Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок управления двигателем

Блок управления двигателем

Любое современное техническое устройство, содержащее движущиеся рабочие органы, имеет в своем составе блок управления. Непосредственными движителями (исполнительными механизмами) этих органов являются приводы, представляющие собой устройства различной природы: электрические, электромагнитные, гидравлические, пневматические и т. д. Задачей упомянутого блока является целенаправленное воздействие на них с целью изменения характеристик движения рабочих органов: их скорости, угла поворота, положения и пр.

Электронный блок управления системой автомобиля

В автотехнике этот общий термин применяется для электронных схем, отвечающих за работу систем автомобиля и конструктивно выполненных в виде отдельных блоков. При этом каждый из них может отвечать за один или несколько агрегатов. Так, в автомобилях можно встретить электронный модуль управления трансмиссией (англ. PCM). Это, как правило, комбинированное устройство, содержащее схемы контроля двигателя (англ. ECU) и (коробки) передачи (англ. TCU). Таким образом, PCM представляет собой конструктивно объединенный блок управления системами автомобиля. Но в некоторых моделях авто, например фирмы «Крайслер», обе эти схемы (ECU и TCU) конструктивно обособлены.

Встречаются также аналогичные устройства для тормозов, дверей, сидений, аккумулятора и т. д. Некоторые современные авто содержат до 80 таких схем. При этом каждую из них можно определить как отдельный, функционально (а иногда и конструктивно) обособленный электронный блок управления. С точки зрения схемотехники большинство из них представляют собой высоконадежные встраиваемые микроконтроллеры. Общей же тенденцией автомобилестроения является объединение всех таких устройств в общую электронную систему автомобиля с центральным компьютером.

Блок управления двигателем (ECU) автомобиля

В самом общем смысле это — устройство для формирования воздействий на ряд исполнительных органов, изменяющих параметры режимов работы двигателя внутреннего сгорания (ДВС) с целью их оптимизации. Критерием оптимизации обычно выступает расход топлива. требуемый для реализации движения с заданной скоростью при имеющейся нагрузке.

ECU обеспечивает выполнение следующих действий:

• считывание значений из большого количества датчиков внутри моторного отсека,

• интерпретации данных с использованием многомерных карт производительности (так называемых справочных таблиц),

• корректирования состояния исполнительных элементов на двигателе согласно справочным таблицам.

Где находится блок управления ECU? На фото ниже показано типовое место его расположения под приборной панелью автомобиля.

Что из себя представляет микропроцессор ECU

Современный ECU может содержать 32-битный, 40-МГц микропроцессор. Это может показаться не слишком быстродействующим устройством по сравнению с процессором 500-1000 МГц, который вы, вероятно, имеете в своем ПК, но помните, что микропроцессор ECU работает с гораздо меньшим объемом памяти, составляющим в среднем ECU менее 1 мегабайта. В вашем же ПК, по крайней мере, 2 гигабайта оперативной памяти — это в 2000 раз больше.

Схема блока управления конструктивно выполнена в виде электронного модуля с чипом микропроцессора и сотнями других компонентов на многослойной печатной плате. Этот модуль закрепляется в общем корпусе вместе с блоком питания, а все электрические контакты выводятся на внешний электрический разъем. Так выглядит электронный модуль ECU (см. на фото ниже).

Другие электронные компоненты ECU

Аналого-цифровые преобразователи (АЦП) – это устройства для ввода в микропроцессор сигналов автомобильных датчиков, например датчика содержания кислорода. Его выходной сигнал является напряжением, непрерывно изменяющимся в диапазоне от 0 до 1,1 В. Микропроцессор понимает только цифровой код, поэтому АЦП преобразует сигнал датчика в 10-битовый двоичный код.

  • Выходные ключевые схемы. Блок управления двигателем зажигает свечи цилиндров, включает клапаны форсунок инжекторной системы подачи топлива, задействует вентилятор радиатора охлаждающей жидкости. Цепи управления этими устройствами подключены к выходным ключам ECU. Такой ключ либо открыт для протекания тока, либо закрыт – промежуточного состояния он не имеет. Например, выходной ключ вентилятора может коммутировать ток 0,5 А при напряжении 12 В на реле включения вентилятора. Сигнал небольшой мощности на выводе чипа микропроцессора открывает транзистор выходного ключа ECU, что позволяет включить уже электромагнитное реле вентилятора, коммутирующее ток его электродвигателя, достигающий нескольких ампер.
  • Цифро-аналоговые преобразователи (ЦАП). Иногда ECU должен предоставить аналоговое выходное напряжение для управления некоторыми исполнительными устройствами. Поскольку микропроцессор ECU является цифровым устройством, то оно должно иметь ЦАП, преобразующий цифровой код в аналоговое напряжение.
  • Формирователи сигналов. Иногда входные или выходные сигналы должны быть изменены по величине перед их преобразованием. Например, АЦП может иметь диапазон входных сигналов от 0 до 6 В, а сигнал датчика — находиться в диапазоне от 0 до 1,5 В. Формирователь сигнала для АЦП умножит напряжение этого датчика, на 4, и на выходе его получится сигнал в диапазоне 0-6 В, который уже может быть прочитан и преобразован АЦП более точно.

Ниже мы раскроем содержание отдельных функций ECU.

Управление приборной панелью

Приборы на ней отображают текущее состояние различных систем авто. Эта информация поступает на индикацию после использования соответствующими блоками управления. Так, из ECU подается значение температуры охладителя двигателя и частота вращения его коленвала. Блок управления передачей (TCU) оперирует величиной скорости движения. Блок, управляющий тормозами, имеет информацию о их состоянии.

Все эти модули просто выставляют свои данные на общую для них шину передачи данных, с которой их считывает центральный микропроцессор, например в ECU. Он же периодически выставляет на ту же шину пакеты информации, состоящие из заголовков и данных. Заголовок определяет назначение данных пакета: либо на индикатор скорости, либо на индикатор температуры, а сами данные и есть величины для индикации. Приборная панель содержит другой модуль, который знает, как искать определенные пакеты — всякий раз, когда он обнаруживает их, обновляет соответствующий датчик или индикатор с новым значением.

Большинство автопроизводителей покупают приборные панели уже полностью собранными, от поставщиков, которые их разрабатывают и изготавливают.

ECU инжекторных двигателей

Система питания современных двигателей внутреннего сгорания — как бензиновых, так и дизельных – строится по принципу прямого впрыскивания топлива. Основным ее исполнительным устройством является впрыскиватель, инжектор. В отличие от карбюраторной системы, инжектор впрыскивает топливо непосредственно в цилиндры или впускной коллектор к воздушному потоку с помощью одной или нескольких механических или электрических форсунок.

Сегодня форсунками руководит микропроцессор ECU инжекторного двигателя. Принцип работы такой системы основывается на том, что решение о моменте и продолжительности открытия электромагнитных клапанов форсунок принимается на основании сигналов, поступающих от многих датчиков.

Управление соотношением «воздух-топливо»

Для инжекторного двигателя ECU определяет количество впрыскиваемого топлива на основе анализа ряда параметров. Если датчик положения дроссельной заслонки показывает, что педаль газа нажимается все дальше, то датчик массового расхода измеряет количество дополнительного воздуха, всасываемого в двигатель, а ECU рассчитывает и вводит соответствующее количество топлива в двигатель. Если датчик температуры охлаждающей жидкости двигателя показывает, что последний не прогрет, то впрыск топлива будет увеличиваться, пока двигатель не прогреется. Контроль ECU топливо-воздушной смеси на карбюраторном двигателе работает аналогично, но по сигналам датчика положения поплавка карбюратора.

Управление углом опережения зажигания

Двигатель с искровым зажиганием требует искры, чтобы инициировать горение в камере сгорания. ECU может настраивать точное время зажигания искры в такте сжатия (так называемое опережение зажигания), чтобы обеспечить ему оптимальный режим работы. Если он обнаруживает, что двигатель стучит, т. е. имеет место детонация – состояние, которое потенциально разрушительно для двигателя, и определяет его как результат слишком раннего зажигания, то оно задерживается. Поскольку детонация, как правило, возникает на низких оборотах, ECU может отправить сигнал для АКПП на понижение передаточного отношения в первой попытке его прекратить.

Как управляются стекла в вашем авто

Задумывались ли вы, какой механизм поднимает и опускает окна вашего автомобиля вверх и вниз? И как должен работать блок управления стеклоподъемниками?

Механизм подъема устроен так: небольшой электродвигатель крепится к червячной передаче, после которое установлены еще несколько других зубчатых колес, чтобы достичь большого передаточного числа. За счет этого маломощный исполнительный двигатель создает достаточный крутящий момент для поднятия окна.

В современных автомобилях цепи управления двигателей стеклоподъемников всех дверей заведены в специальный электронный блок управления стеклоподъемниками. Он обычно совмещает в себе также функции управления положением зеркал и дверных замков.

В некоторых автомобилях управление всеми этими функциями плюс управление положением сидений совмещено в одном блоке, называемом «блоком контроля тела».

Вентилятор радиатора двигателя: как он управляется?

Электрический вентилятор радиатора двигателя автомобиля включается либо в замок зажигания (и тогда он работает, пока двигатель работает), либо в блок управления вентилятором с термостатическим выключателем.

Термостат не включает вентилятор до тех пор, пока охлаждающая двигатель жидкость не нагреется выше ее нормальной рабочей температуры. Отключает же его термостат, когда она снова охладится. Интервалы включения/выключения блок управления вентилятором формирует в зависимости от сигнала с датчика температуры охладителя.

Что обеспечивает тепло в салоне?

Все машины оборудованы обогревателем салона (в просторечии печкой), который предназначен для использования тепла от двигателя, вдуваемого затем в салон.

После прогрева двигателя и соответствующего подогрева охлаждающей жидкости она передается в обогреватель, представляющий собой небольшой радиатор. Когда воздух над ним прогревается от протекающей по трубкам обогревателя жидкости, он нагнетается в салон небольшим вентилятором.

Управление обогревателем регулируются либо ручным способом, при котором водитель просто включает/выключает вентилятор подачи теплого воздуха в салон, либо автоматическим управлением, в котором задействован отдельный блок управления печкой, или же система климат-контроля автомобиля под управлением центрального компьютера.

Исполнительным органом при всех способах управления остается вентилятор подачи теплого воздуха, хотя в некоторых моделях автомобилей используется и клапан управления нагревателем, который останавливает ток охлаждающей жидкости в обогреватель, когда он не используется. Обогреватели сидений используют электронагревательные элементы, а не охлаждающую жидкость двигателя для достижения эффекта нагрева.

Несколько слов о бытовой технике

Многочисленные изделия бытовой техники имеют встроенные электроприводы, приводящие в движение их рабочие органы: ножи мясорубок и чопперов, различные насадки кухонных комбайнов и миксеров, активаторы стиральных машин. Здесь же можно вспомнить и различные ручные электроинструменты. В большинстве случаев эти изделия оснащены электродвигателями постоянного тока, которые допускают простой способ регулирования их частоты вращения при помощи переменных резисторов, подвижные контакты которых выводятся на органы управления.

Исключением из этого правила являются современные стиральные машины. Они оснащаются, как правило, бесконтактными (в отличие от двигателей постоянного тока) однофазными асинхронными двигателями. Поскольку частота вращения такого двигателя определяется частотой тока в питающей электросети, то для ее изменения используется специальный электронный блок управления стиральной машины.

По сути, он представляет собой частотный электропривод. Его задачей является питание обмотки статора приводного электродвигателя током такой частоты, при котором скорость вращения двигателя (и активатора) соответствовали бы заданному режиму. Так, при полоскании белья нужна минимальная скорость вращения, а при его отжиме — максимальная.

В большинстве современных домохозяйств стиральные машины используются весьма интенсивно. Поэтому частым видом их неисправности является выход из строя какого-либо элемента управляющей схемы. После чего следует неизбежная замена блока управления.

Получаемая ЭБУ информация и сигналы управления исходящие с него

Карбюраторные автомобили шли с конвейера без мозгов, так как все управление в них реализовано механически. С приходом инжекторных систем питания машины начали наполняться всевозможной электроникой. Обработкой информации от датчиков и генерацией управляющих сигналов занимается ЭБУ. Выход его из строя способен полностью обездвижить железного коня, поэтому к модулю управления следует относится с повышенной внимательностью.

Внешний вид электронного блока управления

Для правильного дозирования подаваемого топлива в электронный блок управления приходит информация:

  • частота вращения коленвала, определяемая датчиком положения;
  • возникновение детонации в процессе эксплуатации;
  • массовый расход воздуха мотором;
  • отклонение от номинального напряжения бортовой сети машины;
  • скорость авто;
  • температура в системе охлаждения двигателя;
  • какое положение занимает дроссельная заслонка;
  • процент кислорода в выхлопных газах;
  • наличие дополнительных нагрузок на двигатель, например, включение кондиционера.

Количество датчиков и соответственно объем получаемой информации зависит от модели автомобиля. В бюджетных машинах ЭБУ обладает только основными данными. Наиболее развитые электронные блоки собирают и оперируют информацией о каждом узле машины, что сказывается на динамических характеристиках и экономичности авто.

После обработки данных блок управления инжектором подает сигналы для:

  • открытия и закрытия форсунок;
  • контроля искрообразования;
  • выбора режима работы топливного насоса;
  • поддержания стабильных оборотов холостого хода;
  • включения и выключения вентилятора системы охлаждения;
  • подключения или отключения кондиционера электромагнитной муфтой;
  • улавливания паров бензина адсорбером;
  • проведения самодиагностики агрегатов.

Работа электронного блока управления предполагает оперирование большим количеством информации в режиме реального времени. Неточность в любом из каналов приведет к нестабильной работе двигателя, увеличению расхода топлива и потере динамических характеристик, поэтому все возникающие поломки в электронике требуют незамедлительного устранения.

Конструктивные особенности электронного блока управления

Для работы с информацией, поступающей в модуль, ЭБУ имеет несколько видов памяти:

  • Алгоритм управления двигателем в зависимости от режима эксплуатации находится в программируемом постоянном запоминающем устройстве. Здесь же хранится и основная таблица различных калибровок параметров. При отключении питания вся информация остается на месте. Для стирания или перезаписи данных используется специальное оборудование, предназначенное для чип-тюнинга;
  • Энергозависимая память, хранящая временные данные и обрабатываемую электронным модулем информацию, называется оперативным запоминающим устройством. В ней происходит фиксация и выработка управляющих сигналов в зависимости от изменений параметров, поступающих с датчиков;
  • Сохранение кодов и паролей происходит в электрически репрограммируемом запоминающем устройстве. Данный тип памяти является энергонезависимым, но в отличии от ППЗУ не требует специального оборудования для перезаписи.

Ввод информационных сигналов у качественных электронных модулей осуществляется через гальваническую развязку. Это предотвращает повреждение главных чипов блока управления в случае выхода какого-либо датчика из строя. От внутренних ошибок модуль защищен различными методами самодиагностики и коррекции сбоев, что помогает избегать ситуации, когда автомобиль остается без мозгов.

Неполадки, возникающие в модуле

Причины, почему автомобиль может остаться без мозгов, наиболее часто возникают по вине автовладельца. Так, например, попытка перезаписать программное обеспечение при проведении чип-тюнига может закончится неудачей, если автолюбитель выбрал не правильное ПО. Также причинами вызывающими поломку ЭБУ являются:

  • Неудачное расположение модуля управления. Например, в автомобилях ВАЗ 2113 – 2115 ЭБУ установлен рядом с радиатором печки. Помимо теплового воздействия, блок может залить охлаждающей жидкостью, после чего машина останется без мозгов;
  • Ухудшения контакта между клеммами и генератором или аккумулятором. Это вызывает скачки бортового напряжения автомобиля. ЭБУ защищен от перепадов напряжения, но продолжительное воздействие способно вывести блок из строя;
  • Возникновение ЭДС в первичной обмотке катушки ведет к пробою транзисторов электронного блока управления. Электродвижущая сила обычно возникает при плохом контакте свечей зажигания или повышенном внутреннем сопротивлении высоковольтных проводов.

Для определения неисправности необходимо прочитать лог ошибок, сохраненный в мозгах инжектора. Для этих целей существует специальный диагностический разъем. Расположение его зависит от конкретной модели автомобиля. Например, в автомобилях ВАЗ с высокой панелью диагностический разъем находится внутри центральной консоли.

Расшифровка кодов ошибок на примере ВАЗ 21074

Если мозги инжектора обнаружили неисправность в работе двигателя, то об этом будет сигнализировать загоревшаяся лампочка «check engine». Понять какая именно неисправность произошла по данному оповещению невозможно. Для более точного определения поломки требуется подключить диагностический сканер к специальному разъему. При его помощи из памяти ЭБУ считывается лог ошибки, который можно расшифровать при помощи справочников по конкретному автомобилю. Так, например, для ВАЗ 21074 наиболее часто встречаемыми ошибками являются:

  • Неисправность воздушного датчика;
  • Неоптимальный режим сгорания бензовоздушной смеси. В результате выхлопные газы имеют повышенную токсичность. Лямбда-зонд может выдать эту ошибку, например, если в выхлопе находятся пары несгоревшего бензина;
  • Требуется драйверная проверка модуля управления инжекторными двигателями;
  • Проблемы с получением информации от датчика температуры;
  • Состав горючей смеси не соответствует режиму работы двигателя. Причиной этого могут стать, например, загрязненные форсунки;
  • Неправильное определение момента возникновения детонации в работе двигателя;
  • Отсутствуют данные о положении дроссельной заслонки. Помимо повреждения самого считывающего элемента, возможен обрыв информационного шлейфа;
  • Температура мотора находится выше рабочего диапазон;
  • Медленный отклик сигнальной системы машины.

При выполнении считывания ошибок сканер указывает лишь на предположительное место неисправности, но не может указать причину вызвавшую поломку, поэтому после получения кода важно правильно его истолковать. При недостаточном понимании работы инжекторных двигателей и топливных систем может возникнуть ситуация, когда автовладелец, неправильно расшифровав лог ошибки, займется ремонтом исправного узла машины.

Эксплуатация автомобиля без электронного блока управления

В случае выхода из строя ЭБУ непопулярной модели найти новый модуль может стать большой проблемой. В таком случае автовладелец может пойти на радикальный шаг и сменить электронику на другую систему без мозгов. Инжектор в таком случае сменяется карбюратором, а зажиганием начинает управлять коммутатор.

Вносить столь серьезные изменения можно только в крайнем случае. Инжекторный двигатель спроектирован для работы под контролем электронного блока управления. При его отсутствии возможны провалы при разгоне, нестабильная работа и повышенный расход топлива. Убирать мозги можно только временно, например, для перегона авто.

Устранение неисправностей связанных с мозгами инжектора

При возникновении поломки ЭБУ автовладелец может захотеть поменять модуль на схожую модель. При этом важно учитывать, что каждые мозги изготавливаются под конкретную модель силовой установки, комбинацию датчиков, протяженность шлейфов. Прошивка также меняется от модели к модели, поэтому произвести просто перестановку блоков невозможно, даже если их разъемы идентичны.

При установке похожей модели без полного согласования параметров возможны негативные последствия:

  • двигатель перестает заводится;
  • автомобиль теряет былую резвость;
  • значительно возрастает расход топлива;
  • мотор нестабильно работает;
  • ЭБУ постоянно сигнализирует об ошибке.

Производить устранение неисправности заменой на похожий электронный блок управления категорически запрещается. Правильными методами устранения неисправностей являются:

  • Визуальный осмотр датчиков и проводов идущих к ним. Часто причина может скрываться в их механическом повреждении. Замена дефектного элемента на новый позволит избавится от поломки, которую выдает электронный блок управления;
  • Сделать перепрошивку программного обеспечения. Повышение динамических характеристик автомобиля очень часто возможно только при помощи чип-тюнинга;
  • Сделать перезагрузку мозгов инжектора путем снятия одной из клемм аккумулятора. Произошедший сбой в процессе эксплуатации можно сбросить отключив питание от ЭБУ. Данным методом рекомендуется пользоваться при однократном появлении ошибки. Если ситуация повторяется, то перезагружать модуль не имеет смысла.

При невозможности устранить поломку вышеуказанными способами, единственным верным решением является обращение в специализированный сервисный центр. После считывания лога ошибки сканером специалисты определят возможный круг неисправностей. После этого определяется оптимальный способ избавления дефекта.

Появление электронного блока управления значительно улучшило эксплуатационные свойства автомобиля. Произошло это благодаря возможности контроля режима работы силовой установки и корректировки параметров в режиме реального времени. В свою очередь, усложнение электроники машины привело к возникновению поломок, способных обездвижить железного коня.

1. Общее описание системы 5


1. Общее описание системы 5

Электронный блок управления 6

Функции электронного блока управления 6

Память электронного блока управления 7

2. Описание датчиков системы управления 7

Датчик углового положения коленчатого вала 7

Датчик положения распределительного вала 9

Датчик массового расхода воздуха и потенциометр регулировки СО 10

Датчик положения дроссельной заслонки ДПДЗ 11

Датчики температуры охлаждающей жидкости и впускного трубопровода 12

Датчик детонации 13

3. Принципы работы системы управления 13

Система топливоподачи 13

Топливный фильтр 15

Регулятор давления топлива 15

Топливные форсунки 17

Впускной тракт 19

Система вентиляции картера 21

Управление климатической установкой 22

4. Диагностика 22

Меры предосторожности при диагностике 23

Система бортовой диагностики 23

Диагностическая цепь 24

Работа диагностической лампы 25

Режим отображения кодов неисправностей 25

Самообучаемость электронного блока управления 25

Схема проведения диагностики 26

Описание диагностического прибора DST2 26

Глава II. Проверки электронной системы 31

1. Расположение узлов и элементов электронной системы в подкапотном пространстве 31

2. Схема электрических соединений ЭБУ (ответные части разъемов) 32

3. Цоколевка разъема блока управления 33

4. Предварительные проверки 36

Проверки перед пуском 36

Непостоянные неисправности 36

Проверки работоспособности элементов и узлов системы 37

КАРТЫ ТЕСТОВ ДЛЯ ПРИБОРА DST2 39

5. Диагностические схемы проверок работоспособности электронной системы 50

Раздел А. Проверка диагностической цепи 53

Раздел Б. Двигатель прокручивается, но не запускается 54

Раздел Г. Диагностические карты кодов неисправности 57

Раздел Г. Типичные неисправности 82

Глава III. Ремонт и техническое обслуживание 90

1. Приборы и оборудование, используемых для проведения работ 90

2. Электронный блок управления 91

3. Система подачи топлива 91

5. Регулятор добавочного воздуха 93

Глава IV. Технические характеристики и справочная информация 93

Система зажигания 93

Система топливоподачи 93

Датчики системы управления 93

Исполнительные устройства 94

Глава I. Электронная система управления двигателем МИКАС 5.4

1. Общее описание системы

Управление автомобилем с двигателем, оснащенным электронной системой управления, принципиально ничем не отличается от моделей с карбюраторным двигателем, с тем лишь замечанием, что наличие электроники в контуре управления позволяет достичь нового качества в критериях управления — токсичности, экономичности, комфортности, надежности, диагностики и т. д. Управляющие воздействия водителя через педаль открытия дроссельной заслонки, переключение передачи КПП, педаль тормоза, поворот рулевого колеса, включение-выключение различных потребителей энергии (свет, приемник, кондиционер и т. д.) в конечном итоге фиксируются электронным блоком управления и воспринимаются как задание на скорость движения автомобиля или ограничения на возможность достижения этой скорости. Датчики, находящиеся в распоряжении электронной системы управления, позволяют более полно определить рабочее состояние двигателя и по логике, заданной критериями управления, обеспечить цели управления через воздействие на исполнительные устройства системы:

УПРАВЛЕНИЯ

Исполнительные устройства:

— угол опережения зажигания

— характеристики искрового разряда Муфта компрессора кондиционера Вентилятор системы охлаждения (если установлен)

Система диагностики:

— колодка диагностики

Входные параметры:

Положение коленчатого вала

Частота вращения коленчатого вала

Массовый расход воздуха

Температура охлаждающей жидкости Положение дроссельной заслонки

Напряжение бортовой сети

Наличие запроса на включение кондиционера Наличие детонации

Температура впускного коллектора

ф орсунки, катушки зажигания, регулятор дополнительного воздуха, электробензонасос, и т.д.

Рис. 1.1.1 Схема электронного управления двигателем

Микропроцессорная система МИКАС 5.4 (рис. 1.1.1) обеспечивает прецизионное управление фазированным многоточечным впрыском бензина под избыточным давлением во впускной трубопровод двигателя внутреннего сгорания, управление зажиганием с обратной связью по детонации, управление регулятором холостого хода, дополнительными и антитоксическими устройствами в зависимости от режима его работы, окружающих условий и состояния самого двигателя. Система состоит из микропроцессорного блока управления, комплекта датчиков и исполнительных устройств, жгута проводов с соединителями.

Одной из обязательных функций электронного управления является проведение первичной диагностики самой системы и подсистем двигателя. Для этого в автомобиле предусмотрены средства диагностики — диагностическая лампа, диагностический разъем. Электронный блок управления, являющийся управляющим компьютером системы, по измеренным параметрам определяет неисправности в работе двигателя и системы, сигнализирует об этом водителю через включение диагностической лампы, устанавливает резервный режим управления двигателем, позволяющий эксплуатировать автомобиль до проведения квалифицированной диагностики и ремонта, а также использует свою память для хранения зафиксированных ошибок. При проведении диагностики и ремонта системы двигателя через диагностический разъем можно подключать к системе диагностическое оборудование для получения рабочей информации с блока управления, (подробнее о работе подсистемы самодиагностики см. глава I п.4). Диагностический разъем используется также на конвейере для начальной настройки системы.

Электронный блок управления

Б
лок управления МИКАС 5.4 (рис. 1.1.2) изготовлен на базе микропроцессора SAB80C517A фирмы SIEMENS, имеет объем оперативной памяти (RAM) 2 Кбайт и постоянной памяти (ROM) 32 Кбайт. Выходные ключи управления исполнительными устройствами имеют защиту от короткого замыкания. Система обладает самодиагностикой и аварийным режимом работы в случае повреждения датчиков.

Рис. 1.1.3 Размещение блока управления МИКАС 5.4 в салоне автомобиля

Рис. 1.1.2 Электронный блок управления МИКАС 5.4

Информация о текущих неисправностях системы индицируется на световом табло, установленном в салоне автомобиля (диагностическая лампа или светодиод с красным светофильтром), и заносится в память блока с последующей возможностью ее получения и обработки. Блок управления имеет возможность подключения к внешнему диагностическому устройству или к внешней ЭВМ. Блок управления размещается в салоне автомобиля (рис. 1.1.3) и закрепляется с помощью двух винтов. Не допускается попадание грязи, масла, влаги на корпус блока управления.

Электронный блок является мозгом электронной системы управления — управляющим компьютером. Он имеет устройства связи сдатчиками системы и исполнительными элементами и не подлежит ремонту и тестированию без специального оборудования и знаний.

Функции электронного блока управления

Блок управления собирает информацию с функционирования подсистем двигателя, обеспечивающих его работу датчиков системы и по сложной логике вырабатывает сигналы управления, необходимые для

топливоподача в двигатель

блок управляет включением-выключением бензонасоса; порядком и длительностью открытия форсунок

искровое зажигание

блок управляет катушками зажигания для искрообразования в двигателе

защита от детонации

блок формирует угол опережения зажигания, обеспечивающий работу двигателя без

стабилизация частоты вращения холостого хода

блок регулирует открытие клапана дополнительного воздуха для поддержания частоты

вращения холостого хода

электровентилятор системы охлаждения (на части автомобилей)

блок управляет включением-выключением реле электровентилятора системы охлаждения

Память электронного блока управления

Как и любой компьютер, блок управления имеет встроенные запоминающие устройства -электронную память (рис. 1.1.4). Различают постоянное запоминающее устройство — ПЗУ, в котором находится программа (алгоритм управления двигателем и данные калибровок), настроенная на конкретную комплектацию системы управления. Информация, хранящаяся в ПЗУ, не может быть перезаписана или удалена из ПЗУ.


ОЗУ — оперативное запоминающее устройство — память, необходимая для работы программы блока при изменении параметров управления и для хранения данных, корректирующих настройки системы под изменяющиеся условия работы двигателя. ОЗУ для хранения информации требует бесперебойного питания от бортовой системы автомобиля. Необходимо помнить, что при отключении аккумулятора информация из ОЗУ теряется. Это может привести к временному ухудшению эксплуатационных свойств автомобиля.

Рис. 1.1.4 Вид блока управления без крышки.

1-ПЗУ; 2- СППЗУ-память; 3 — процессор с ОЗУ

ЭСППЗУ — память не требующая питания для хранения информации. В ЭСППЗУ-память записывается информация связанная с начальными настройками системы по критериям токсичности, защищенности, а также записываются данные паспортного характера.

4.11. Исполнительные механизмы системы управления двигателем

Исполнительными механизмами для ЭБУ-Д являются разного рода электромагниты и электродвигатели, управление которыми осуществляется с помощью выходных сигналов, вычисленных контроллером с использованием входных сигналов от рассмотренных выше датчиков. К таким исполнительным механизмам в первую очередь относятся электробензонасос, топливные форсунки, регулятор холостого хода, модуль зажигания, клапан рециркуляции выхлопных газов и система отвода паров бензина из топливного бака. Управление ими обеспечивается подачей выходных аналоговых сигналов ЭБУ-Д на соответствующие связанные с ними реле и соленоиды.

Реле и соленоиды. Активизируются подключением одного из выводов к «массе» через транзисторный ключ, находящийся в ЭБУ-Д. Другие выводы подключены к плюсовому зажиму

аккумуляторной батареи через ключ зажигания (рис. 4.20).

С о л е н о и д

Рис. 4.20. Схема подключения электромагнитного четырехконтактного реле с ЭБУ-Д и исполнительным механизмом

Форсунки. Электромагнитные форсунки впрыскивают топливо во впускной коллектор двигателя. Каждая форсунка управляется независимо и включается один раз за оборот распределительного вала двигателя синхронно с тактом впуска своего цилиндра. Сопротивление обмотки 12 ± 4 Ом.

Сигнал на начало впрыскивания топлива подается на обмотку 1 (рис. 4.21) электромагнита, размещенную в металлическом корпусе. В корпусе расположен также запирающий элемент 3 клапана, прижимаемый к седлу отверстия распылителя пружиной 5 . Когда на обмотку электромагнита от

ЭБУ-Д подается электрический импульс прямоугольной формы определенной длительности, запирающий элемент перемещается, преодолевая сопротивление пружины, и открывает отверстие распылителя. Топливо поступает в двигатель. После прекращения электрического сигнала запирающий элемент под действием пружины возвращается в седло. Количество впрыскиваемого топлива за цикл при постоянстве давления на входе в форсунку зависит только от длительности управляющего импульса.

Рис. 4.21. Топливная форсунка (инжектор):

– о мотка электромагнита; 2 – якорь;

– запирающий элемент; 4 – упор;

– пруж на; 6 – магнитопровод;

– выходные контакты; 8 – штуцер для топлива

Рабочий ход запирающего элемента составляет 0,1 мм. Интервал времени, во время которого инжектор остается открытым, весьма незначителен – обычно в пределах 1,5…10 мс. Это время, требуемое инжектору, чтобы открыться и закрыться, является очень важным, так как оно определяет дозу впрыснутого в цилиндр топлива.

Время реакции для электромагнитных форсунок в значительной степени зависит от индуктивности обмотки. В отличие от прямоугольного импульса напряжения, подаваемого на обмотку электромагнита, возникающий в ней ток i под действием противоЭДС не будет иметь прямоугольную эпюру. Мгновенное его значение во время прохождения переднего

фронта импульса напряжения определится формулой

где U напряжение, подаваемое на обмотку электромагнита, В;

R ее активное сопротивление, Ом;

индуктивность этой обмотки, Гн.

Регулятор холостого хода (РХХ). Шаговый электродвигатель регулирует количество воздуха, проходящего через обходной канал дроссельного патрубка. Используется для регулирования оборотов холостого хода двигателя при закрытой дроссельной заслонке. Значение 0% (0 шагов) соответствует команде ЭБУ-Д на полное закрытие байпаса (by pass – обводной канал), значение 100% (150 шагов) – команде на полное открытие байпаса. На холостом ходу норма 5…50 шагов.

Реле электробензонасоса (РБН). Включает и выключает электробензонасос. Сопротивление обмотки 48 ±6 Ом.

Соленоид клапана продувки адсорбера в системе

утилизации паров бензина (СУПБ).

соленоиде клапан продувки открыт и пары бензина из адсорбера направляются во впускной коллектор для последующего сжигания в двигателе. ЭБУподает сигнал на продувку адсорбера, когда температура охлаждающей жидкости двигателя выше 66 °С и дроссельная заслонка не полностью закрыта. Сопротивление обмотки соленоида 48±6 Ом.

Соленоид клапана рециркуляции выхлопных газов СКР

(EGR – exhaust gas recirculation). Действует по принципу широтно-импульсной модуляции. При подаче напряжения на соленоид в мембранную камеру клапана рециркуляции подается разрежение из впускного коллектора и клапан EGR открывается, а при выключенном соленоиде на мембрану подается атмосферное давление и клапан EGR закрыт. Количество выхлопных газов, направляемых во впускной коллектор, определяется соотношением продолжительности включенного и выключенного состояний соленоида в соответствии с широтномодулированным сигналом от ЭБУ-Д. Значение 0% соответствует команде ЭБУ-Д на полное закрытие клапана EGR, 100% – команде на полное открытие. ЭБУ-Д может использовать клапан, если температура охлаждающей жидкости станет выше 66 °С, а дроссельная заслонка несколько приоткрыта. Сопротивление обмотки соленоида 48 ±6 Ом.

Силовой модуль зажигания (СМЗ). Содержит две катушки зажигания и два мощных транзисторных ключа для коммутации токов в первичных обмотках катушек. Момент искрообразования устанавливается с помощью ЭБУ-Д

автоматически в зависимости от режима работы двигателя. Сопротивление первичной обмотки в каждой катушке 1 ± 0,6 Ом. Сопротивление вторичной обмотки 10 ± 2 кОм.

Контрольная лампа («Check Engine»). Сигнализирует о неисправностях в электронной системе управления двигателем. При включении зажигания чек-лампа горит – проверяется бортовая диагностическая система. После запуска двигателя лампа гаснет, если неисправности не обнаружены. Лампа «Check Engine» загорается при появлении неисправностей в цепях, контролируемых ЭБУ-Д. В этом случае в память ЭБУ-Д (в регистратор неисправностей) заносится соответствующий код ошибки. Лампа «Check Engine» гаснет, если неисправность устранена и более не обнаруживается или когда стираются коды

ошибок. При обнаружении пропусков воспламенения, которые

могут повредить каталитический газонейтрализатор, лампа

«Check Engine» мигает.

Электробензонасос. Это погружной насос турбинного типа с электрическим приводом. Он устанавливается в топливном баке, запитывается напряжением 12 В через электромагнитное реле, которым управляет ЭБУ- . В карбюраторных ДВС применяют еще бензонасосы с механическим приводом. Однако в последнее время стали использовать в основном инжекторные

двигатели, использующие исключительно погружные электро-

голоса
Рейтинг статьи
Читать еще:  Что такое калибровка двигателя g4fc
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector