Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое асинхронный двигатель и принцип его действия

Что такое асинхронный двигатель и принцип его действия

Данный двигатель зачастую используется в промышленности. Он простой в использовании, долговечный, недорогой.

Асинхронный двигатель превращает электрическую энергию в механическую. Его работа основана на принципе вращающегося магнитного поля. Сам принцип действия аппарата можно описать несколькими пунктами поэтапно:

  1. Во время запуска самого двигателя происходит пересечение магнитного поля с контуром ротора, после чего происходит индицирование электродвижущей силы.
  2. В замкнутом роторе происходит возникновение переменного тока.
  3. Магнитные поля: статора и ротора также воссоздают непосредственно так называемый крутящий момент.
  4. Ротор «догоняет» поле самого статора.
  5. Когда частоты вращения самого магнитного поля статора/ротора имеют совпадения, электромагнитные процессы, образованные в месте ротора затухают. После чего крутящий момент приравнивается к «0».
  6. Статор, а вернее его образованное магнитное поле возбуждает контур ротора, который в этот момент вновь позади.

Где применяются?

Как уже уточнялось выше в статье, применяется данный двигатель промышленности (лебедки общепромышленного назначения, краны) и бытовой технике (асинхронные двигатели с небольшой мощностью).

Теперь остановим ваше внимание на электродвигателе непосредственно с короткозамкнутым ротором. Они применяются в самих электроприводах различных типов станков, а если говорить точнее: металлообрабатывающих, а также часто встречающихся на сегодня грузоподъемных и ткацких, в том числе деревообрабатывающих), а также в вентиляторах, лифтах, различных насосах, бытовых приборах.

Если говорить об асинхронном электродвигателе с короткозамкнутым ротором, то благодаря его применению можно добиться существенного снижения энергопотребления оборудования, которое в свою очередь, обеспечивает высокий уровень надежности аппарата. Данные характеристики оказывают положительный эффект на модернизацию производства в целом.

Что такое «скольжение»?

Пришло время поговорить о таком понятии как «скольжение» асинхронного двигателя.
Это, по сути, относительная разность скоростей самого вращения «ротора», это ни что иное, как изменение, так называемого переменного магнитного тока. «Скольжение» измеряется в относительных единицах, а также можно измерять в процентном соотношении.

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов.
Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора
  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров. Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.
  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.
Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки.
В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).
Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Что лучше короткозамкнутый или фазный: совместная работа ротора и статора

Здесь стоит отметить, что особенных преимуществ нет ни у одного ротора, каждый хорош по-своему. Более подробно на них останавливаться не будем, так как вся необходимая информация по этим двум разновидностям ротора уже была дана выше в статье. остановим внимание на том, как регулируется частота вращения ротора. Это можно сделать при помощи изменения так называемого дополнительного сопротивления самой цепи ротора.

Также можно регулировать частоту вращения ротора, изменив напряжение статора, который подведен к обмотке.

Можно также изменить частоту питающего напряжения или же переключить число пар полюсов, ввести резисторы в цепь ротора.

Классификация по типу ротора

Классификация по типу ротора следующая: однофазный асинхронный двигатель с короткозамкнутым ротором, а также есть такая разновидность ротора, как двухфазный асинхронный двигатель короткозамкнутый.

Плюс ко всему сегодня часто пользуется спросом и асинхронный двигатель с короткозамкнутым ротором с тремя фазами, а также асинхронный двигатель с фазным ротором, также с тремя фазами. Именно так и делится классификация ротора по числу фаз.

Линейные моторы

В линейных двигателях перемещение рабочего органа РО (коротких подач) происходит от самого двигателя через ременную передачу строго на винт (ходовой).

Шариковая гайка скреплена с короткой передачей пружинных механизмов защиты от соударений, именно через нее происходит вращение винта и происходит трансформация в продольное перемещение РО.

Подключение двигателя к питанию

Кнопки “Стоп” должны быть подключены в последовательности друг с другом, а в свою очередь кнопки “Пуск” должны строго настрого быть подключены в параллели между собой в цепи управления.

Во время нажатия на “Пуск” цепь катушки будет замкнута, а сама катушка начинает втягиваться, а во время размыкания кнопки, напряжение питающее катушку, пойдет через блок-контакт КМ. Прервать цепь управления можно при помощи нажатия на одну из кнопок “Стоп”.

Достоинства и недостатки асинхронных двигателей

Достоинства:

  • прежде всего, их легко использовать и никаких сложностей при эксплуатации не возникает
  • конструкция двигателей очень простая и это еще одно их преимущество, а также нельзя не отметить их низкую себестоимость (порой это имеет большое значение для покупателей, так что это еще один плюс таких двигателей)
  • надежность
Читать еще:  Двигатель внутреннего сгарания принцип работы

Недостатки:

  • модели оснащены маленьким пусковым механизмом
  • выдают высокой спусковой ток
  • очень сильно чувствительны к возможной смене параметров в сети
  • для плавного регулирования скорости нужен преобразователь вероятных частот

Несмотря на то, что есть свои недостатки эти асинхронные двигатели, пользуются огромной популярностью. Так что все-таки они заслуживают должного уважения и не зря их часто используют в промышленности.

И КИНЕМАТИЧЕСКИЕ СХЕМЫ ЭЛЕКТРОПРИВОДОВ

Электрические, механические и габаритные параметры электродвигателя взаимосвязаны. Например, номинальные мощность Рн, вращающий момент Мн, угловая скорость ротора (якоря) ωн, диаметр D и длина L активной части якоря электрической машины связаны соотношениями

где Ск – коэффициент, зависящий от конструктивных особенностей машины.

Из этих зависимостей следует, что при заданной мощности для уменьшения габаритов электродвигателя (D 2 L) необходимо увеличивать его угловую скорость ωн, особенно для маломощных двигателей (до ωн = 100…600 рад/с). А для рабочих машин по технологическим условиям требуется значительно меньшая скорость (в 10 и более раз). Поэтому для согласования механических параметров электродвигателя (скорости и момента) с механическими параметрами рабочей машины используют передаточный механизм (ПМ), который может изменять и характер движения, преобразуя вращательное движение в поступательное.

По конструктивному исполнению различают следующие виды ПМ (рис. 2.1):

1) редукторы (коробки передач, скоростей);

2) ременные (цепные) передачи;

3) типа барабан – трос (шкив – канат);

4) типа винт – гайка;

5) типа зубчатое колесо – рейка.

Краткая характеристика представленных ПМ.

Редукторы(коробки передач, скоростей) представляют собой зубчатые передачи, заключенные в единый корпус. По числу зубчатых пар они бывают одно-, двух-, трех-, n-ступенчатые; по виду зубьев – прямозубые, косозубые, червячные; по исполнению – цилиндрические, конические; по принципу действия – обычные и планетарные.

Редуктор характеризуется передаточным числом i:

где ω1 – входная скорость; ω2 – выходная скорость.

Передаточное число n-ступенчатого редуктора

где i1, i2, …, in – передаточные числа отдельных ступеней.

Редуктор характеризуется также входной мощностью (до 560 кВт) и максимальным выходным моментом (до 1200 кН∙м). Входная и выходная оси редуктора могут быть расположены коаксиально, параллельно и ортогонально.

Ременные (цепные) передачихарактеризуются передаточным числом

где D1, z1 – диаметр число зубьев входного шкива (звездочки); D2, z2 – диаметр число зубьев выходного шкива (звездочки).

Передачи типа «зубчатое колесо – рейка», «барабан трос (шкив – канат)» и «винт – гайка» преобразуют вращательное движение в поступательное и характеризуются радиусом приведения ρ:

ρ = V/ω, м/рад.

Кинематические схемы электроприводов.Механическая часть структурной схемы ЭП включает в себя все механически связанные между собой движущиеся инерционные массы: ротор (якорь) двигателя, ПМ и рабочее оборудование технологической установки. Непосредственное представление о движущихся массах установки и механических связях между ними дает кинематическая схема ЭП. Значит, кинематической схемой ЭПкакой-либо конкретной производственной установки называется схема механической части ЭП со всеми движущимися инерционными массами и механическими связями между ними. Кинематические схемы ЭП разнообразны. Рассмотрим два характерных их примера.

Кинематическая схема ЭП центробежного вентилятора (рис. 2.2). Ротор электродвигателя Д соединяется с рабочим колесом вентилятора с помощью соединительной муфты СМ. Все элементы кинематической схемы движутся с одной и той же угловой скоростью ω. На рабочем колесе вентилятора развивается момент сопротивления движению Ммех, зависящий от скорости ωмех (рис. 2.3):

где Мв.н, ωв.н – номинальные момент и угловая скорость вентилятора;

Ммех – момент механических потерь на трение в подшипниках рабочего колеса вентилятора.

Рис. 2.2. Кинематическая схема ЭП вентилятораРис. 2.3. Механическая характеристика вентилятора

К ротору двигателя приложен электромагнитный момент двигателя Мэ, а также момент механических потерь в двигателе ∆М, обусловленный силами трения в подшипниках, и момент сопротивления движению Мв, создаваемый вентилятором.

Номинальная угловая скорость двигателя ωн.дв совпадает с номинальной скоростью вентилятора. Этим определяется простота кинематической схемы ЭП.

В других случаях ωв.н ≠ ωн.дв и в кинематическую схему вводят различные передачи: зубчатые, цепные, фрикционные, клиноременные и др. (см. рис. 2.1). Если требуется механическое регулирование скорости, вводят передачи с переменным передаточным числом i (коробки передач, фрикционные вариаторы).

Кинематическая схема электропривода шпинделя токарного станка (рис. 2.4). В этой схеме движение от электродвигателя Д к шпинделю Ш с заготовкой обрабатываемой детали З передается через клиноременную передачу КРП и коробку передач КП. Передаточное число i может изменяться ступенчато за счет введения в зацепление шестерен с различным числом зубьев. В результате взаимодействия вращающейся детали с неподвижным резцом возникает усилие резания Fz и момент резания

где Rз – радиус заготовки обрабатываемой детали.

В процессе обработки детали усилие и момент резания остаются постоянными и не зависят от угловой скорости ωз (рис. 2.5). Полезный момент нагрузки механизмаМмех при постоянном усилии резания Fz пропорционален радиусу обрабатываемой детали Rз.

Рис. 2.4. Кинематическая схема ЭП шпинделя токарного станкаРис. 2.5. Механическая характеристика

Кроме полезного момента нагрузки Ммех = Мz, а также приложенного к ротору двигателя электромагнитного момента М и момента потерь в двигателе∆М во всех элементах рассматриваемой кинематической цепи действуют силы трения: в подшипниках, в зубчатых зацеплениях, в трущихся поверхностях клиноременной передачи.

Механические характеристики производственных механизмов и электродвигателей.При выборе электродвигателя к производственному механизму приходится уточнять, насколько механические свойства электродвигателя соответствуют механической характеристике рабочей машины и характеру ее работы, так как соответствие механических характеристик электродвигателя конкретному производственному механизму позволяет обеспечить наиболее высокую его производительность и экономичную работу.

Механическая(или статическая)характеристика производственного механизмапредставляет собой зависимость между его статическим моментом сопротивления и скоростью, т.е.

ω = f (Mc) или Mc = f (ω).

Производственные механизмы обладают различными механическими характеристиками. Существует следующая эмпирическая обобщенная формула для механических характеристик производственных механизмов:

где Mc – момент сопротивления механизма при угловой скорости ω;

M – момент сопротивления трения в движущихся частях механизма;

Mc, ωн – номинальные момент сопротивления и скорость;

x – показатель степени, характеризующий изменение момента Mc при изменении угловой скорости ω.

Различают четыре основных вида (класса, категории) механических характеристик и соответственно производственных механизмов (рис. 2.6):

Рис. 2.6. Механические характеристики производственных механизмовРис. 2.7. К пояснению жесткости механической характеристики электродвигателя

1) x = 0, Mc = const (момент сопротивления не зависит от скорости). Такой механической характеристикой обладают механизмы, совершающие работу подъема, формоизменения материала или преодолевающие трение (подъемные механизмы, механизмы передвижения и др.). Мощность таких механизмов возрастает линейно со скоростью;

2) x = 1, Mc = сω (момент сопротивления линейно зависит от угловой скорости). Такую характеристику может иметь, например, привод генератора постоянного тока, работающего на постоянное сопротивление;

3) x = 2, Mc = сω 2 . Такой механической характеристикой обладают механизмы, работа которых сводится к преодолению сопротивления воздуха или жидкости (вентиляторы, центробежные насосы, центрифуги, судовые винты и др.). Момент сопротивления у таких механизмов часто называют вентиляторным, а механизмы – механизмами с вентиляторным моментом. Мощность таких механизмов примерно пропорциональна кубу скорости;

4) x = 3, Mc = с/ω. Такой механической характеристикой обладают моталки в металлургической промышленности, электронакат в бумажной промышленности, некоторые металлорежущие станки. Мощность на валу у таких машин приблизительно постоянна.

Читать еще:  Генератор из двигателя своими силами

Механические характеристики электродвигателяпредставляют собой зависимость угловой скорости ω от развиваемого им момента на валу, т.е. ω = f (M).

Различают естественные и искусственные механические характеристики электродвигателя. Естественная механическая характеристика соответствует работе электродвигателя с номинальными параметрами при нормальной схеме включения. Искусственная механическая характеристика соответствует работе электродвигателя с параметрами, отличающимися от номинальных, например, при введении сопротивления, изменении питающего напряжения, частоты и др.

Для оценки изменения скорости при изменении момента на валу служит так называемая жесткость характеристики, которая равна отношению приращения момента ∆М к соответствующему приращению скорости ∆ω (рис. 2.7):

Линейные механические характеристики имеют постоянную жесткость, а криволинейные– в каждой точке свою, равную первой производной от момента по скорости, т.е.

β = dM / dω.

Естественные механические характеристики электродвигателей по степени жесткости разделяются на следующие группы (рис. 2.8):

1) абсолютно жесткая характеристика (линия 1), при которой скорость электродвигателя при изменении нагрузки не изменяется (β = ∞). К этой группе относятся синхронные двигатели;

2) жесткая характеристика (линия 2), при которой скорость электродвигателя с возрастанием момента нагрузки уменьшается на небольшую величину (β = 40…10). К этой группе относятся асинхронные электродвигатели (работающие при скольжениях, меньших критического) и двигатели постоянного тока с параллельным (и независимым) возбуждением;

3) мягкая механическая характеристика (линия 3), при которой скорость электродвигателя резко уменьшается с увеличением момента нагрузки (β

Дата добавления: 2015-12-01 ; просмотров: 4585 ;

Линейные асинхронные двигатели

Подвижная часть линейного двигателя совершает поступательное движение, поэтому применение этих двигателей для привода рабочих машин с поступательным движением рабочего органа позволяет упростить кинематику механизмов, уменьшим потери в передачах и повысить надежность механизма в целом.

Возможны линейные двигатели четырех видов: электромагнитные (соленоидные), магнитоэлектрические (с применением постоянного магнита), электродинамические и асинхронных. Асинхронные (индукционные) линейные двигатели благодаря простоте конструкции и высокой надежности получили наибольшее применение.

Для объяснения принципа работы линейного асинхронного двигателя обратимся к асинхронному двигателю с вращательным движением ротора. Если статор этого двигателя (рис. 17.10, а) мысленно «разрезать» и «развернуть» так, чтобы он образовал дугу с углом α (рис. 17.10, б), то диаметр ротора увеличится. При этом мы получим асинхронный двигатель с дуговым статором Частота вращения (об/мин) магнитного поля статора этого двигателя (синхронная частота)

где n 0 1 — синхронная частота вращения обычного (до «разрезания») асинхронного двигателя, об/мин; α — угол дуги статора, рад.

Из (17.6) следует, что, изменяя угол α, можно получить дуговой асинхронный двигатель на любую синхронную частоту меньше частоты вращения n 0 1. Дуговые двигатели применяют для безредукторного привода устройств, требующих небольших частот вращения, исключив применение сложного и трудоемкого редуктора.

Рис. 17.10. К понятиям о дуговом и ли­нейном двигателях

Если же «разрезанный» статор развернуть в плоскость, то получим асинхронный линейный двигатель (рис. 17.10, в). Принципиальное конструктивное отличие линейного асинхронного двигателя от асинхронного двигателя с вращательным движением ротора

состоит в том, что первичный элемент линейного двигателя (индуктор) создает не вращающееся, а бегущее магнитное поле и нижняя часть двигателя с короткозамкнутой обмоткой (или без нее) называемая вторичным элементом, перемещается вдоль своей оси. Скорость бегущего поля в линейном двигателе (м/с)

где f1 — частота тока в обмотке статора, Гц; τ — полюсное деление; Lc — длина статора (индуктора), м.

Принцип действия линейного асинхронного двигателя основан на том, что бегущее поле индуктора, сцепляясь с короткозамкнутой обмоткой вторичного элемента двигателя, наводит в ней ЭДС. Возникающие в стержнях этой обмотки токи взаимодействуют с бегущим полем индуктора и создают на индукторе и вторичном элементе электромагнитные силы, стремящиеся линейно переместить подвижную часть двигателя относительно неподвижной. В некоторых конструкциях линейных двигателей подвижной частью является индуктор, а в некоторых — вторичный элемент, называемый в этом случае бегунком. Если вторичный элемент линейного двигателя невозможно изготовить с короткозамкнутой обмоткой, то применяют вторичные элементы в виде полосы из меди, алюминия или ферромагнитной стали. Наиболее удовлетворительными получаются характеристики линейного двигателя при составном вторичном элементе, например выполненном в виде полосы из ферромагнитной стали, покрытой слоем меди.

Основной недостаток асинхронных двигателей с разомкнутым статором — дуговых и линейных — явление краевого эффекта, представляющего собой комплекс электромагнитных процессов, обусловленных разомкнутой конструкцией статора. К нежела­тельным последствиям краевого эффекта в первую очередь следу­ет отнести появление «паразитных» тормозных усилий, направ­ленных против движения подвижной части двигателя, и возникновение поперечных сил, стремящихся сместить подвиж­ную часть двигателя в поперечном направ­лении. Кроме того, краевой эффект вызывает ряд других нежелательных явлений, ухуд­шающих рабочие характеристики линейных двигателей.

Линейные асинхронные двигатели при­меняют для привода заслонок, ленточных конвейеров, подъемно-транспортных меха­низмов. На рис. 17.11 показано устройство линейного асинхронного двигателя привода тележки подъемного крана. На тележке 3 расположен индуктор линейного двигателя, состоящий из шихтованного сердечника 6, в пазах которого расположена обмотка 5. На­правляющая для колес 2 представляет собой стальную балку 7, к нижней части которой прикреплена стальная полоса 4. Бегущее магнитное поле индуктора наводит в стальной полосе 4 вихревые токи. Электромаг­нитные силы, возникающие в результате взаимодействия этих токов с магнитным полем индуктора, перемещают индуктор (тележку) вдоль стальной полосы 4.

Рис. 17.11. Линей­ный асинхронный двигатель

привода тележки подъемного крана

Линейные асинхронные двигатели значительной мощности применяют на транспорте в качестве тяговых двигателей. Один из вариантов такого двигателя показан на рис. 17.12. Здесь индуктор 2 двигателя подвешен к транспортному средству 1, а стальная полоса 3 установлена вертикально на основании пути между рельсами. Из этой конструкции поперечная сила Fп вызванная краевым эффектом используется полезно, так как она уменьшает силу давления на несущие оси и колеса и, как следствие, уменьшает трение качения.

Рис 17.12. Линейный асинхронный двигатель

привода железнодорожного транспортного средства

Контрольные вопросы

1.В чем различие между схемами соединения индукционного регулятора на­пряжения и фазорегулятора?

2.Сколько раз напряжение на выходе ИР достигнет наибольшего значения за один оборот ротора, если обмотка имеет 2р = 6?

3.В каком направлении следует вращать ротор АПЧ, чтобы на выходе полу­чить ЭДС частотой, большей частоты тока в сети?

4.Какую долю мощности на выходе АПЧ составит мощность приводного дви­гателя, если частота тока на входе АПЧ равна 50 Гц, а на выходе — 100 Гц?

5.Объясните работу сельсинов в индикаторной системе передачи. Чем вызвана ошибка в воспроизведении угла поворота?

6.Чем обеспечивается отсутствие самохода в асинхронном исполнительном двигателе?

7.Объясните принцип работы асинхронного линейного двигателя.

8.Что такое краевой эффект и каковы его нежелательные действия в линейном асинхронном двигателе?

ГЛАВА 18

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Устройство трехфазных и однофазных асинхронных двигателей

Без электрических двигателей совершенно нереально представить себе функционирование современной жизни. Наиболее популярным и востребованным является асинхронный трёхфазный асинхронный электродвигатель с короткозамкнутым ротором в виду его простой и надёжной конструкции, которая обеспечивает отличные механические характеристики. Главным назначением асинхронных двигателей является преобразование переменного электрического тока в механическую энергию.

Внутреннее устройство электромотора и его принцип работы вызывает резонный интерес, как в познавательном плане, так и с практической точки зрения — знание конструктивных особенностей асинхронного двигателя, влияющих на его параметры, поможет при выборе электродвигателя, его эксплуатации и обслуживании. Подробнее о теории работы асинхронного двигателя я объясняю и описываю в статье Принцип работы асинхронного электрического двигателя

Читать еще:  Cruze чем плох двигатель

Назначение основных частей трехфазных асиннхронных двигателей

В любом двигателе есть две основные составляющие – неподвижный статор, закрепляемый на станине, и вращающийся ротор, через вал которого осуществляется передача механической энергии.

В отношении электродвигателей и трансформаторов катушки с проводом принято называть обмотками из-за технологических процессов при их создании. Магнитопровод статора (сердечника), в котором укладываются обмотки, помещается в защитный металлический кожух, служащий также теплоотводом с ребристой поверхностью.

Ротор нигде не соприкасается со статором и вращается на подшипниках, закрепляемых на торцевых крышках, или отдельно на станине. Торцевые крышки крепятся к кожуху при помощи болтов. Механическая энергия снимается с вала в передней части двигателя при помощи шкива, шестерни или муфты.

На вал ротора с тыльной стороны мотора крепится защищённый кожухом вентилятор для обдува ребристого корпуса, на котором находится клеммник подключения вводного кабеля, питающего электромотор.

Виды асинхронных электродвигателей

Узнав кратко, из чего состоит большинство электродвигателей, можно перейти к рассмотрению асинхронных двигателей. Описание электромагнитных взаимодействий, происходящих в асинхронном двигателе, не входит в рамки данной статьи, но коротко можно сказать, что в статоре создаётся вращающееся магнитное поле, взаимодействующее с полем ротора.

Асинхронный – означает, что вал ротора не вращается синхронно с вращающимся магнитным полем статора. Широко используются две разновидности данного типа трехфазных электромоторов, которые имеют такие официальные названия:

  • асинхронный двигатель с короткозамкнутым ротором;
  • асинхронный двигатель с фазным ротором.

Конструкции статора данных типов электродвигателей являются идентичными, а различия заключаются в конструктивном исполнении ротора.

Устройство статора асинхронных двигателей

Для недопущения образования вихревых токов, возникающих при переменном электромагнитном поле, магнитопровод статора набирают из одинаковых колец специальной электротехнической стали методом шихтовки (от немецкого Schicht — набор). В кольцах с внутренней стороны на специальном оборудовании выбивают пазы сложной формы.

При укладке колец в пакет статора добиваются полного совпадения данных пазов, предназначенных для укладки обмоток.

Набор сложенных пластинчатых колец фиксируют при помощи специальных скоб и запрессовывают в защитный кожух двигателя, который также несёт механические нагрузки и служит для охлаждения. Обмотки статора мотают на специальном станке в виде рамок, укладываемых в определённые пазы статорного магнитопровода.

Перед укладкой обмотки паз изолируют при помощи диэлектрической прокладки.

Рабочие осторожно помещают рамки обмоток в пазы, не допуская повреждения эмалированной изоляции проводов.

В зависимости от конструктивных особенностей статора, в один паз может быть помещено несколько рамок – в этом случае их также изолируют друг от друга диэлектрическими прокладками

Уложенные обмотки в каждом пазу фиксируют при помощи специальной вставки в форме продолговатого клина из стекловолокна.

Соединения обмоток статора

Каждую уложенную в пазы обмотку проверяют на обрыв, пробой и межвитковое замыкание. После этого выводы рамок соединяют в фазные обмотки, в зависимости требуемого от количества пар полюсов.

Асинхронные электродвигатели с одной парой полюсов вращающегося магнитного поля имеют максимально возможные для частоты 50 Гц обороты идеального холостого хода – 3000 в минуту.

При помощи параллельных и последовательных подключений рамок обмоток определённым способом создают дополнительные полюсы вращающегося электромагнитного поля для уменьшения оборотов вала ротора. Все электрические соединения проводов обмоток выполняют при помощи сварки, реже – пайки.

Таким способом формируют фазные обмотки, геометрические оси которых располагаются под углом 120º. Выводы от фазных обмоток выводят в коробку подключения. По другому данный клеммник называется блоком распределения начал обмоток (БРНО). Петли обмоток, выходящие из пазов магнитопровода статора, называют лобовыми обмоточными частями.

Провода обмоток в лобовой части обматывают бандажными лентами для механической фиксации.

После выполнения всех работ, статор погружают в лак, который высыхая, придает конструкции электрическую и дополнительную механическую прочность.

Устройство короткозамкнутого ротора

Короткозамкнутый ротор также состоит их шихтованных колец, в которых по внешней окружности пробивают пазы для укладки короткозамкнутых витков, которые делают из меди (для мощных двигателей более 50 кВт) и алюминия.

С торцов ротора данные витки замыкаются накоротко при помощи колец (медных или алюминиевых).

Визуально обмотка короткозамкнутого ротора без магнитопровода похожа на беличье колесо.

В данных витках благодаря трансформации индуцируется ток, возбуждающий электромагнитное поле ротора, взаимодействующее с вращающимся полем статора. Для упрощения процесса изготовления витков сложной формы используют заливку расплавленного алюминия в пазы ротора.

От формы поперечного сечения короткозамкнутых витков ротора зависит такая механическая характеристика асинхронного двигателя как начальный вращательный момент запуска, увеличения которого добиваются путём добавления дополнительных пусковых витков.

Используя особенности распределения силовых линий электромагнитного поля, добиваются больших токов в пусковых обмотках ротора при запуске двигателя, которые уменьшаются при наборе оборотов. Вал ротора запрессовывается в магнитопровод по его оси. Замыкающие кольца часто имеют лопатки, которые выполняют функцию внутреннего вентилятора, обеспечивающего циркуляцию воздуха внутри электромотора.

Из-за того, что роторная электрическая цепь не контактирует с внешними цепями, не требуется контактных узлов, что делает асинхронный двигатель с короткозамкнутым ротором наиболее износоустойчивым по сравнению с другими типами электродвигателей.

Устройство фазного ротора

В пазах фазного ротора укладываются фазные обмотки, соединённые звездой, и подключённые к контактным кольцам, через которые осуществляется включение в регулирующую внешнюю цепь.

Асинхронный двигатель с фазным ротором, благодаря добавлению обмоток, в зависимости от внешней регулирующей цепи может использоваться:

  • Для плавного запуска электродвигателя и уменьшения пусковых токов при помощи реостатов, подключённых к контактным кольцам. По мере запуска двигателя сопротивление реостатов уменьшается одновременно для всех фаз ротора. При наборе оборотов реостаты отключаются и кольца замыкаются.
  • Для поддержания постоянных оборотов двигателя при включении в цепи фазных обмоток ротора дросселей, реактивное сопротивление которых увеличивается с увеличением оборотов, что уменьшает магнитное поле ротора и вращательный момент;
  • Для увеличения пускового момента на фазные обмотки подают постоянное или переменное напряжение в противофазе статору.

Характерные поломки асинхронных двигателей

От точности выполнения ротора и статора зависит воздушный магнитный зазор, увеличение которого негативно влияет на производительность и коэффициент полезного действия электродвигателя. Поэтому, стараются данный зазор максимально уменьшить.

Для предотвращения вибраций и биений ротора, его тщательно центрируют перед помещением в статор. Износ подшипников, и в частности, выход из строя сепаратора шарикоподшипников, приводит к перекосу ротора и его трению об магнитопровод статора.

Как правило, после замены подшипников данные повреждения не имеют значительного влияния на работоспособность мотора, но увеличится вибрация из-за разбалансировки ротора.

Обмотки статора наиболее часто подвержены межвитковому замыканию, которое происходит из-за повреждения эмалевой изоляции проводов из-за перегрева. Можно самостоятельно прозвонить обмотки и даже выявить место пробоя между витками, но перемотать обмотки в кустарных условиях не представляется возможным, и при такой поломке двигатель нужно отдавать на перемотку.

Однофазный асинхронный двигатель

В однофазном двигателе используется две обмотки. Одна рабочая, другая стартова. Стартовая нужна для того, чтобы придать первоначальное вращение ротора, затем она отключается. Более подробно принцип работы такого двигателя, смотрите в видео ниже

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector