Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатели с сухим картером: преимущества, недостатки и куда их ставят

Двигатели с сухим картером: преимущества, недостатки и куда их ставят

Обычные моторы имеют специальный поддон снизу, где находится всё моторное масло. Из этого поддона насос прокачивает масло для смазки трущихся деталей друг о друга по всем каналам.

Но сейчас существуют двигатели, у которых отсутствует масляной поддон. Разберемся, для чего это сделано и где используют эти двигатели?

Необходимость смазки. Смазывание всех деталей очень важно для любых двигателей. Бывает так, что масляные каналы забиваются и прокачка моторного масла из поддона не происходит. Это приводит к тому, что детали перегреваются и порой даже могут заклинить.

Сухой картер. Машины, на которых установлен сухой картер, не имеют масляный поддон снизу, потому что его специально вынесли за границы мотора. Как это выглядит: ко дну мотора приспособлена пластина, из которой выходит специальный шланг. Он, в свою очередь, покачивает масло в масляной бак, который может располагаться либо в салоне, либо в багажнике. Затем масло проходит через охлаждающий радиатор и фильтр прямо в двигатель. Масло же в свою очередь качается благодаря двум насосам.

Преимущества. Главное достоинство системы «сухого картера» — обеспечение бесперебойной подачи масла с постоянным давлением при любых условиях движения авто. Помимо этого, масло лучше охлаждается, ибо оно хранится в удаленном от мотора резервуаре. Меньшие размеры поддона уменьшают высоту двигателя. Это дает возможность расположить мотор ниже, тем самым понизив центр тяжести (улучшить устойчивость), и повысить аэродинамику (днище выходит более плоским). Коленвал при вращении не испытывает сопротивления плещущегося в поддоне масла и выигрываются несколько лошадиных сил.

Ну, а масло не разбрызгивается коленчатым валом по всему картеру (снижается расход смазки) и меньше вспенивается. Масло не контактирует с картерными газами и увеличивается срок его службы. Все перечисленные преимущества позволяют повысить общую надежность мотора.

Недостатки. К недостаткам двигателя с сухим картером относится больший вес, сложность конструкции и больший объем масла. А сложность означает повышенные расходы на обслуживание.

Для переоборудования дорожных версий некоторых авто в гоночные, в продаже имеются киты. Однако установка системы с сухим картером оправдана только тогда, когда машина большую часть времени будет проводить на серьезном бездорожье или на гоночной трассе . При езде по обычным дорогам всё преимущество «сухого картера» не будет ощутимо, а значит, такое переоборудование будет бесполезной тратой времени и денег.

Где можно встретить такой двигатель? Самый распространенный вариант установки таких моторов, так это на гоночные автомобили и на специальную технику. В первом случае сухой картер помогает избежать неприятностей с оттоком — превращением в пену моторного масла во время резких поворотов.

Еще один известный случай — это возможность избежать так называемого «масляного голодания», ведь такая конструкция полностью обеспечивает смазывание всех элементов двигателя. Еще один плюс, о котором было вскользь сказано выше — это охлаждение масла в процессе его прохождения через радиатор, а это целиком и полностью снижает температуру мотора во время сильной нагрузки.

Итог. К сожалению, на обыкновенные автомобили установить подобную систему будет крайне проблематично из-за больших габаритов и весьма высокой стоимости. Тем более, при городском «режиме жизни», автомобилю будет достаточно обычного и привычного всем масляного картера.

Реактивный двигатель: современные варианты исполнения

Реактивными двигателями называют такие устройства, которые создают нужную для процесса движения силу тяги преобразованием внутренней энергии горючего в кинетическую энергию реактивных струй в рабочем теле. Рабочее тело стремительно проистекает из двигателя, и по закону сохранения импульса формируется реактивная сила, которая толкает двигатель в противолежащем направлении. Чтобы разогнать рабочее тело может применяться как расширение газов, нагретых самыми разнообразными способами до высоких температур, а также и другими физическими процессами, в частности, ускорением заряженных частиц в электростатическом поле.

Реактивные двигатели сочетают в себе собственно двигатели с движителями. Имеется в виду, что они создают тяговые усилия исключительно взаимодействием с рабочими телами, без опор, либо контактами с остальными телами. То есть обеспечивают сами себе собственное продвижение, при этом промежуточные механизмы не принимают никакого участия. Вследствие этого в основном они используются для того, чтобы приводить в движение воздушные судна, ракеты и, конечно же, космические аппараты.

Что такое тяга двигателя?

Тягой двигателей называют реактивную силу, которая проявляется газодинамическими силами, давлением и трением, приложенными к внутренним и внешним сторонам двигателя.

Тяги различаются на:

  • Внутренние (реактивные тяги), когда не учитывается внешнее сопротивление;
  • Эффективные, учитывающие внешнее сопротивление силовых установок.

Отправная энергия запасается на борту летательных или других аппаратов, оснащенных реактивными двигателями (химическим горючим, ядерным топливом), или может притекать снаружи (например, солнечная энергия).

Как формируется реактивная тяга?

Для формирования реактивной тяги (тяги двигателя), которая используется реактивными двигателями, потребуются:

  • Источники исходной энергии, которые превращаются в кинетическую энергию реактивных струй;
  • Рабочие тела, которые в качестве реактивных струй будут выбрасываться из реактивных двигателей;
  • Сам реактивный двигатель в качестве преобразователя энергии.

Как получить рабочее тело?

Для приобретения рабочего тела в реактивных двигателях могут использоваться:

  • Вещества, отбираемые из окружающей среды (к примеру, вода, либо воздух);
  • Вещества, находящиеся в баках аппаратов или в камерах реактивных двигателей;
  • Смешанные вещества, поступающие из окружающей среды и запасаемые на бортах аппаратов.

Современные реактивные двигатели главным образом используют химическую энергию. Рабочие тела представляют собой смесь раскаленных газов, которые являются продуктами сгорания химического горючего. Когда работает реактивный двигатель, химическая энергия от сгорающих веществ преобразуется в тепловую энергию от продуктов сгорания. В то же время тепловая энергия от горячих газов превращается в механическую энергию от поступательных движений реактивных струй и аппаратов, на которых установлены двигатели.

Принцип работы реактивного двигателя

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).
Читать еще:  Высотно скоростные характеристики авиационного двигателя

В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.

Кратко об истории реактивного двигателя

Считается, что реактивный двигатель изобрели Ганс фон Охайн и выдающийся немецкий инженер-конструктор Фрэнк Виттл. Первый патент на действующий газотурбинный двигатель получил именно Фрэнк Виттл в 1930 году. Тем не менее, первая рабочая модель была собрана собственно Охайном. В конце лета 1939 года в небе появилось первое реактивное воздушное судно – He-178 (Хейнкель-178), который был снаряжен двигателем HeS 3, разработанным Охайном.

Как устроен реактивный двигатель?

Устройство реактивных двигателей довольно-таки простое и в то же время чрезвычайно сложное. Оно простое по принципу действия. Так, забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину. После чего он там начинает смешиваться с горючим и сгорать. На краю турбины образуется так называемое «рабочее тело» (ранее упоминаемая реактивная струя), которое продвигает летательный или космический аппарат.

При всей простоте, на самом деле это целая наука, ведь в середине таких двигателей рабочий температурный режим может достигать более тысячи градусов по Цельсию. Одной из важнейших проблем в турбореактивном двигателестроении является создание неплавящихся деталей из металлов, которые сами поддаются плавлению.

Устройство реактивного двигателя

В начале, перед каждой турбиной всегда располагается вентилятор, засасывающий воздушные массы из окружающей среды в турбины. Вентиляторы обладают большой площадью, а также колоссальной численностью лопастей специальных конфигураций, материалом для которых послужил титан. Сразу за вентиляторами располагаются мощные компрессоры, которые необходимы для нагнетания воздуха под огромным давлением в камеры сгорания. После камер сгорания горящие топливовоздушные смеси направляются в саму турбину.

Турбины состоят из множества лопаток, на которые оказывают давление реактивные потоки, которые и приводят турбины во вращение. Далее турбины вращают валы, на которых «насажены» вентиляторы и компрессоры. Собственно так, система становится замкнутой и нуждается исключительно в подводе топлива и воздушных масс.

Вслед за турбинами потоки направляются в сопла. Сопла реактивных двигателей являются последними, но не самыми последними по своей значимости частями в реактивных двигателях. Они формируют непосредственные реактивные струи. В сопла направляются холодные воздушные массы, нагнетаемые вентиляторами для охлаждения «внутренностей» двигателей. Эти потоки ограничивают манжеты сопел от сверхгорячих реактивных потоков и не позволяют им расплавляться.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.

Типы реактивных двигателей

Имеется несколько основных разновидностей реактивных двигателей. Так, классическим реактивным двигателем можно назвать авиадвигатель в самолете F-15. Большинство таких двигателей используются преимущественно на истребителях самых разнообразных модификаций.

Двухлопастные турбовинтовые двигатели

В этой разновидности турбовинтовых двигателей мощность турбин через понижающие редукторы направляется для вращения классических винтов. Наличие таких двигателей позволяет большим воздушным суднам осуществлять полеты с максимально приемлемыми скоростями и при этом расходовать меньшее количество авиатоплива. Нормальная крейсерская скорость у турбовинтовых воздушных суден может быть 600—800 км/ч.

Турбовентиляторные реактивные двигатели

Эта разновидность двигателей является более экономичной в семействе двигателей классических типов. Главной отличительной характеристикой в них является то, что на входе ставятся вентиляторы больших диаметров, которые подают воздушные потоки не только для турбин, но и создают довольно-таки мощные потоки вне их. Вследствие этого, можно достичь повышенной экономичности, путем усовершенствования КПД. Они используются на лайнерах и больших воздушных суднах.

Прямоточные воздушно-реактивные двигатели

Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.

Как работает варп-двигатель и почему сейчас это невозможно?

Варп-двигатель представляет собой вымышленную силовую установку для космических кораблей из научно-фантастических произведений. Фантасты считают, что звездолеты с ними способны перемещаться со скоростью, которая более скорости света. В итоге корабль сможет за короткое время межзвездные расстояния. Только сейчас это пока мечты, поскольку мы не научились достигать даже околосветовых скоростей. Рассмотрим принцип работы варп-двигателя и актуальные проблемы, которые следует решить на данный момент для реализации проекта.

Название произошло от английского словосочетания Warp drive, что переводится на русский язык, как двигатель искривления. Особенно хорошо освещается в «Звездном пути» и большинстве изданий А.Азимова.

Предыстория

В 1905 году, когда Эйнштейном была предложена теория относительности, тогда деятели науки ограничивались абсолютизацией качественной нестабильности явлений, происходящих во Вселенной. В перечень ограничений входила и нерушимость скорости света, из которой следовала невозможность появления сверхсветовых полетов в космос.

С течением времени ученые сумели справиться с земным притяжением и звуковым барьером, но такое препятствие, как скорость света, им было не под силу. Позже, в 1994 году, Мигель Алькубьерре, физик из Мексики, предложил такой способ растягивания полотна пространства-времени, который в теории «давал жизнь» заветным сверхсветовым путешествиям.

Принцип работы варп-двигателя

Данный способ путешествий в космос подразумевает волнообразное расширение материи пространства-времени. В теории волна способствует сжатию пространства до объекта и расширению после него. Внутри у объекта есть возможность совершать движения по заданной траектории, которую называют «варп-пузырем» плоского пространства.

В научном мире этот процесс именуют «метрикой Алькубьерре». Будучи созданной в рамках теории Эйнштейна, дает возможность варп-пузырю возникать в ранее плоской области временного пространства и совершать перемещение с огромной скоростью (больше скорости света). Изнутри пузырь представляет собой бездеятельную систему отсчета, причем с абсолютно любым объектом. Корабль передвигается с ним, а не внутри него, поэтому некоторые эффекты релятивизма (замедление времени и др.) реализовать невозможно.

В общеизвестной трактовке теория Эйнштейна и правила пространства-земли соблюдаются. Отчасти это происходит потому, что способ не подразумевает передвижение со скоростью, превышающей световую. Так или иначе, световой луч, находящийся в пузыре, всегда движется быстрее корабля. В контексте «быстрее света» корабль достигает заданной точки раньше светового луча, перемещающегося вне границ варпа.

Двигатель работает с пространством-временем вокруг корабля, а именно растягивает и уменьшает его. Сам агрегат не делает никаких движений и не наращивает скорость. Толчок вперед осуществляется посредством движения материи вокруг агрегата. Космическая машина движется вперед за счет сжатия пространства-времени, а дальнейшему движению способствует растягивание позади него.

Скорость движения корабля может превышать скорость света по одной причине: нет объекта в космической плоскости, чья скорость движения превышала бы скорость света, но не установлены рамки скорости для сжатия и растягивания самого пространства. Мы не приводим в движение объекты, находящиеся в пространстве, а обеспечиваем движение самого пространства.

Существующие проблемы

  1. Не установлен еще метод образования пузыря деформации в определенной пространственной области.
  2. Даже при предположении, что способ создания найден, нет предположений ученых, как проникнуть внутрь.
  3. Для создания пузыря требует огромное количество энергии. Нет представления, как его получить, ведь нужен энергетический эквивалент юпитерской массы. Ученые надеются на обнаружение новой материи в процессе развития квантовой физики и механики, метаматериалов. Возможно она сможет обеспечить устройство требуемой энергией.
  4. Риск уничтожения миров частицами, которые случайно были ускорены при путешествии.
  5. Излучение Хокинга, способное убить живое существо, оказавшееся внутри пузыря.
  6. Слабая изученность принципа работы варп-двигателя.

Гениальный Двигатель Клема, не требующий топлива и работающий «сам по себе»

Экология потребления. Технологии: Ричард Клем изготовил на основе экспериментального насоса для битума двигатель который не требует никакого топлива, а по мимо колосальной мощности на валу он еще выделял много тепла.

Ричард Клем работал в области тяжелого машиностроения в городе Даллас. Он работал с оборудованием, распыляющим и закачивающим жидкий асфальт. Клем заметил, что асфальтовый насос продолжает работать еще некоторое время (до 30 минут) после того, как питание было отключено. Это открытие и привело к разработке мотора. В результате сделанных преобразований реальная выходная мощность мотора, вес которого составлял 200 фунтов, достигла 350 лошадиных сил. По свидетельствам очевидцев, Клем часто ездил на своей машине, в которую был встроен такой двигатель, по центральной автомагистрали Далласа. Он заявлял, что машина не требует топлива, необходимо только менять масло каждые 150000 миль.

Читать еще:  Двигатель бензогенератора работает рывками

Мотор имеет только одну движущуюся часть: конический ротор, вертикально расположенный на полом вале. В конусе вырезаны спиралевидные желобки, проходящие вокруг него по всей длине, и питающие периферийные сопла, которые расположены на основании конуса. Жидкость проходит через спиралевидные желобки, выпрыскивается из сопел и заставляет конус вращаться. Достигнув определенной скорости, конус становится независимым от стартерного насоса и начинает работать самостоятельно. При рабочей скорости от 1800 до 2300 оборотов в минуту жидкость нагревается до 300 F, возникает необходимость в теплообменнике. Вследствие этого использовалось растительное масло, так как при температуре 300 F вода закипает, а обычное машинное масло разрушается.

Единственным дополнительным источником питания была 12+вольтная батарея. Клем никогда не подавал заявку на патент, так как конструкция его мотора была разработана на основе ранее запатентованной конструкции асфальтового насоса. Пятнадцать фирм отклонило его изобретение, прежде чем большая угольная компания предложила ему финансовую поддержку и подписала контракты на продажу мотора. Вскоре после того как документы были подписаны, Ричард Клем умер от сердечного приступа.

Конструкция двигателя Клема

Внутри двигателя находится конус, закрепленный на горизонтальной оси. Вал, на котором укреплен конус, пустой внутри и переходит в спиральные полые каналы внутри конуса. Они обвивают конус и заканчиваются у его основания соплами (форсунками).

Жидкость подается в центральную ось под давлением 300-500 фунтов на квадратный дюйм, проходит по спиральным каналам и выпрыскивается через форсунки, что заставляет конус вращаться. Чем больше давление жидкости, тем быстрее вращается конус.

При дальнейшем увеличении скорости жидкость нагревается, что требует наличия теплообменника и фильтра. При некоторой скорости конус начинает самостоятельное вращение, независимое от двигателя. Скорость вращения вала достигает 1800-2300 оборотов в минуту.

Что случилась с изобретением Клема?

Как только у изобретателя случился сердечный приступ и его документы были изъяты, его сын отвез один действующий двигатель на ферму неподалеку от Далласа. Там он залил его бетоном на глубине 10 футов, и двигатель продолжал работать на этой глубине в течение нескольких лет.

Мотор был проверен корпорацией Bendix. Тест заключался в присоединении двигателя к динамометру для измерения мощности на валу.

Измерения показали, что двигатель устойчиво производил 350 лошадиных сил в течение 9 дней, что поразило инженеров фирмы Bendix. Они пришли к выводу, что источник, который может вырабатывать столько энергии в закрытой системе в течение столь длительного времени, может быть только ядерным.

Конструкция двигателя не содержит нетрадиционных деталей, за исключением конуса со спиральными каналами и пустотелого вала.

Пример реализации двигателя Клема

Мотор (красный прямоугольник) вращает «вертушку» Сегнера, в центре которого есть колено, опущенное в жидкость. Благодаря принудительному вращению вода снизу поднимается в «вертушку», а затем центробежными силами перемещается к соплам на дистальных концах трубочек и выбрасывается «назад», «подталкивая» таким образом вращение «вертушки». Это модель как двигателя Клема, так и двигателя Шаубергера, хотя у Шаубергера есть дополнительные заморочки.

И сразу вопрос, как в такой системе можно получить энергии больше, чем придется затратить на раскрутку колеса Сегнера? Итак, мы раскручиваем нашу «вертушку». Чтобы раскрутить такой маховик, надо затратить определенное количество энергии E=(I*w^2)/2, где I – момент инерции «вертушки», w – частота вращения (об/с). Эта формула хорошо известна. Но после раскрутки до заданной частоты затраты на вращение необходимы только для преодоления трения. А это уже значительно меньше первоначальных затрат. Итак, наша «вертушка» крутится…

Рассмотрим теперь энергетический баланс единичного объема жидкости V при перемещении его по замкнутому циклу ABCD во время вращения «вертушки». Ясно, что на участках AB и СD действует сила тяжести. Вверх – затраты, вниз – их возврат. В итоге в сумме ноль. При движении объема жидкости по отрезку DA нет перепада давления, да и скорость движения практически нулевая, так как всякий градиент давлений выравнивается силой тяжести, работает Природа. Работа на этом участке тоже равна нулю.

А вот на участке BC за счет вращения создается перепад давления, если в центре «вертушки» давление примем равным нулю, то на периферии давление уже равно P, которое прямопропорционально квадрату радиуса «вертушки». А, как известно произведение V*P – это работа центробежной силы над элементарным объемом воды. Значит на этом участке «вертушка» пополняется энергией просто потому, что у нее такая конструкция, и она вращается. И на каждом обороте энергии становится всё больше и больше. А так как мотор наш после раскрутки «вертушки» тратит энергию только на преодоление трения, то такая порция энергии приведет к увеличению скорости вращения «вертушки», либо можно снизить мощность мотора при сохранении частоты вращения, либо увеличить нагрузку, что будет равноценно увеличению трения.

Комбинатор скорости

Как работают и на что способны гибридные двигатели для космопланов

Британская компания Reaction Engines в конце октября 2019 года провела успешные испытания предохладителя, одного из самых важных компонентов перспективного комбинированного ракетного двигателя SABRE, с помощью которого будут совершать космические полеты ракетопланы. Испытания компонента проходили на скорости воздушного потока около 5 чисел Маха и температуре 1000 градусов Цельсия. В связи с этим мы решили вспомнить историю появления комбинированных, иначе называемых гибридными, двигателей для летательных аппаратов и разобраться, как именно работает британская силовая установка.

Так покоряли скорость

На 1940-1950-е годы пришелся бум развития авиационного моторостроения — появились и начали серийно использоваться на самолетах реактивные двигатели различных конструкций. Эти силовые установки на боевых самолетах обеспечивали повышенную маневренность и лучшее ускорение по сравнению с традиционными поршневыми двигателями, а также позволяли выполнять, пусть и кратковременные, полеты на скорости, превышающей скорость звука.

В 1950-х годах началась разработка новых боевых и разведывательных летательных аппаратов, способных безопасно для себя действовать в воздушном пространстве, охраняемом системами противовоздушной обороны противника. В частности, ставка делалась на скорость полета — считалось, что чем быстрее летит самолет, тем меньше шансов у зенитной ракеты его догнать.

Необходимость наращивать скорость потребовала поиска новых конструкторских решений. Дело в том, что уже существовавшие тогда воздушно-реактивные авиационные двигатели при всех возможных ухищрениях не могли обеспечить скорость полета больше 2–2,5 числа Маха.

На большой скорости полета на входе двигателя воздушный поток резко тормозится, из-за чего происходит, помимо прочего, его сжатие и рост температуры. Это, в свою очередь, приводит к снижению эффективности работы компрессора, а затем и неэффективному сгоранию топлива.

Разработчики авиационной техники начали экспериментировать с другими двигателями. Наиболее очевидным вариантом оказался ракетный двигатель, не имеющий ограничений по скорости встречного воздушного потока, поскольку для сжигания топлива атмосферный кислород он не использует.

Такой двигатель способен обеспечивать высокие скорости полета. Например, американский экспериментальный самолет Bell X-1 уверенно развивал скорости полета, близкие к 2 числам Маха, а в 1953 году достиг скорости в 2,5 числа Маха на высоте 21,4 тысячи метров. В 1963 году ракетоплан X-15 развил гиперзвуковую скорость в 5,58 числа Маха.

Тем не менее, ракетные двигатели плохо подходили для создания серийных военных, главным образом разведывательных, самолетов. Дело в том, что они не могли обеспечить большую продолжительность полета, а учитывая политическую обстановку того времени, она была крайне желательна, поскольку СССР от США отделяет значительное расстояние.

Так исследователи начали работать над комбинированными двигателями, которые могли бы сочетать в себе свойства силовых установок разных классов.

Например, в СССР в конце 1950-х — в 1960-х годах велась разработка комбинированных ракетно-прямоточных двигателей для разведывательных беспилотных летательных аппаратов. Такие двигатели сочетали в себе ракетную силовую установку и стоящую за ней прямоточную воздушно-реактивную установку.

Если упрощенно описывать работу такого двигателя, то она выглядела следующим образом: ракетная силовая установка сжигала топливо не полностью, после чего газовая струя с не сгоревшим топливом поступала в прямоточный двигатель, где тормозилась и сжималась. Там топливо дожигалось, и отработанные газы выходили из двигателя, создавая тягу.

Аналогичные проекты существовали и в США. В целом по теме комбинированных двигателей разработки велись по нескольким направлениям. Помимо ракетно-прямоточных создавались турбопрямоточные (газотурбинный и прямоточный контуры) и ракетно-турбинные (ракетный и газотурбинный контуры).

Некоторые проекты таких силовых установок предполагали, что они смогут обеспечить скорость полета больше 3 чисел Маха, а некоторые, работающие в том числе и на водороде, — больше 5 чисел Маха. К гиперзвуковой принято относить скорость больше 5 чисел Маха.

Полет «Черного дрозда»

В конце 1960-х годов американские ВВС и Центральное разведывательное управление начали использовать для разведки принципиально новый самолет SR-71 Blackbird, способный на длительные полеты на скорости в 3,17 числа Маха.

Допустимым был и кратковременный полет на скорости в 3,3 числа Маха, но при этом необходимо соблюсти множество условий, в том числе и по нагреву носовой части летательного аппарата. В полете планер самолета мог разогреваться до 450-480 градусов Цельсия.

Читать еще:  Вред эфира при запуске двигателя

В 1976 году SR-71 установил рекорд скорости при полете по прямой, составивший 3529,56 километра в час (около 3,3 числа Маха) на высоте 25,9 тысячи метров (это, к слову, тоже было рекордом).

Такой скорости самолет, списанный в 1998 году, мог достигать благодаря комбинированным турбопрямоточным двигателям J58, которые сам разработчик — компания Pratt & Whitney — называл турбореактивными двигателями изменяемого цикла.

По сути, силовая установка J58 сочетала в себе обычный турбореактивный двухконтурный двигатель с форсажной камерой и прямоточный воздушно-реактивный двигатель. Воздухозаборник установки был оборудован подвижными в горизонтальной плоскости конусами.

Основную тягу при полете на скоростях до 2 чисел Маха обеспечивали турбореактивные двигатели, размещенные внутри прямоточных воздушно-реактивных. В таком режиме бóльшая часть поступающего воздуха проходила через зону компрессоров, сжималась, смешивалась с топливом и поступала в камеру сгорания.

Истекающие из камеры сгорания разогретые газы вращали турбину, которая раскручивала входной вентилятор турбореактивного двигателя. По мере роста скорости полета конусы в воздухозаборниках задвигались, постепенно отводя все больше воздуха в обходные каналы прямоточных двигателей.

При этом минимальный приток воздуха в турбореактивный двигатель все равно сохранялся, но уже просто для поддержания его стабильной работы.

При скорости полета около 3 чисел Маха конусы уже были задвинуты почти полностью — бóльшая часть набегающего воздуха сжималась за счет торможения на входе в двигатель и образования в нем ударных волн, из-за этого нагревалась и, минуя компрессоры, камеру сгорания и турбину, поступала сразу в форсажную камеру.

Там воздух смешивался с топливом и раскаленными газами из камеры сгорания турбореактивного двигателя. В таком режиме полета только 10 процентов тяги обеспечивались контуром обычного реактивного двигателя, а 90 процентов — прямоточного.

Сегодня американская компания Lockheed Martin в инициативном порядке разрабатывает разведывательный гиперзвуковой беспилотный летательный аппарат SR-72, способный выполнять полеты на скорости до 6 чисел Маха.

Разработчики утверждают, что этот аппарат также получит комбинированный двигатель, в котором будут объединены качества сразу трех силовых установок: турбореактивной, сверхзвуковой прямоточной и гиперзвуковой прямоточной воздушно-реактивной. Последние две, объединенные в одном корпусе, будут иметь с турбореактивной установкой общие воздухозаборник и сопло.

По похожей схеме для своего гиперзвукового беспилотника разрабатывает комбинированный двигатель китайский Научно-исследовательский и проектно-конструкторский институт авиации в Чэнду. Его силовая установка будет сочетать в себе качества турбореактивного, ракетно-прямоточного и ракетного двигателей.

Китайский двигатель, прошедший первый этап стендовых испытаний в январе текущего года, как предполагается, сможет разгонять беспилотный аппарат до скорости около 6 чисел Маха.

В космос на самолете

В феврале 2018 года российское Опытно-конструкторское бюро имени Люльки провело испытания комбинированного турбопрямоточного пульсирующего детонационного двигателя. Испытания установки — уменьшенного прототипа двигателя — проходили в турбореактивном и прямоточном режимах.

Частота детонации топливной смеси в новом российском двигателе составляет 20 килогерц. Силовая установка разрабатывается для применения на самолетах, способных на традиционный аэродромный взлет и полеты за пределы атмосферы.

Детонацией называется такое горение какого-либо вещества, в котором фронт горения распространяется быстрее скорости звука. При этом по веществу проходит ударная волна, за которой следует химическая реакция с выделением большого количества энергии.

В современных двигателях сгорание топлива происходит с дозвуковой скоростью. Такое горение называется дефлаграцией.

Детонационные двигатели конструктивно делятся на два основных типа: импульсные (или пульсирующие) и ротационные.

В импульсных двигателях происходят короткие взрывы по мере сгорания небольших порций топливо-воздушной смеси. В ротационных же горение смеси происходит в кольцевой камере постоянно без остановки. Детонационные двигатели способны работать в широком пределе скоростей полета — от 0 до 5 чисел Маха.

Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствуют компрессор и многие движущиеся части.

Некоторые разработчики считают комбинированные двигатели ключом к созданию космопланов, не нуждающихся в дополнительных ступенях. В отличие от уже не используемых американских Space Shuttle или советского «Буран», которые не могли обходиться без ракет-носителей, или разрабатываемого сегодня американского SpaceShipTwo, который не может обходиться без самолета-носителя White Knight Two.

Космопланы с комбинированными двигателями смогут взлетать с наземных аэродромов и самостоятельно вылетать за пределы атмосферы. Такие аппараты можно будет использовать как для дешевой доставки небольших спутников на орбиту, так и для космического туризма.

Британская компания Reaction Engines создает собственный комбинированный двигатель для космоплана Skylon собственной же разработки (хотя изначально речь шла о небольшой ракете-носителе). Британский двигатель можно отнести к классу ракетно-турбинных комбинированных силовых установок, поскольку он будет сочетать в себе свойства турбореактивного и ракетного двигателей.

Упрощенно схема работы SABRE выглядит следующим образом: в полете воздух поступает в воздухозаборник, затем в компрессор, а потом в камеру сгорания ракетной части. Там он уже смешивается с водородом, смесь сгорает, а истекающие газы — создают тягу.

Такой режим предполагается использовать для полетов в пределах атмосферы и на скорости до 5,5 числа Маха. После превышения этой скорости воздухозаборник будет полностью перекрываться. При этом для сжигания водорода в ракетной части двигателя будет использоваться жидкий кислород из кислородных баков.

Этой схемой работы SABRE похож на комбинированный двигатель LACE, конструкцию которого в 1980-х годах предложил британский конструктор Алан Бонд.

В двигателе LACE на атмосферном участке полета жидкий кислород планировалось получать из атмосферного воздуха путем его охлаждения. Кроме того, в LACE турбина должна была раскручиваться газами, истекающими из ракетной части двигателя. Вращение турбины передавалось бы на компрессор, сжимающий воздух, который поступал бы из воздухозаборника.

Проект LACE разрабатывался в рамках засекреченной программы HOTOL, предполагающей создание космоплана. Эта программа была закрыта в 1989 году из-за нехватки финансирования.

SABRE

SABRE расшифровывается как Synergetic Air Breathing Rocket Engine, синергический воздушно-реактивный ракетный двигатель. Эта силовая установка состоит из нескольких ступеней: воздухозаборника, предохладителя, компрессора, системы охлаждения, камеры сгорания, сопла и «прямоточных дожигателей».

В полете воздух будет попадать в воздухозаборник, где будет происходить его сжатие и, как следствие, нагрев. На скоростях около 5 чисел Маха нагрев воздуха может достигать 1,5 тысячи градусов — это критично высокая температура как для самого двигателя, так и для эффективного сжигания топлива.

В предохладителе, состоящем из 16800 тончайших трубок, воздух будет охлаждаться до температуры в -150 градусов Цельсия. Внутрь трубок под давлением почти в 200 атмосфер закачивается жидкий гелий, выполняющий роль теплоносителя.

После предохладителя воздух поступает в компрессор, способный сжимать его до 140 атмосфер, после чего сжатый воздух поступает в камеру сгорания ракетной части двигателя. Тягу будут создавать отработавшие газы, истекающие из сопла.

Гелий, нагреваясь от воздуха и от этого расширяясь, в предохладителе сначала будет поступать в зону турбины, раскручивая ее. Вращение от турбины будет передаваться на компрессор.

После турбины гелий будет подаваться в охладитель. Там его температура снизится за счет теплообмена с жидким водородом, подающимся по сети трубочек из топливного бака. Нагревшийся водород из системы охлаждения частично будет поступать в камеру сгорания ракетной части двигателя.

Разработчики отмечают, что из-за нагрева в камере охлаждения будет образовываться больше нагретого водорода, чем необходимо для работы ракетной части двигателя. Излишки водорода и будут сгорать в «прямоточных дожигателях». Последние представляют собой небольшие прямоточные воздушно-реактивные двигатели, играющие двойную роль.

Во-первых, они будут сжигать излишки водорода, внося небольшой вклад в создание тяги двигателя. Во-вторых, в них из зоны забора компрессора (расположена перед ним) будут стекать излишки воздуха, не попавшие в основной контур двигателя.

На скорости более 5,5 числа Маха воздухозаборник силовой установки будет полностью перекрываться. При этом ракетный двигатель переключится на подачу окислителя — жидкого кислорода — из кислородного бака.

Отличительной чертой комбинированного двигателя SABRE разработчики называют его относительную компактность — по своим размерам он не будет превышать турбовентиляторный двигатель F135, стоящий на американских истребителях F-35 Lightning II.

Длина F135 составляет 5,6 метра, а наибольший диаметр — 1,2 метра. Двигатель имеет массу 1,7 тонны без учета дополнительных систем.

На протяжении ближайшего года Reaction Engines намерена провести серию испытаний не только предохладителя, но и нескольких других частей перспективного комбинированного двигателя.

Параллельно будет вестись сборка первого полноразмерного образца силовой установки, стендовые испытания которого планируется начать в конце 2020-го или в 2021 году. Предполагается, что космопланы с двигателями SABRE могут начать выполнять регулярные полеты в 2030-х годах.

Современные авиационные и космические разработки, помимо прочего, нацелены на уменьшение стоимости полета и запусков. Предполагается, что комбинированные двигатели помогут решить эту задачу. Но существуют и другие разработки, в том числе ротационных детонационных и гиперзвуковых прямоточных воздушно-реактивных двигателей. О некоторых из таких разработок мы рассказывали в материале «Установки на будущее».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector