Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатели для заводах высокую температуре

Двигатели для заводах высокую температуре

Доктор БОГДАНОВ (Avic)
















Термин «терморежим» взят мною довольно условно в качестве названия темы. Эта тема объединяет мои размышления и действия, направленные на создание и поддержание оптимального температурного режима двигателя автомобиля в разных погодных условиях.

Прежде, чем читать дальше, нужно ознакомится с таблицей, взятой из книги «Химики автолюбителям!
Эта таблице для меня является отправной точкой во всех изысканиях, направленных на повышение экономичности эксплуатации автомобиля. К примеру, потери в системе охлаждения достигают 29%!

Воздействуя на каждый «прямоугольник» на рисунке «Распределение энергии в автомобиле. » можно добиться очень и очень много!

Классификация периодов терморежима двигателя и ККА (CFA — climatic factor adjustmen) по доктору Avic

Читая многочисленные комментарии и литературу, пришел к пониманию того, что очень важно при описании термодинамических процессов скрупулезно описывать условия их проведения. Иначе можно получить недостоверные выводы. В спорах с оппонентами можно рвать глотки за истину, но так к ней и не прийти, ибо или сам или оппонент случайно или специально замалчивает описание условий, при которых те или иные термодинамические процессы протекали.

К примеру, достопочтенные англичане в лаборатории BMW, приводя результаты своих достижения по сохранности тепла ДВС в течение 12 часов, почему то забыли указать «А при каких условиях?». При +40С или при -30С.

Сначала я немного был огорчен, что мой вариант утепления МО в 3 раза менее эффективнее, чем англицкий, но я честно указал при каких условиях. Англичане же забыли указать. Вот теперь и приходится сравнивать…. Только что и с чем?

Но и это ещё не всё. Вторая проблема в спорах на тему термодинамических процессов — это языковая, ибо нет практики применения единых терминов, описывающих термические процессы.. О чем я говорю? … О том, что к примеру, одна термо-линия на графике периодов терморежима ДВС отображает совершенно разные этапы и процессы работы ДВС. Поэтому- то собеседники зачастую не понимают друг друга.

В связи с этим я решил периодам дать названия, привязав их к двум важным взаимозависимым характеристикам работы ДВС – температуре и оборотам. Первая версия классификации создана 11.11.2011. Далее представлена модифицированная версия 3.1.

Н1. Период отсутствия оборотов — период, характеризующийся изменением температуры охлаждающей жидкости (ОЖ) от любых минусовых значений (-50С) до фактического нижнего предела вязкости масла (к примеру, — 3 0С), когда не удается запустить двигатель обычным способом.

H2. Период вынужденных высоких оборотов — период, характеризующийся низкой температурой, когда работа ДВС возможна только на высоких оборотах (>1000 об/мин).

H3. Период холостого хода (ХХ) — период, нижний предел которого характеризуется такой температурой, когда работа ДВС уже возможна на холостом ходу (ХХ) (

H4. Период нерегулируемого прогрева – интервал от +30С до первого открытия термостата

H5. Период рабочей температуры от +80 до +115С:

H5.1. — (экологический отрезок) – +80 — +85С, оптимальная для низкой концентрации токсических выхлопных газов;

H5.2. — (полной нагрузки) — от +85 до +95С, оптимальная для режима полной нагрузки двигателя;

H5.3 — (частичной нагрузки) — от +95 до +115С, оптимальная для режима частичной нагрузки двигателя.

H6. Период перегрева. Фаза нагрева – температура ОЖ > +115C.

С6. Период перегрева. Фаза остывания – температура ОЖ > +115C.

С5. Период остывания рабочего диапазона – температура ОЖ от +115C до +80С

С1. Период низкотемпературного остывания – температура ОЖ от

Мнение о рабочей температуре эксперта Анатолия Вайсмана: «Оптимальный температурный диапазон работы двигателя — 97 — 105 градусов. И что бы его обеспечить, закипание теплоносителя нужно поднять до 110 — 112 градусов Так сказать, с некоторым запасом. А как этого добиться? Можно пойти по двум путям. Первый — поднять, например, плотность антифриза до 1,085 гр/см3. Но тогда он будет кристаллизоваться при — 70 градусах. Но, такое решение экономически и технологически не выгодно. Во-первых — дорого, а во-вторых — вязкость такого концентрата будет под стать веретенке. Поэтому пошли по другому направлению — подняли давление в системе охлаждения до максимальных 1,6 атм, что автоматически повысило температуру закипания до нужного значения. А сдерживает это давление как раз та крышечка с перепускным клапаном, которая красуется на расширительном бачке. А если она не держит, или не герметична резьба? Вот и закипит антифриз в пробке, например, когда температура его будет около 105 градусов. И непросто закипит, а начнет фонтанировать их расширительного бачка. Всегда буду рад помочь советом». С уважением, Анатолий Вайсман.

Изучая тепловые процессы ДВС, вышел на понимание того, что к.п.д. двигателя ДВС крайне низкий (до 30%) и то эти цифры достигаются в зоне максимального крутящего момента. В повседневной деятельности владелец авто не эксплуатирует двигатель в этой зоне и использует всего 20-30% потенциала двигателя от этих 30%.

При этом полезная мощность от сгоревшего топлива опускается до 5 — 10%. Остальные 90-95% мощности выделяется в виде тепла и рассеивается тремя основными путями: через охлаждающую жидкость, выхлопные газы и в виде конвекции и теплового излучения. Поэтому общепринятое средство передвижения — автомобиль правильнее называть передвижным подогревателем окружающей среды.

Меня же в этой теме интересуют три проблемы:

1) экономичность эксплуатации машины,

2) увеличение ресурса двигателя и другого оборудования,

При сгорании топлива существенно возрастает температура (до 2000C). Поэтому двигатель должен быть охлажден до “рабочей” температуры.

Существует 3 вида рабочей температуры:

1. от 78 до 85С — оптимальная для низкой концентрации токсических выхлопных газов.

2. от 85 до 95С — оптимальная для режима полной нагрузки двигателя.

3. от 95 до 110С — оптимальная для режима частичной нагрузки двигателя.

Зависимость мощности двигателя и расхода топлива от температуры двигателя показано на графике. Температура двигателя определяет не только его мощность и расход топлива, но и токсичность отработавших газов.

Всегда существует жесткая зависимость между нагрузкой двигателя и оптимальной температурой охлаждающей жидкости. Хорошая работа двигателя определяется, среди прочего, оптимальной температурой охлаждающей жидкости. При системе охлаждения с электронным регулированием температура охлаждающей жидкости изменяется при частичной нагрузке двигателя в пределах от 95 до 110C и при полной нагрузке – от 85 до 95C.

Повышенная температура охлаждающей жидкости при частичной нагрузке обеспечивает благоприятные условия для работы двигателя, что положительно влияет на расход топлива и токсичность отработавших газов.

Необходим прогрев движка? Если — да, то до какой температуры?

Прогрев движка необходим, т.к. детали двигателя сделаны из разных материалов. Их размеры подобраны так, чтобы обеспечить оптимальную работу при определенной температуре. Ещё она называется рабочей температурой. Для двигателя «Лацетти» эта температура порядка 95 градусов. Чем меньше она отклоняется от этого значения, тем оптимальнее зазоры трущихся частей, тем более охотно двигатель отдаёт свою мощность и тем экономичней работа.

Движение нужно начинать, тогда когда двигателю легко стало работать. Как это определить? Очень просто – когда температура поднимается, двигателю всё легче и легче работать, т.е. при заводке холодного двигателя он требует больше бензина чем когда горячий. Опытным путём при помощи бортового компьютера (БК) Gamma 241 GF было установлено, что при 0 градусов движок требует около 3,5 литров в час бензина. При 10 градусах – 2,0л/ч, при 20 – 1,6л/ч, при 30-1,1л/ч на ХХ. Дальнейший рост температуры приводит к незначительному уменьшению потребления топлива: 50 градусов – 1,0л/ч, 85 – 0,9л/ч, 95 – 0,6л/ч.

Поэтому движение можно начинать при достижении температуры в 30 градусов.

При нулевой температуре прогрев до этой температуры занимает примерно 3 минуты. Чтобы не томится в ожидании, вымойте стекла автомобиля. Эти три минуты сберегут ресурс вашего авто, предупредят появление «чека» а чистые стёкла повысят безопасность управления, а может, и сохранят вашу жизнь.

Читать еще:  Двигатель 41780в расход топлива

P.S. Оппонентам, которые утверждают, что можно трогаться сразу на холодном, и движок от этого прогревается быстрее при движении. Быстрее – не значит лучше! Если вас утром разбудить и сразу заставить нести мешок в 50 кг, то вы, естественно, возмутитесь и потребуете сначала выпить хотя бы чашечку горячего кофе! Ну, и делайте выводы!

Скорость прогрева двигателя. Влияние термоизоляции . Speed-Motor warm. Einfluss der thermischen Isolierung.

03.09.2012. Меня интересует влияние утепление моторного отсека на температурный режим двигателя машины. Мои пятилетние эксперименты привели к пониманию термических процессов. Утепление моторного отсека привели к экономии бензина, к запуску теплого мотора утром в мороз, к комфортному температурному режиму в салоне зимой и увеличению ресурса двигателя.

Мои друзья спорили. Один говорил, что термоизоляция моторного отсека влияет на скорость прогрева двигателя. Другой говорил, что не влияет. Я решил провести эксперимент. Утеплил моторный отсек сверху и спереди. Поставил жалюзи. Утром в мороз в минус 25С поехал на работу и фиксировал температуру двигателя и моторного отсека. Жалюзи были плотно закрыты, моторный отсек утеплен. На следующий день утром при минус 25С открыл капот и открыл жалюзи и снова поехал на работу. Также записывал температуру двигателя и моторного отсека. Потом нарисовал графики. Выводы:

1. От -25С до +50С скорость прогрева одинакова с утеплением и без утепления.

2. От +50С до +70С скорость прогрева чуть больше с утеплением.

3. От +70С до +100С скорость прогрева значительно больше с утеплением, чем без утепления.

I am interested in the influence of warmth keeping of the engine bay on the temperature conditions of a car engine. My 5 years experiments have led to the understanding of thermal processes. Warmth keeping of the engine bay leads to the fuel economy, to the launching warm engine in a cold morning, to a comfortable temperature conditions in the cabin in the winter and it increases life of an engine. I also found that the warmth keeping of the engine bay does not affect the rate of engine warming up from -40C to 50C. It starts to affect only from 50C to 70C. It’s impossible to bring an engine to a working temperature range from 90C to 98C without warmth keeping when it’s frost.

My friends disputed about the influence of warmth keeping of the engine bay on the rate of engine warming up. I decided to make an experiment. I warmed the engine bay above and from the front, set a jalousie. It was minus 25С in the morning when I went to work, I was fixing the temperature of the engine and the temperature of the engine bay. A jalousie was densely closed, the engine bay was warmed. The same temperature was the next morning; I opened the engine jacket and jalousie, and went to work and was fixing the same parameters. Then I drew diagrams.

Conclusions:

1. The rate of engine warming up is identical with warmth keeping and without it from — 25С to +50С.

2. The rate of engine warming up is slightly more with warmth keeping from +50С to +70С.

3. The rate of engine warming up is considerably more with warmth keeping from +70C to +100C.

Газотурбинный двигатель

Газотурбинный двигатель успешно применяется в танках и авиации. К сожалению, ряд конструктивных ограничений не позволяет использовать эту прогрессивную конструкцию в качестве силовой установки для легкового автомобиля.

Преимущество двигателей этого типа в том, что у них самая большая удельная мощность среди существующих силовых установок, относящихся к двигателям внутреннего сгорания, до 6 кВт/кг. Кроме того, газотурбинный двигатель может работать на различных видах жидкого топлива, а не только на бензине или дизеле.

История создания газотурбинного двигателя

Первая газовая турбина была разработана в 1519 году. Она существенно отличалась от современных устройств и применялась в «сфере малой механизации». Турбина вращала вертел, предназначенного для жарки мяса. Использовалась газовая турбина и для приведения в движение повозки изобретателя Джона Барбера.

Один из первых газотурбинных двигателей для танков разработала компания BMW в 1944 году. Он был опробован на самоходной установке «Пантера»

В 1950 году компанией «Rover» был разработан газотурбинный двигатель, предназначенный для автомобилей. В результате появилась экспериментальная модель гоночного автомобиля «JET1». Двигатель машины был расположен позади сидений, по бокам монтировались воздухозаборники, а на верхней задней части находились отверстия для выхода выхлопных газов. Скорость вращения турбины достигала 50 тысяч оборотов за 1 минуту. В качестве топлива использовался бензин, парафиновое масло и дизельное топливо. Максимальная скорость, с которой могла двигаться машина, составляла 140 км/ч. Из-за значительного расхода топлива автомобили с газотурбинным двигателем не пользовались особым спросом.

Единственный случай применения газотурбинного двигателя в конструкции мотоцикла — MTT Y2K Turbine Superbike с ДВС Rolls-Royce-Allison Model 250

Модернизировав устройство и сконструировав модель «BRM», копания «Rover» приняла участие в гоночных соревнованиях 1963 года и установила рекорд: машина разгонялась до скорости 229 км/ч. Позже в аналогичных соревнованиях участвовали и другие автомобильные производители. Например, компания «Howmet» выпустила модель «TX», которая работала на газотурбинном двигателе и неоднократно становилась гоночным фаворитом.

Единственная в истории модель серийного автомобиля с газотурбинным двигателем, предназначенного для передвижения по дорогам общего пользования, была выпущена американским концерном Chrysler в 1963 году. Пятьдесят экземпляров автоьмобля под названием Chrysler Turbine были вручную собраны специалистами итальянского кузовного ателье Ghia. В продажу автомобили не поступали, а были розданы добровольцам, на два года для тестирования. Эксперимент прошёл удачно, но для запуска нового производства требовалась постройка завода по выпуску двигателей нового типа, и концерн Chrysler не рискнул инвестировать большие деньги. В семидесятые годы, когда в США существенно ужесточились экологические нормы, и, вдобавок, начался топливный кризис, взвинтивший цены на нефть компания отказалась от продолжения разработок.

Устройство и принцип действия газотурбинного двигателя

Попадая в компрессор, воздух подвергается сжатию и нагреванию. Далее он поступает в камеру сгорания, куда также подается и часть топлива. Из-за высокой скорости воздух и топливо воспламеняются при столкновении. Во время сгорания смеси выделяется энергия, которая преобразуется в механическую работу за счет вращения. Часть данной энергии используется для сжатия воздуха в компрессоре. Другая часть поступает в электрический генератор. После этого отработавшие газы отправляются в утилизатор.

Достоинства и недостатки газотурбинных двигателей

Газотурбинные двигатели во многом превосходят поршневые моторы. Благодаря способности развивать большие обороты устройство отличается высокой мощностью, но при этом имеет компактные размеры. В качестве топлива используют керосин или дизельное топливо. Масса газотурбинного двигателя в 10 раз меньше массы аналогичного по мощности двигателя внутреннего сгорания. Ввиду отсутствия трущихся деталей газовая турбина не требует наличия разветвленной системы охлаждения.

Инженеры Chrysler, создавшие единственный мелкосерийный автомобиль с газотурбинным двигателем, опытным путем выяснили, что лучшее топливо для ГТД — обычный керосин

Основным недостатком становится повышенный расход топлива, вызванный необходимостью искусственного ограничения температуры газов. Это ограничение связано с тем, что в случае с автомобилем двигатель устанавливается внутри кузова, а не под крылом, как, у самолета, например. Соответственно, температура двигателя не должна превышать 700 градусов. Металлы, устойчивые к таким температурам, имеют очень высокую стоимость. Эта проблема часто вызывает интерес у ученых, и в скором будущем должны появиться газотурбинные двигатели, обладающие хорошими показателями экономичности. Очевидно, это произойдет только в том случае, если будет решена проблема отвода большого количества тепла, что позволит ставить на автомобили «незадушенные» двигатели, в конструкции которых проблема экономичности решена. Среди недостатков также следует отметить высокие требования к качеству атмосферного воздуха и отсутствие возможности торможения двигателем.

Читать еще:  Шумно работает двигатель ваз 21124

Двухвальный газотурбинный двигатель, оснащенный теплообменником

Этот тип двигателей встречается наиболее часто. По сравнению с одновальными аналогами, данные устройства соответствуют более высоким требованиям к динамике автомобилей. Двухвальные агрегаты предполагают наличие специальной (для привода компрессора) и тяговой (для привода колес) турбин, валы которых не соединены. Такие двигатели позволяют улучшить динамические свойства машины и дают возможность сократить количество ступеней в коробке передач.

После отказа от массового производства автомобилей с газотурбинными двигателями компания Chrysler уничтожила большую часть тестовых экземпляров, чтобы «турбины не попали на авторазборки»

В отличие от поршневых моторов, двухвальные газотурбинные установки предполагают автоматическое возрастание крутящего момента при увеличении нагрузки. Благодаря этому переключение коробки передач требуется значительно позже или вообще не требуется. При равной мощности автомобили с двухвальным газотурбинным двигателем разгоняются быстрее, чем машины с поршневыми моторами. Недостатками данного вида является сложность изготовления, увеличение размеров и веса вследствие наличия дополнительных деталей: теплообменника, газо- и воздухопроводов.

Газотурбинный двигатель со свободно-поршневым газовым генератором

На данный момент газотурбинные двигатели этой конструкции — самые перспективные для строительства автомобилей. Устройство представляет собой блок, объединяющий поршневой компрессор и двухтактный дизель. В средней части находится цилиндр с прямоточной продувкой, внутри которого располагается два связанных между собой специальным механизмом поршня. При схождении поршней происходит сжимание воздуха, и топливо воспламеняется. Сгоревшее топливо способствует образованию газов, которые при высокой температуре и давлении провоцируют расхождение поршней в стороны. Далее через выхлопные окна газы попадают в газосборник. Благодаря наличию продувочных окон в цилиндр проникает сжатый воздух, который способствует очищению от выхлопных газов и подготавливает двигатель к следующему циклу. После этого процесс повторяется.

Борьба с высокой температурой масла.

Следующий текст посвящен решению проблем с повышенной температурой масла в современных двигателях, особенно доработанных для увеличения мощности.

Как известно, современные тенденции автомобилестроения заставляю конструкторов и инженеров идти на все большие ухищрения, дабы вписаться в предъявляемые к ним требования: в существующие и перспективные экологические нормы, в параметры эффективности, установленные маркетинговыми группами, в целевые тактико-технические характеристик, утвержденные проектировщиками и т.д.

Зачастую, задачи ставятся уже противоречивые – сделать авто быстрее/мощнее, но при этом экологичнее/экономичнее. Во что упираются такие требования – в массу автомобиля, мощность и экономичность двигателя, совершенство АКПП и приводов…но это на первый взгляд, на самом же деле все упирается в КПД, а у бензинового двигателя он не резиновый и составляет, как бы мы ни старались, не сильно больше 30%. Что делать в такой ситуации, если конструктивно мы подобрались к пределу? – правильно, начинать играть на краю.

И помогает в этом многим современным немецким автомобилям смешанный режим термостатирования. Про это много где написано и рассказано. Достаточно много познавательных статей опубликовано в bmwservice.livejournal.com/. Если кто до этого не интересовался, причем тут оно и как влияет на двигатель – я коснусь лишь вкратце для связности повествования. Работа современного ДВС, который всем хочется сделать и мощным и экономичным, построена следующим образом: при малых нагрузках ЭБУ двигателя кипятит мотор, разогревая двигатель аж до 108 (например, на вагах) … 112 градусов (например, на бмв). Масло становится жиже, отчего у нас меньше трения, лучше смесеобразование, можно чуть обеднить смесь на холостых (наличие непосредственного впрыска помогает в этом), в итоге мы получаем выигрыш в экономии топлива и снижение выбросов. Но с «кипяченым» мотор мощностные режимы противопоказаны в силу перегревов и детонации. Поэтому в режиме серьезных нагрузок ЭБУ забирает больше холодной ОЖ из радиатора и охлаждает таким образом жидкость в моторе до 85-90 градусов. Это позволяет избегать упомянутых негативных эффектов. В теории все круто. Когда нагрузки нет, стоим в пробке – расходуем по минимуму, когда нужно надавать – раскрываем весь потенциал.

Как это выглядит на практике на примере современных вагов 1.8/2.0 tsi и их аналогов:
— допустим мы спокойно едем, ОЖ прогревается до 102 (на приборке будет не более 90 всегда), масло прогревается до температуры ОЖ 105-110, в зависимости от условий езды и внешней температуры.
— мы начинаем давить газ и ОЖ охлаждается до 85-90, но масло она охладить не в состоянии в силу большого тепловыделения (особенно, если ст1-ст3), в итоге температура масла начинает расти больше 110.
— перестаем давить газ, ЭБУ возвращает ОЖ к 100, маслу из-за этого сложно остыть и его температура спускается обратно в лучшем случае к 105-110.

Что получается в итоге: масло все время очень горячее. А горячее масло – источник кучи проблем. Оно быстрее «устает» (alexey-bass.github.io/bmwservice-oils/), то есть окисляется, если состав масла не подходящий – дает нерастворимый осадок, который загрязняет мотор, залегают кольца, начинается масложор, возможны задиры. Очень хорошо все эти эффекты описаны и наглядно показаны на реальных примерах опять же у автора (bmwservice). В итоге новый автомобиль устает за пару лет и двигателю грозит переборка в лучшем случае маслосъемных колпачков, либо колец, либо, если образовались задиры, привет замене мотора целиком (многие современные блоки не подлежат точению и гильзовке). Кроме того, не нужно забывать, что почти все время перегретые кипятком ОЖ ГБЦ и двигатель тоже не скажут спасибо и не дадут полностью реализовать потенциал в том числе по динамике автомобиля.

Как всегоэтого избежать и что делать. Я могу привести ряд примеров с точки зрения владельца ВАГ. Но некоторые решения подойдут всем обладателям современных немецких турбированных машин. Чтобы понять, как не оставить себя в дураках в современной ситуации – нужно знать, как обеспечивается механизм переменного терморегулирования, и как можно в него влезть, особенно, если вы планируете форсировать двигатель своего автомобиля и при этом хотите на нем покататься подольше.

Переменный режим терморегулирования ОЖ на бензиновых бмв обеспечивается термостатом с воском в пружине. В отдельных режимах нагрузки ЭБУ подает напряжение на термостат, воск расплавляется, позволяя пружине расжаться больше, чтобы пропустить холодную ОЖ и понизить температуру в двигателе. Тут все просто. Можно выбрасить эти горе термостаты (если есть замена), вставляя классические образцы без воска с пружиной под холодное (всегда около 90 градусов) терморегулирование. Если замен нет — см. ниже.

Пример с ваг 1.82.0 ген3 – система поворотных золотников. Вместо термостата у нас есть бухта, что-то вроде шлюза с сетью ходов, управляющая потоками ОЖ в различных контурах. Наглядно показано в инструкции завода:

Как мы видим, если вы живете в крупном городе, например, как Москва, с вечными пробками, вас в основном ждет совсем неблагоприятный режим для мотора.

А вот так выглядит этот «термостат» на наших машинах:

Испытание огнем: как создают российские двигатели

В помещении цеха точного литья АО «ОДК-Пермские моторы» журналистов просят взвесить в руках два блока турбинных лопаток – один от двигателя ПС-90А, другой от перспективной силовой установки ПД-14, которая создана для среднемагистрального лайнера МС-21. Разница ощутима: лопатки от нового двигателя примерно в 2–3 раза легче. Это простейший способ оценить тот огромный прогресс, которого добились пермские конструкторы и производственники.

Читать еще:  Двигатель бедини самозапитка схема

Пермский прорыв

До недавнего времени нашим новейшим двигателем для гражданской авиации (если не считать проблемную российско-французскую силовую установку SaM 146 для «Суперджета») оставался тот самый ПС-90. Он и поныне производится и обслуживается на «Пермских моторах», но в коммерческой авиации уже практически не применяется: эксплуатационные показатели не соответствуют современным требованиям (двигатель получил сертификат в 1992-м). Его устанавливают на фактически штучно производимые среднемагистральники Ту-204/214, модифицированную версию Ил-76, дальнемагистральные Ил-96, входящие также в Специальный летный отряд, который обслуживает первых лиц государства. ПД-14 – это прыжок в элиту мирового двигателестроения. На МС-21 он будет предлагаться на выбор в паре с PW1400G, то есть его эксплуатационные параметры должны быть как минимум не хуже показателей изделия Pratt & Whitney – одного из четырех (наряду с GE, Safran и Rolls-Royce) грандов отрасли.

Новый российский двигатель создается в широкой кооперации предприятий из разных городов нашей страны, но его головным разработчиком стало входящее в Объединенную двигателестроительную корпорацию конструкторское бюро «ОДК-Авиадвигатель». Серийно ПД-14 будет производиться на «Пермских моторах», систему автоматического управления двигателем (САУ-14) создает еще одно пермское предприятие – «ОДК-СТАР». К настоящему моменту произведено полтора десятка двигателей ПД-14, и два из них проходят испытания на летающей лаборатории в подмосковном Жуковском. В первой половине следующего года ПД-14 будут установлены на МС-21 для продолжения испытаний.

Металл, керамика и воск

Чтобы приблизиться к техническому уровню силовых установок, выпускаемых ведущими мировыми производителями, пермским двигателестроителям пришлось освоить с нуля 16 критических промышленных технологий, связанных с новыми материалами и их обработкой. Выдающийся прогресс, как уже говорилось, был достигнут в производстве лопаток, работающих в «горячей» части двигателя. Это лопатки турбин, обдуваемых мощным потоком раскаленных газов, которые выходят из камеры сгорания. Чем выше температура в камере сгорания, тем лучше топливная эффективность двигателя, однако температуру можно повышать лишь до таких значений, которые смогут выдержать лопатки. Важное значение имеет и вес: чем легче лопатки, тем меньше мощности отбирается у реактивной струи на вращение турбины и тем меньше вес самой силовой установки. Легкая, супержаропрочная, с оптимальными газодинамическими характеристиками лопатка – это то, без чего современные эксплуатационные характеристики двигателя недостижимы.

Газодинамика лопатки рассчитывается математически, но для воплощения расчетов в металл требуется несколько сложных производственных технологий. Для турбины высокого давления в лопатках ПД-14 применяется сплав ВЖМ4 на основе никеля. Деталь создается с помощью технологии монокристаллического литья, то есть во время отливки формируется в течение нескольких часов в виде единого кристалла определенной направленности. Это достигается особым режимом охлаждения и так называемых затравок. Но, прежде чем начнется отливка, рождение лопатки проходит ряд предварительных стадий.

В одном из помещений цеха точного литья можно увидеть металлические короба, наполненные каким-то сыпучим материалом вроде крупного серого песка или мелкого щебня. Это материал для создания керамических стержней. Керамическое сырье на основе корунда расплавляется, а после прессуется в металлических формах. На выходе получается что-то ребристое, наподобие рыбьего скелетика. На ощупь деталь мягкая, гибкая. Но это до того момента, пока ее не прокалят в печи. Теперь стержень обрел конструктивную прочность и жесткость. На следующем этапе он оказывается внутри модели из темно-зеленого воска. Восковая модель точно соответствует форме будущей лопатки. Из воска же создаются элементы литниковой системы – горловина, каналы, которые объединяются с моделями нескольких лопаток в литейный блок.

Конструкция попадает в оранжевую руку робота: она окунает блок в суспензию, затем отправляет его на обсыпку электрокорундом, потом сушка, затем снова суспензия, снова обсыпка. В несколько слоев формируется внешняя оболочка. Ей предстоят еще серьезные испытания: пар под давлением вытапливает воск, затем следует обжиг в печи, в процессе которого выгорают остатки воска, испаряется влага, суспензия и электрокорунд окончательно затвердевают. И наконец литье. Лить металл в холодную керамику нельзя: расплав мгновенно застынет, и точной отливки не получится. К примеру, для изготовления лопаток турбины низкого давления в печи форма предварительно нагревается выше 1000 градусов и отправляется в вакуумную заливочную установку. Если лопатка изготавливается по технологии равноосной кристаллизации (застывание в виде множества кристаллов-зерен), заливка металла длится всего минуты полторы, однако монокристаллическая металлургия требует часов высокотемпературного воздействия на форму, поэтому к материалам, из которых она создается, предъявляются особые требования.

Технологии точного литья позволяют производить высокопрочные детали со сверхмалыми толщинами отдельных элементов, что требует лишь небольших объемов механической обработки. Одно из важнейших преимуществ современного точного литья – это возможность создавать большие машины с применением литых прецизионных деталей, прямо как в швейцарских часах. В таких конструкциях минимизируются нежелательные протечки газа, что опять же повышает эффективность двигателя.

Но что же с керамическими стержнями, о которых мы почти забыли? Они остаются внутри лопатки до тех пор, пока с помощью выщелачивания керамику не удалят из металлической детали, оставив вместо нее систему отверстий, полостей и каналов. При работе двигателя воздух, отбираемый из компрессора, будет продуваться сквозь полости лопаток, охлаждая их. Это, наряду со свойствами металла, еще один способ обеспечить жаропрочность и выносливость турбины. Керамическая роса

Керамическая роса

А третий способ – это нанесение покрытий. Цех жаропрочных покрытий работает с лопатками, которые уже прошли мехобработку. Кроме того, на них обычно нанесены предварительные покрытия из алюминия (алитирование), которые могут дополняться подслоями ВСДП-3 или ВСДП-16. В цеху стоят установки для создания финишного жаропрочного покрытия плазменным или электронно-лучевым методом. Теоретически оба метода применяются для решения одинаковых задач, однако плазменная технология «вбивания» жаропрочного порошка в металл создает на поверхности детали структуру, отдаленно напоминающую используемую в хозяйстве металлическую губку. Электронно-лучевая технология формирует своего рода регулярную сетку из столбикообразных кристаллов размером 100 мкм.

На фото ниже хорошо видно, как керамические стержни встроены внутрь восковых моделей будущих лопаток. Модель будет покрыта керамической внешней оболочкой, затем воск вытапливают и на его место заливают металлический сплав. На последнем этапе внутренний керамический стержень выщелачивают, а после него остаются полости и каналы для охлаждения.

На предприятиях ОДК в Перми делают не только авиадвигатели, но и наземные газотурбинные установки для электрогенерации и газоперекачивающих станций. Наземная ГТУ один раз включается и дальше работает долгие часы в стабильном режиме. Авиадвигатель запускается, переходит во взлетный режим, потом долго работает в крейсерском режиме, снижает обороты и наконец выключается после посадки. Все это приводит к частым циклам теплового расширения-сжатия, результатом чего становится усталость металла и разрушение покрытий. Так вот сетка кристаллов, создаваемых электронно-лучевым способом, «дышит» вместе с лопаткой, не разрушаясь, и именно эта технология принята для обработки лопаток высокого давления для авиадвигателей. Плазменной обработке подвергаются детали для ГТУ. Интересен принцип электронно-лучевого покрытия: здесь нет никакого «вбивания». Под воздействием потока электронов из электронно-лучевой пушки слитки диоксида циркония испаряются, а потом этот пар конденсируется на более холодных лопатках.

Все эти новшества, новые материалы и новые технологии, конечно же, стоят значительных денег. Если лопатка турбины ПС-90A весит в несколько раз больше аналогичной детали для ПД-14, то она и стоит в несколько раз дешевле. На разработку ПД-14 уже потрачено несколько десятков миллиардов рублей, на создание ПД-35 – тоже разрабатываемого в Перми перспективного двигателя для дальнемагистральных лайнеров – выделена сумма, эквивалентная 3 млрд долл. Остается надеяться, что деньги, потраченные на технологический прорыв на земле, однажды окупятся в воздухе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector