2. В проходном же выключателе, размыкаются контакты 1 и 2 и замыкаются контакты 1 и 3.

На основании этой особенности проходных выключателей и строится схема.

Давайте рассмотрим ее более детально:

Принцип их установки не отличается от установки обычных выключателей, поэтому останавливаться на этом вопросе более детально нет смысла.

Остановимся только на схеме подключения.

Монтаж проходного выключателя

После этого соединяем между собой контакты 2 первого выключателя, и контакт 2 второго.

После этого соединяем контакт 3 первого, и контакт 3 второго выключателя.

Подключение проходных выключателей

А контакт 1 второго выключателя, подключаем к нашим светильникам.

Нулевой провод и провод заземления, как обычно подключаем к светильникам помимо коммутационных устройств. Все — схема готова к использованию.

Схема подключения двух проходных выключателей

Как подключить трехфазный двигатель через магнитный пускатель

Схема с импульсным реле

Включение освещения с двух мест и более, может быть организовано при помощи так называемого импульсного реле. Такой вариант еще более прост в реализации.

Принцип работы импульсного реле

Прежде чем разбираться со схемой подключения такого реле, давайте разберемся, а как это, собственно говоря, работает.

Понимание процесса работы значительно облегчит подключение, и исключит вероятность ошибки:

  • Обычное реле имеет катушку и разомкнутый магнитопровод. При подаче напряжения на катушку, магнитопровод подтягивается и становится единым целым. К магнитопроводу жестко прикреплены контакты, которые при подтягивании магнитопровода тоже подтягиваются и замыкаются с неподвижными контактами. Если бы к этим контактам была бы подключена лампа, то она загорелась бы.

Упрощенная схема работы обычного реле

  • Но в обычном реле, как только исчезает напряжение на катушке, магнитопровод, а соответственно и контакты, возвращаются в исходное положение – отпадают. Соответственно наша лампа погаснет.

  • В импульсном реле все немного не так. При подаче напряжения на катушку, магнитопровод подтягивается и замыкает контакты. При этом контакты фиксируются в данном положении. Поэтому даже при исчезновении напряжения на катушке, они остаются в таком положении.
  • Для изменения положения контактов, необходимо вновь подать напряжение на катушку. Тогда контакты разомкнутся и зафиксируются в разомкнутом положении.

Обратите внимание! Мы описываем принцип действия электромагнитного импульсного реле. Существуют еще электронные, которые не имеют катушек и магнитопроводов. Их принцип работы во многом отличается, но конечный результат получается тот же.

  • Для подачи напряжения на катушку, инструкция советует использовать обычные кнопки — такие как на дверном звонке. Даже незначительного по времени нажатия обычно хватает для срабатывания реле. Обычно это время на порядок меньше одной секунды.

Кнопка для управления реле РИО-1

Кнопка для управления РИО-1 тыльная сторона

Но от кнопок питается только реле. Для подачи напряжения на лампы используется силовой контакт реле. Поэтому к нему необходимо подвести собственный фазный провод, который при замыкании контактов подаст напряжение на светильники.

Схема подключения импульсного реле

Для импульсного реле, схема управления освещением с двух мест или большего их числа, практически не отличается. Поэтому, если вам необходимо управлять освещением из трех, пяти или десяти мест, просто добавляете количество кнопок в схему.

  • Прежде всего давайте разберемся с подключением самого реле. Обычно оно имеет аж шесть контактов. Их название у разных производителей отличается. Поэтому мы будем вести рассказ на примере одного из наиболее распространенных реле – РИО-1.
  • Сначала давайте соберем его силовую часть. Для этого, от группового фазного провода в распределительной коробке, монтируем провод к контакту «11». При срабатывании реле контакт «11» замкнется с контактом «14». Поэтому, от последнего монтируем провод к нашим светильникам.

Схема подключения импульсного реле РИО-1

  • Для подключения светильников нам еще потребуется подключение нулевого и защитного провода. Их мы берем в распределительной коробке, и минуя любые коммутационные аппараты, подключаем к соответствующим контактам светильника. Подключение силовой части окончено.
  • Теперь подключаем управление реле РИО-1. В нашем случае для этого нам потребуется две кнопки. От группового фазного провода в распределительной коробке, монтируем провод к контакту номер один первой кнопки. От нее — к контакту номер 1 второй кнопки.
  • От контактов номер два второй кнопки, монтируем провод к контакту номер два первой кнопки. От этого контакта прокладываем провод к реле. Здесь подключаем его к контакту «Y» как на видео.

Схема импульсного реле

Но для создания цепи на катушке нам еще необходимо подключить ее к нулевому проводу. Поэтому, от группового нулевого провода в распределительной коробке, монтируем провод к контакту «N» реле РИО-1. На этом подключение окончено, и после подачи напряжения схема готова к эксплуатации. Согласитесь, в этом нет ничего сложного.

Читать еще:  Renault megane технические характеристики двигателя

управление пускателем с двух мест

Схема управления двигателем с двух мест

Я немного изменил предыдущую схему, установив для силовых цепей и цепей управления отдельные автоматические выключатели.

Для моего примера с маломощным двигателем это не было критической ошибкой, но если у Вас двигатель гораздо бОльшей мощности, то такой вариант будет не рациональным и в некоторых случаях даже не осуществимым, т.к. сечение проводов для цепей управления в таком случае должно быть равно сечению проводов силовых цепей.

Предположим, что силовые цепи и цепи управления подключены к одному автомату с номинальным током 32 (А). В таком случае они должны быть одного сечения, т.е. не менее 6 кв.мм по меди. А какой смысл для цепей управления использовать такое сечение?! Токи потребления там совсем мизерные (катушка, сигнальные лампы и т.п.).

А если двигатель будет защищен автоматом с номинальным током 100 (А)? Представьте тогда, какие сечения проводов необходимо будет применить для цепей управления. Да они просто напросто не влезут под клеммы катушек, кнопок, ламп и прочих устройств низковольтной автоматики.

Поэтому, гораздо правильнее будет — это установить отдельный автомат для цепей управления, например, 10 (А) и применить для монтажа цепей управления провода сечением не менее 1,5 кв.мм.

Теперь нам нужно в эту схему добавить еще один кнопочный пост управления. Возьму для примера пост ПКЕ 212-2У3 с двумя кнопками.

Как видите, в этом посту все кнопки имеют черный цвет. Я все же рекомендую для управления применять кнопочные посты, в которых одна из кнопок выделена красным цветом. Ей и присваивать обозначение «Стоп». Вот пример такого же поста ПКЕ 212-2У3, только с красной и черной кнопками. Согласитесь, что выглядит гораздо нагляднее.

Вся суть изменения схемы сводится к тому, что кнопки «Стоп» обоих кнопочных постов нам необходимо подключить последовательно, а кнопки «Пуск» («Вперед») параллельно.

Назовем кнопки у поста №1 «Пуск-1» и «Стоп-1», а у поста №2 — «Пуск-2» и «Стоп-2».

Теперь с клеммы (3) нормально-закрытого контакта кнопки «Стоп-1» (пост №1) делаем перемычку на клемму (4) нормально-закрытого контакта кнопки «Стоп-2» (пост №2).

Затем с клеммы (3) нормально-закрытого контакта кнопки «Стоп-2» (пост №2) делаем две перемычки. Одну перемычку на клемму (2) нормально-открытого контакта кнопки «Пуск-1» (пост №1).

А вторую перемычку на клемму (2) нормально-открытого контакта кнопки «Пуск-2» (пост №2).

И теперь осталось сделать еще одну перемычку с клеммы (1) нормально-открытого контакта кнопки «Пуск-2» (пост №2) на клемму (1) нормально-открытого контакта кнопки «Пуск-1» (пост №1). Таким образом мы подключили кнопки «Пуск-1» и «Пуск-2» параллельно друг другу.

Вот собранная схема и ее монтажный вариант.

Теперь управлять катушкой контактора, а также самим двигателем можно с любого ближайшего для Вас поста. Например, включить двигатель можно с поста №1, а отключить с поста №2, и наоборот.

О том, как собрать схему управления двигателем с двух мест и принцип ее работы предлагаю посмотреть в моем видеоролике:

Схема подключения магнитного пускателя

Вывод

Если вам необходим переключатель освещения с двух мест, то реализовать такую схему вполне реально и самостоятельно. Но здесь крайне важно соблюдать соответствие фазных и нулевых проводов, дабы не создать короткое замыкание.

Кроме того, следует помнить, что даже самые опытные электрики все работы производят без напряжения. Поэтому перед подключением снимите напряжение с данной группы освещения, а также всех расположенных рядом, к которым возможно случайное прикосновение.

Подключение к одному преобразовател частоты двух двигателей

При проектировании и модернизации электропривода с частотными преобразователями часто возникает необходимость решения задачи по подключению 2-х или более двигателей к одному преобразователю частоты. Такие схемы используются в вентиляционных системах, каскадных установках водоподачи, приводе станков и другого оборудования.

Существует несколько вариантов условий:

  • Требуется подключить 2 идентичных электродвигателя, соединенных параллельно.
  • Необходимо реализовать поочередную работу нескольких разных двигателей, работающих на разных участках технологической цепочки с различной нагрузкой.
  • Требуется подключение 2-х двигателей, отличающихся по мощности.

Подключение 2-х одинаковых электродвигателей

Преобразователь частоты переводят в режим скалярного управления. При работе на общую нагрузку, валы электродвигателей соединяют скользящей муфтой. Токи обмоток двигателя при этом должны быть равны. Для защиты рекомендуется устанавливать тепловые реле, которые подключают к дискретному входу частотника. Компания Danfoss выпускает также частотники со встроенными устройствами защиты. Включать в цепь “электродвигатель – частотный преобразователь” коммутирующие электроаппараты запрещается.

Подключение двигателей с разными характеристиками

При подключении разных электродвигателей частотный преобразователь также включают в скалярный режим. Электродвигатели защищают тепловыми реле. При покупке частотника важно наличие функции управления разными двигателями, при этом параметры электрических машин (такие как номинальное напряжение, число полюсов) должны совпадать. При одновременной работе 2 двигателей с существенно разной нагрузкой и частотой вращения, рекомендуется применять 2 ПЧ.

Поочередное подключение электродвигателей

При использовании неспециализированного преобразователя частоты для поочередного управления несколькими приводами необходимо:

  • Предусмотреть блокировку переключения при работающем электродвигателе. Все коммутации нужно производить при переводе частотника в режим “Останов”.
  • Реализовать защитное отключение ПЧ до отключения контакторов или переключателей при пропадании напряжения в выходной цепи.

Компания Danfoss выпускает несколько серий специальных частотных преобразователей для управления несколькими электродвигателями. Все необходимые для этого функции реализованы в программном обеспечении и аппаратной части ПЧ. Работу каждого привода можно запрограммировать в настройках. ПЧ имеет встроенные тепловые реле и соответствующие входы и выходы.

Применение таких устройств избавляет от необходимости фазировки двигателей, расчетов характеристик частотника, необходимости устанавливать дополнительные коммутирующие и защитные аппараты, а также гарантирует корректную работу приводов во всех предусмотренных режимах.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки
Читать еще:  Водород для двигатели своими руками

Управление асинхронными короткозамкнутыми двигателями

Пуск асинхронных короткозамкнутых двигателей малой и средней мощности делается почаще всего методом конкретного включения статора мотора в сеть.

Более нередко используемая схема управления двигателем приведена на рис. 1. Защита силовой цепи осуществляется плавкими предохранителями П и 2-мя термическими реле 1РТ и 2РТ. Плавкие предохранители П защищают силовую цепь от маленьких замыканий, а термические реле 1РТ и 2РТ защищают двигатель от перегрузок, превышающих номинальную нагрузку на 10—20%.

Рис. 1 Схема управления асинхронным короткозамкнутым движком

Включение и отключение двигателя производится линейным контактором Л, н/о силовые контакты которого находятся в силовой цепи мотора. Управление двигателем производятся дистанционно от кнопочной станции, состоящей из 2-ух кнопок — Запуск и Стоп.

Линейный контактор Л и термические реле 1РТ и 2РТ представляют собой один аппарат — магнитный пускатель. При нажатии кнопки Запуск катушка контактора Л получает питание и притягивает якорь с укрепленными на нем подвижными контактами. При помощи силовых контактов движок врубается в сеть, а блокировочный н/о. контакт Л шунтирует кнопку Запуск, что позволяет отпустить эту кнопку, не прерывая питания катушки Л.

Остановка мотора осуществляется кнопкой Стоп, а в случае перегрузки двигателя — размыканием контактов термических реле 1РТ и 2РТ.

Магнитный пускатель производит также так именуемую «нулевую защиту». При понижении напряжения на катушке Л до величины 0,8 U/ном. якорь контактора отпустится, и движок отключится.

Если по условиям технологического процесса нужно изменять направление вращения производственного механизма, то управление движком осуществляется с помощью реверсивного магнитного пускателя, состоящего из 2-ух контакторов: В — «вперед» и Н — «назад», которые управляются надлежащими клавишами — Вп, Нз и Стоп (рис. 2).

Рис. 2 Схема управления асинхронным короткозамкнутым движком для 2-ух направлений вращения

Защита силовых цепей подобна схеме, приведенной на рис. 1. Для предотвращения одновременного включения контактов В и Н (что может привести к короткому замыканию в силовой цепи) в схеме предусмотрены две блокировки. Одна из них выполнена н/з. контактами Н и В в цепях катушек контакторов и исключает возможность одновременного включения контакторов Н и В. 2-ая блокировка, выполненная контактами кнопок управления, предугадывает размыкание цепи отключаемого контактора, до того как произойдет замыкание цепи включаемого.

На рис. 3 представлена схема управления асинхронным короткозамкнутым движком с активным сопротивлением в статорной цепи. Эта схема применяется для ограничения колебаний напряжения в маломощных электронных сетях при значимых пусковых токах.

Рис. 3 Схема управления асинхронным короткозамкнутым движком с активным сопротивлением в статорной цепи

При нажатии на кнопку Запуск контактор У включает статор двигателя в сеть через ограничивающее сопротивление. Сразу приходит в действие пристроенное к контактору маятниковое реле РУ. Это реле включит контактор Л спустя то время, которое необходимо для разбега мотора до номинальной скорости.

Контактор Л сработает и своими главными контактами зашунтирует ограничивающее сопротивление.

Во всех вышеприведенных схемах торможение привода происходит за счет сил трения. Приведем некоторые схемы, предусматривающие электрическое торможение.

Рис. 4 Схема управления асинхронным короткозамкнутым движком с динамическим торможением

Схема с динамическим торможением представлена на рис.4. При нажатии кнопки Запуск включается катушка контактора Л, который своими главными контактами подключает статор мотора к сети переменного тока. Блок-контакт контактора Л включает катушку реле времени РВ в сеть неизменного тока, и реле РВ, срабатывая, замыкает собственный н/о. контакт в цепи катушки контактора торможения Т. На этом завершается операция запуска.

При нажатии на кнопку Стоп размыкается цепь катушки контактора Л, контакты которого отключают движок от переменного тока. Нормально-закрытый блок-контакт контактора Л подготавливает цепь для включения контактора Т, а н/о. блок-контакт Л размыкает цепь катушки реле времени РВ.

Сразу через замкнутый контакт реле времени РВ и н/з. блок-контакт Л получит питание катушка контактора Т, которая встанет на самоблокировку с помощью н/о. блок-контакта Т и таким макаром подключит статор мотора к сети неизменного тока. Движок при всем этом работает а режиме динамического торможения.

Реле времени РВ настроено так, чтоб его выдержка времени была несколько больше времени торможения электродвигателя, потому реле своими контактами разомкнет цепь контактора Т после того, как произойдет остановка двигателя.

Схема подключения реверсивного пускателя

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

  • Реверсивные и нереверсивные пускатели
  • Возможности пускателей
  • Конструкция реверсивного магнитного двигателя
    • Особенности функционирования модели
    • Правила подключения
  • Реверсивное подключение трехфазного двигателя
    • Переключение системы при противоположном вращении
    • Изменение поворотного движения
  • Защита цепей от короткого замыкания

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Читать еще:  Lock on как включить двигатель

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector