Sw-motors.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема нереверсивного управления пуском АД

Схема нереверсивного управления пуском АД

Схема нереверсивного управления пуском АД представлена на рис.34.8.

Рис.34.8. Схема нереверсивного управления АД

Для пуска двигателя необходимо нажать на кнопку «ПУСК» – SB2. При этом линейное напряжение подается на катушку контактора К1. Замыкаются главные контакты К1 в цепи статора двигателя и двигатель запускается. Одновременно замыкается вспомогательный контакт К1, шунтирующий кнопку «ПУСК» SB2. Этот контакт удерживает катушку К1 под напряжением при размыкании кнопки «ПУСК» SB2. Отключение двигателя осуществляется нажатием на кнопку «СТОП» SB1. В этом случае размыкается контакт SB1, обесточивается катушка, размыкаются контакты К1 силовые и вспомогательный. Двигатель отключается от сети. Для защиты от токов короткого замыкания предусмотрены предохранители в цепи обмотки статора.

Схема реверсивного управления асинхронным двигателемпредставлена на рис.34.9.

Рис.34.9. Схема реверсивного управления АД

При включении рубильника Q двигатель не запустится, т. к. в цепи статора разомкнуты контакты К1, К2. Для пуска двигателя необходимо нажать кнопку «Пуск» SB2 (пуск вперед). При этом катушка магнитного пускателя К1 оказывается под линейным напряжением, по ней протекает ток и, следовательно, замыкаются силовые контакты К1 в цепи обмотки статора, нормально открытый контакт К1, шунтирующий кнопку SB2 , что позволяет отпустить кнопку SB2 и ток в цепи катушки будет проходить по блок-контакту К1. Одновременно размыкается нормально закрытый блок-контакт К1 в цепи катушки контактора К2, приводя разрыв цепи катушки К2, который нужен для того, чтобы при ошибочном одновременном нажатии кнопок SB2 и SB3 не сработали сразу оба контактора, что привело бы к короткому замыканию силовой цепи.

При замыкании силовых контактов К1 обмотка статора оказывается под напряжением и двигатель начинает вращаться. Для остановки двигателя необходимо нажать кнопку SB1.

При нажатии на кнопку SB3 двигатель будет вращаться в другую сторону, так как силовые контакты К2 обеспечивают изменение чередования фаз.

От коротких замыканий двигатель защищен предохранителями F1.

Схема управления пуском АД с фазным роторомпредставлена на рис.34.10

Рис.34.10. Схема управления пуском АД с фазным ротором

При пуске контакты аппаратов управления находятся в положении, указанном на схеме.

При включенном рубильнике Q для пуска двигателя необходимо нажать на кнопку «ПУСК» SB2. Тогда на катушку контактора подается линейное напряжение сети, катушка обтекается током и замыкаются нормально разомкнутые контакты в силовой цепи К1 и блок контакт К1, шунтируюший кнопку «ПУСК» SB2.

С выдержкой времени на замыкание включается контакт К1 в цепи контактора К2. На катушку контактора К2 подается линейное напряжение, протекает ток и замыкаются н. о.контакты К2 в цепи ротора двигателя. Первая ступень пускового реостата выводится.

С выдержкой времени на замыкание включается н. о. контакт К2 в цепи контактора К3. На катушку контактора К3 подается линейное напряжение, протекает ток и замыкаются н. о.контакты К3 в цепи ротора двигателя. Вторая ступень пускового реостата выводится.

С выдержкой времени на замыкание включается н. о. контакт К3 в цепи контактора К4. На катушку контактора К4 подается линейное напряжение, протекает ток и замыкаются н. о.контакты К4 в цепи ротора двигателя. Третья ступень пускового реостата выводится. Ротор закорачивается накоротко. Пуск двигателя окончен.

Рис.34.12. Схема управления асинхронным двигателем с короткозамкнутым ротором с ограничением пути перемещения элемента приводного механизма

Включаем выключатель Q и нажимаем на кнопку «ПУСК» SB2.

Так как все контакты в цепи магнитного пускателя К1 замкнуты, то катушка оказывается под линейным напряжением, протекает ток, замыкаются главные контакты К1 в цепи обмотки статора – подается напряжение на обмотку статора и двигатель начинает перемещать ЭПМ вправо. Замыкаются н. о. контакты пускателя К1 и размыкается н. з. контакт в цепи катушки пускателя К2.

После того, как ЭПМ достигнет правого положения, выступ ЭМ нажмет на рычаг путевого выключателя SQ1. При этом контакт SQ1 в цепи пускателя К1 размыкается , пускатель срабатывает и отключает двигатель от сети. Замыкается контакт К1 в цепи катушки пускателя К2 и размыкаются все н. о. контакты пускателя К1.

При нажатии на кнопку «ПУСК» SB2 так как все контакты в цепи магнитного пускателя К2замкнуты, то катушка оказывается под линейным напряжением, протекает ток, замыкаются главные контакты К2 в цепи обмотки статора – подается напряжение на обмотку статора и двигатель начинает перемещать ЭПМ влево. Замыкаются н. о. контакты пускателя К2.

После того, как ЭПМ достигнет левого положения, выступ ЭМ нажмет на рычаг путевого выключателя SQ2. При этом контакт SQ2 в цепи пускателя К2 размыкается , пускатель срабатывает и отключает двигатель от сети. Замыкается контакт К1 в цепи катушки пускателя К1 и размыкаются все н. о. контакты пускателя К2.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

Магнитный пускатель представляет собой простой набор аппаратов для дистанционного управления электродвигателями и не считая самого контактора нередко имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы 1-го аппарата обводят штриховой линией. Она комфортна для монтажа аппаратуры и поиска дефектов. Читать эти схемы тяжело, потому что они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электронная принципная схема включения пускателя

На принципной схеме все элементы 1-го магнитного пускателя имеют однообразные буквенно-цифровые обозначения. Это позволяет не связывать совместно условные изображения катушки контактора и контактов, добиваясь большей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с 3-мя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (либо цепи управления) с большим током — тонкими линиями.

Принцип деяния схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М нужно краткосрочно надавить кнопку SB2 «Пуск». При всем этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию основных контактов в цепи питания электродвигателя. Сразу замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Читать еще:  Глохнет на холостых двигатель 2tr

Если сейчас кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через свой вспомогательный контакт. Такую схему именуют схемой самоблокировки. Она обеспечивает так именуемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети пропадет либо существенно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя нужно повторно надавить кнопку «Пуск». Нулевая защита предутверждает неожиданный, самопроизвольный запуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не владеют, потому в системах управления станочным приводом обычно используют управление с внедрением магнитных пускателей.

Для отключения электродвигателя довольно надавить кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В этом случае, когда нужно использовать два направления вращения электродвигателя, используют реверсивный магнитный пускатель, принципная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип деяния схем включения реверсивного магнитного пускателя

Для конфигурации направления вращения асинхронного электродвигателя нужно поменять порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе употребляют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи головного тока произойдет куцее замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 надавить кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электронная схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение 1-го из контакторов, к примеру КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса нужно за ранее надавить кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы нужно, чтоб главные контакты контактора КМ1 разомкнулись ранее, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответственной регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях нередко используют двойную блокировку по приведенным выше принципам. Не считая того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В данном случае оба контактора должны быть установлены на общем основании.

Схемы включения асинхронных электродвигателей. Включение трехфазного электродвигателя в однофазную сеть. Определение фаз.

Нереверсивная схема управления асинхронного двигателя.


Рисунок 1 — Простейшая схема асинхронного двигателя

Для подачи напряжения на управляющую и силовую цепь используется автоматический выключатель QF. Пуск асинхронного двигателя осуществляется кнопкой SB1 «Пуск”, которая замыкает свои контакты в цепи катушки магнитного пускателя КМ. Который срабатывая замыкает основные контакты силовой цепи статора. Вследствие чего электродвигатель М подсоединяется к питанию. В то же время в управляющей сети происходит замыкание блокирующего контакта КМ который шунтирует кнопку SB1.

Чтобы отключить асинхронный двигатель с кз ротором, необходимо нажать клавишу SB2 «Стоп». При этом питающая сеть контактора КМ размыкается и подача напряжения на статор прекращается. После этого нужно выключают автомат QF. Схема управления АД с кз предусматривает несколько защит:

  • от КЗ — посредством автоматического выключателя QF и плавкими предохранителями FU;
  • от перегрузок — посредством теплореле КК (при перегреве данные устройства отсоединяют контактор КМ, прекращая работу движка);
  • нулевая защита — посредством магнитного пускателя КМ (при низком напряжении или его полном отсутствии контактор КМ оказывается незапитанным, размыкается и электродвигатель выключается).

Для подключения электродвигателя после срабатывания защитного механизма требуется снова надавить клавишу SB1.

Третья разновидность схемы управления

Основное отличие данной схемы системы управления двигателем от предыдущей в том, что в цепи каждого из контакторов, кроме общей кнопки «Стоп», имеется еще по два контакта. Если рассматривать первый контактор, то в его цепи имеется дополнительный контакт у SB2 — это нормально-открытый (замыкающий), а SB3 имеет нормально-закрытый (размыкающий) контакт. Если рассматривать схему подключения второго электромагнитного пускателя, то его кнопка «Пуск» будет иметь те же контакты, но расположенные наоборот относительно первого.

Таким образом удалось добиться того, что при нажатии на одну из них при работающем двигателе цепь уже эксплуатирующейся будет размыкаться, а другая, наоборот, замыкаться. У такого типа подключения имеется несколько преимуществ. Во-первых, данная схема не нуждается в защите от одновременного включения, а значит, отпадает необходимость в наличии дополнительных контактов. Во-вторых, появляется возможность выполнения реверсом без промежуточного нажатия на «Стоп». При таком подключении эта контактор используется лишь для полной остановки работающего АД.

Стоит отметить, что рассмотренные схемы управления пуском двигателя являются несколько упрощенными. В них не рассматривается наличие различных дополнительных аппаратов защиты, элементов сигнализации. Кроме того, в некоторых случаях возможно осуществлять питание электромагнитной катушки пускателя от источника в 380 В. В таком случае появляется возможность подключения лишь от двух фаз, к примеру А и В.

Реостатный пуск асинхронного двигателя с кз ротором.

Если невозможно запустить АД с кз ротором в стандартном режиме, используют запуск при сниженном напряжении. С этой целью в цепь статора добавляют сопротивление, реостат или используют автотрансформатор. Автоматический выключатель QF срабатывает и на управляющую и силовую цепь поступает напряжение. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением. В то же время питание поступает и на реле времени КТ.


Рисунок 2 — Схема асинхронного двигателя с симметричными сопротивлениями (реостатный пуск)

Через определенный временной интервал, задаваемый реле КТ, происходит замыкание контакта КТ. В итоге пускатель КМ2 шунтирует (закорачивает) сопротивление статора. Процедура запуска электродвигателя завершается. Для его выключения необходимо нажать клавишу SB2 и выключить автомат QF.

Разновидности простейших движков-трансформаторов

Движки переменного тока могут быть синхронными. Схема получается проще, а мотор дешевле. Хотя все асинхронные двигатели содержат статор, аналогичный синхронной машине, конструкция ротора определяет их существенное отличие от них. Его не нужно намагничивать тем или иным способом, как это делается в синхронном движке. Несмотря на отличия моделей асинхронных машин, конструкция их ротора — это эквивалент короткозамкнутой вторичной обмотки.

Самый простой вариант — короткозамкнутый ротор. Его можно просто отлить из ферромагнитного материала и обработать надлежащим образом. Сплавы на основе железа проводят электрический ток и взаимодействуют с магнитным полем. Цельнометаллическая конструкция обладает следующими преимуществами:

  • наиболее проста в изготовлении и по этой причине обладает минимальной себестоимостью;
  • лучше всего переносит усилия, возникающие при работе двигателя;
  • хорошо разгоняется из-за эффективного взаимодействия магнитных полей.
Читать еще:  Что такое отбойник двигателя

Читать также: Какие бывают сверлильные патроны

Как преодолеваются недостатки болванки

Однако вполне очевидно то, что такой короткозамкнутый ротор будет не лучшим проводником для токов, индуцируемых статором. Сплавы железа проводят электроток заметно хуже алюминия или меди. Кроме этого ведь неспроста магнитопроводы трансформаторов изготавливают из стальных пластин, а не из цилиндрических болванок. Вихревые токи нагревают литой металл и уменьшают общую эффективность электроустановки. Поэтому недостатки массивности конструкции из железного сплава конструктивно учитывает наиболее эффективный двигатель с короткозамкнутым ротором.

В таком электродвигателе используются алюминиевые или медные детали. Функции применительно к созданию магнитного поля и проводимости тока конструктивно разделяются. Для получения переменного магнитного поля с малыми потерями по аналогии с трансформаторами применяются тонкие изолированные пластины. Каждая из них содержит выемки и по форме эквивалентна поперечному сечению ротора. Ее материалом является трансформаторная сталь.

Как получается беличье колесо (клетка)

После того как пластины собраны, получается цилиндр с канавками. Они образованы выемками, в которые укладываются стержни из алюминия или меди. На торцы цилиндра надеваются пластины или кольца из такого же металла, что и стержни, концы которых крепятся к ним. Каждая пара диаметрально противоположных стержней, таким образом, создает короткозамкнутый виток. Его сопротивление индуцируемому току гораздо меньше, чем у железного сплава. Стержни с пластинами выглядят, как беличья клетка.

Поэтому двигатель с короткозамкнутым ротором такой конструкции имеет меньше потерь и по этой причине широко распространен. Но сходство этого электромотора асинхронного электродвигателя короткозамкнутым ротором своим похожего на обычный нагруженный силовой трансформатор ограничено к применению в некоторых электросетях. Не каждая из них может выдержать большой пусковой ток. Если асинхронные электродвигатели с короткозамкнутым ротором будут стартовать одновременно, величина тока будет велика и сравнима с коротким замыканием.

В начале их пуска происходит процесс, аналогичный включению трансформатора с вторичной обмоткой, замкнутой накоротко. В этом начальном положении магнитное поле почти неподвижно, и в этой связи так называемое скольжение получается самым большим. Неподвижный короткозамкнутый ротор асинхронного двигателя создает при пуске наиболее мощное электромагнитное поле. Ведь он собран из листовой стали, отличающейся минимальными вихревыми потерями, а беличье колесо характеризуется минимальным электрическим сопротивлением.

Реверсивный пуск асинхронного двигателя


Рисунок 3. Схема реверсивный пуск асинхронного двигателя с кз ротором.

Данная схема дает возможность производить запуск электродвигателя и изменять направленность его вращения. Для запуска необходимо включить автомат QF и нажать SB1 «Пуск», в результате чего ток поступает на магнитный пускатель КМ1, который запитывает статор. АД реверсируется последовательным нажатием кнопок «Стоп» SB3 (КМ1 выключается и двигатель останавливается) и «Реверс» SB2 (срабатывает КМ2 и асинхронный двигатель запускается в реверсивном направлении).

В данной схеме нажатием кнопки реверса меняется чередование фаз питающего напряжения на статоре двигателя, что будет вызывать смену направленности его вращения (реверсом). При помощи нормально замкнутых контактов КМ1 и КМ2 выполнена защита от ошибочного включения сразу двух магнитных пускателей КМ1 и КМ2. Также действуют защиты, аналогичные описанным ранее. Отключить электродвигатель можно кнопкой SB3 и автоматом QF.

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Схема нереверсивного магнитного пускателя

Схема пускателя ( рис.128 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Поясним действие схемы управления электродвигателем в такой последовательно-

1. подготовка схемы к работе;

3. действие защит.

Рис. 128. Принципиальная электрическая схема нереверсивного магнитного пускателя

Элементы схемы

На рис. 129 приняты такие обозначения:

в силовой части:

1. Л1, Л2, Л3 – линейные провода питающей сети;

2. КМ1…КМ3 – главные контакты линейного контактора КМ;

3. КК1, КК2 – нагревательные элементы тепловых реле;

4. М – обмотка статора асинхронного двигателя;

5. FU – предохранители, для защиты цепи катушки КМ от токов к.з.;

6. КК1, КК2 – размыкающие контакты тепловых реле;

7. КМ – катушка линейного контактора;

8. SB1 – кнопка «Пуск»;

9. SB2 – кнопка «Стоп»

Подготовка схемы к работе

Для подготовки схемы к работе подают питание на линейные провода Л1, Л2 и Л3.

После этого никакие электрические цепи не образуются. Схема готова к работе.

Работа схемы

Пуск

Для пуска нажимают кнопку SB1 «Пуск». При этом возникает цепь тока через ка-

тушку линейного контактора КМ:

линейный провод Л2 – верхний предохранитель FU – размыкающий контакт тепло-

вого реле КК2 – катушка КМ – размыкающие контакты кнопки SB2 – замыкающие контак

ты кнопки SB1 “Пуск” – размыкающий контакт теплового реле КК1 – нижний предохра-

нитель FU – линейный провол Л3.

Читать еще:  Бензин в поддон двигателя причины

Контактор включается, при этом:

1. замыкаются главные контакты КМ1. КМ3 в силовой части схемы, вследствие че

го двигатель включается в сеть;

3. замыкается вспомогательный контакт КМ4, после чего кнопку “Пуск” можно от

После отпускания кнопки ток катушки контактора КМ будет протекать через вспо-

могательный контакт КМ4.

Таким образом, этот контакт предназначен для удержания контактора КМ во вклю-

ченном состоянии после отпускания кнопки “Пуск”.

Если по каким-либо причинам этот контакт не пропускает ток, то при нажатии кнопки “Пуск” двигатель включится, а после отпускания – отключится.

Остановка

Для остановки электродвигателя нажимают кнопку SB2 “Стоп”. Контакты этой

кнопки размыкаются, поэтому цепь тока через катушку КМ пропадает.

Контактор КМ отключается, при этом:

1. размыкаются главные контакты КМ1. КМ3 – двигатель отключается от сети;

2. размыкается вспомогательный контакт КМ4.

Если отпустить кнопку SB2 “Стоп”, ее контакт замкнется. Однако после этого кон-

тактор КМ не включится, т.к. разомкнуты контакт КМ4 и контакт кнопки SB1 Пуск».

Для повторного пусканадо нажатькнопку SB1 «Пуск».

Схема предусматривает 2 вида защит:

1. от токов перегрузки при помощи тепловых реле КК1, КК2;

2. по снижению напряжения при помощи контактора КМ.

Под перегрузкой понимают увеличение тока обмотки статора двигателя выше номи

нального. Основная причина перегрузки двигателя состоит в перегрузке механизма.

Например, перегрузка грузовой лебёдки возникает при подъёме груза большего, чем предусмотрено грузоподъёмностью лебёдки.

Защита от токов перегрузки работает так.

При перегрузке тепловое реле КК1 ( или КК2 ) размыкает свой контакт в цепи ка-

тушки линейного контактора КМ.

Контактор КМ отключается, при этом:

1. размыкаются главные контакты КМ1. КМ3 – двигатель отключается от сети;

2. размыкается вспомогательный контакт КМ4.

Снижение напряженияприводит к уменьшению вращающего момента и скорости двигателя, вследствие чого увеличивается ток обмотки статора. При глубоких провалах напряжения ( до 60% и менее ) возможны более тяжелые последствия: остановка и стоян-

ка под током электроприводов насосов, вентиляторов и компрессоров, или, что ещё опас-

нее, реверс электродвигателей грузовых лебёдок или брашпилей.

Потому при снижении напряжения до недопустимих значений схемы управления

отключают двигатель от питающей сети.

Защита по снижению напряжения работает так.

При снижении напряжения до 60% и менее якорь контактора КМ отпадает под дей-

ствием пружины или собственного веса, поэтому его главные и вспомогательный контак-

ты размыкаются. Двигатель отключается от сети.

При восстановлении напряжения до 80% и более самопроизвольное включение кон

тактора КМ невозможно, потому что разомкнуты вспомогательный контакт КМ4 и контак

ты кнопки SB1“Пуск”.

Для повторного пусканадо нажать кнопку SB1 ( «Пуск» ).

Таким образом, рассмотренная защита по снижению напряжения исключает автома

тическое повторное включение двигателя после восстановления напряжения. Такая защи-

та называется нулевой.

Реверсивный магнитный пускатель

Основные сведения

Схема пускателя ( рис.129 ) предусматривает выполнение таких действий:

1. пуск и остановку электродвигателя;

2. защиту электродвигателя.

Поэтому он имеет два реверсивных контактора: КМ1 «Вперёд», КМ2 «Назад» и три

кнопки : SB1 «Вперёд», SB2 «Назад» и SB3 «Стоп».

Рис. 129. Принципиальная электрическая схема реверсивного магнитного пускателя

Работа схемы

Для пуска двигателя в направлении «Вперед» нажимают кнопку SB1, при этом включается контактор КМ1 «Вперёд». Далее схема работает так, как в предыдущей схеме.

Для реверса двигателя надо сначала нажать кнопку SB3 «Стоп», и дождавшись остановки электродвигателя, нажать кнопку SB2 «Назад». При этом меняются местами линейные провода А и С, поэтому двигатель реверсирует.

Защиты о токов перегрузки и по снижению напряжения работают так же, как в пре-

Блокировка одновременного включения реверсивных контакторов

Кроме защит, в схеме предусмотрен узел, исключающий одновременное включе-

ние реверсивных контакторов КМ1 и КМ2.

Такое включение приводит к двойному металлическому короткому замыканию в линии электропередачи.

Действительно, если предположить, что одновременно замкнуты контакты КМ1.1…КМ1.3 контактора КМ1 и КМ2.1…КМ2.3 контактора КМ2, то образуются две па-

раллельные цепи короткого замыкания:

а ) линейный провод А – контакт КМ1.1 – контакт КМ2.3 – линейный провод С;

б ) линейный провод А – контакт КМ2.1 – контакт КМ1.3 — линейный провод С.

При этом образуется цепь тока короткого замыкания, протекающего через линей

ные провода А и С и далее – через фазные обмотки А и С статора синхронного генератора.

При этом возможно повреждение линии электропередачи и обмотки статора генера

тора, а также сваривание контактов, попавших в цепь короткого замыкания, т.е. КМ1.1, КМ2.3 и КМ2.1 и КМ1.3.

Обмотка статора двигателя не повреждается, т.к. ток короткого замыкания протека

Чтобы избежать одновременного включения реверсивных контакторов , в цепь ка-

тушки контактора КМ1 «Вперёд» включают размыкающие контакты КМ2:5 контактора КМ2 «Назад», и наоборот, в цепь катушки контактора КМ2 включают размыкающие контакты КМ1:5 контактора КМ1 «Вперед».

Теперь при включенном, например, контакторе «Вперед» случайное нажатие кноп

ки SB2 «Назад» не приведёт к включения контактора КМ2 «Назад», поскольку в цепи его катушки разомкнут вспомогательный контакт КМ1:5 контактора «Вперед».

Аналогично работает схема при включенном контакторе «Назад».

Описанная электрическая блокировка дополняется механической, при помощи ко-

ромысла, поворачивающегося на оси. Если один из контакторов включён, его якорь пере

мещается и поворачивает коромысло в положение, в котором якорь другого контактора заклинен.

Промышленные типы магнитных пускателей

Промышленность выпускает магнитные пускатели переменного тока серий ПМГ1000, ПМТ1000, ПММ и постоянного тока серий ПП1000…ПП5000.

На судах применяются магнитные пускатели серии ПММ, рассчитанные на переменный ток частотой 50 Гц, напряжением 380 В.

Втягивающие катушки пускателей рассчитаны на номинальные напряжения 127, 220 и 380 В переменного тока.

Режимы работы пускателей – продолжительный ( S1 ), кратковременный ( S2 ) и

повторно-кратковременный ( S3 ) с частотой включений до 600 в час при ПВ = 40%.

Условные обозначения типоисполнений пускателей ПММ */**/***/****/ расшифровываются так:

ПММ – пускатель магнитный морской;

*/ : 1 — первая величина, номинальный ток 25 А; 2 — вторая величина, номинальный ток 50 А; 3 – третья величина, номинальный ток 100 А; 4 — четвертая величина, номиналь

**/ : исполнение по роду защиты от воздействия окружающей среды: 0 – открытое;

1 – брызгозащищенное; 2 – водозащищенное;

***/: исполнение по направлению вращения электродвигателя: 1 – нереверсивный; 2 – реверсивный;

****/: исполнение по наличию в пускателе дополнительных элементов: 0 – без дополнительных элементов; 1 – с предохранителями; 2 – с кнопками управления; 3 – с кнопками управления и пакетным переключателем; 4 — с предохранителями и пакетным переключателем.

Пример.

Условное обозначение типоисполнения пускателя ПММ 2213 расшифровывается так:

ПММ 2213 – магнитный пускатель морской второй величины ( номинальный ток 50 А ), водозащищенный, нереверсивный, с кнопками управления и пакетным переключа-

Дата добавления: 2020-02-05 ; просмотров: 259 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector