Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление на турбовом двигателе

Давление на турбовом двигателе

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
  • Восстановление и ремонт двигателей СМД
  • Топливо для двигателей
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

Механический и газотурбинный наддув по-разному влияют на мощность и к. п. д. двигателя. Однако интерес представляет также влияние наддува на к. п. д. по сравнению с двигателем без наддува.

Так как среднее давление трения возрастает заметно медлен­нее, чем среднее эффективное давление, то механический к. п. д. при повышении среднего эффективного давления за счет наддува увеличивается. Поэтому, как правило, различие в удельном рас­ходе топлива между двигателями без наддува и двигателями с механическим наддувом невелико, если речь идет о сравнительно высоких значениях среднего эффективного давления. Только при низких р е (и высоких частотах вращения) потери мощности на привод механического нагнетателя вызывают увеличение удель­ного расхода топлива по сравнению с двигателем без наддува.

Поскольку у двигателя с турбонаддувом отпадает необхо­димость затраты мощности на привод компрессора, то его удель­ный расход топлива ниже, чем у двигателя без наддува. Если сравнивать двигатели равной максимальной мощности (меньшее число цилиндров у двигателя с наддувом), то лучшая топливная экономичность имеет место у двигателя с наддувом во всем диа­пазоне нагрузок (рис. 7.7 и 7.8).

Благоприятное влияние турбонаддува на к. п. д. дизелей объясняется в основном следующим.

1. С возрастанием среднего эффективного давления улуч­шается механический к. п. д.

2. Применение наддува позволяет обеспечивать высокий коэф­фициент избытка воздуха для сгорания при одновременно высо­ком среднем эффективном давлении. С увеличением избытка воздуха для сгорания улучшается индикаторный к. п. д..

3. Применение охлаждения наддувочного воздуха уменьшает потери теплоты и обусловливает тем самым снижение удельного расхода топлива.

4. У четырехтактных двигателей добавляется еще выигрыш мощности за счет или положительной, или меньшей, чем у дви­гателей без наддува, отрицательной петли газообмена (р 3 2 ); этот выигрыш мощности при заданном давлении наддува будет тем больше, чем выше к. п. д. турбокомпрессора и чем выше тем­пература выпускных газов. Правда, при этом увеличение из­бытка воздуха для сгорания, указанное в пункте 2, будет несколько препятствовать повышению температуры выпускных газов.

При оптимальном использовании названных возможностей на четырехтактных дизелях можно достичь эффективных к. п. д., равных 45%, что соответствует удельному расходу топлива 190 г/(кВт•ч) [140 г/(л. с • ч)] [7.7; 7.8]. Разумеется, для получе­ния хорошего удельного расхода топлива необходимо выбрать высокую степень повышения давления p z /p c .

На рис. 7.9 [7.8] показано изменение важнейших эксплуата­ционных параметров в зависимости от среднего эффективного давления; на рис. 7.10 представлено изменение различных к. п. д. Опытный двигатель фирмы MAN типа K6V30/45 имел 6 цилин­дров при рядной компоновке (диаметр цилиндра 300 мм, ход поршня 450 мм) и работал при частоте вращения 400 об/мин (средняя скорость поршня с m = 6 м/с).

При газовой связи турбокомпрессора с двигателем степень расширения газов в турбине определяется давлением наддува, температурой выпускных газов на входе в турбину и к. п. д. тур­бокомпрессора. Так как эта степень расширения мала по сравне­нию с имеющейся в двигателе, то выпускные газы за турбиной имеют все еще относительно высокую температуру. При увели­чении степени расширения можно (за счет увеличения работы выталкивания) получить большую энергию от выпускных газов, вследствие чего мощность, развиваемая турбиной, становится больше, чем мощность, потребляемая компрессором; избыток мощности может быть использован для повышения эффективной мощности двигателя. Чтобы сохранить приспособляемость сво­бодного турбокомпрессора к переменным условиям эксплуатации, целесообразно у четырехтактных двигателей воспринимать избы­точную мощность от энергии выпускных газов в особой ступени турбины, отдающей свою мощность через передачу коленчатому валу двигателя. Схема такого комбинированного способа, вклю­чающая силовую турбину 1 и расширительную турбину 2 на одном валу с компрессором, показана на рис. 7.11.

На подобной установке, у которой, правда, силовая турбина не имела кинематической связи с двигателем, а тормозилась компрессором (воздух из которого через регулируемый дроссель выпускался в атмосферу, т. е. не использовался), фирмой MAN проводились испытания с опытным двигателем KV30/45 [7.9]. Рассчитанная из торможения мощность силовой турбины добавлялась с учетом достижимого к. п. д. передачи к эффектив­ной мощности двигателя. Таким образом, исходя из величины к. п. д. двигателя со свободным турбокомпрессором, улучшенной до 45,6% [g e — 136,5 г/(л. с. ч), Н u = 10 150 ккал/кг], был рассчи­тан оптимальный к. п. д. —46,5%, т. е. достигнутое повышение к. п. д. составило около 2% (рис. 7.12).

Практической реализации таких к. п. д., которые до настоя­щего времени, насколько известно, не были достигнуты хотя бы экспериментально, мешает необходимость слишком больших за­трат. В связи с необходимостью обеспечения большого избытка воздуха для сгорания ? не используется высокое давление над­дува, так как при высоком максимальном давлении сгорания р z требуется утяжеление двигателя и ограничение мощности. Если на среднеоборотных четырехтактных дизелях достигаются сред­ние эффективные давления около 20 бар при максимальных дав­лениях сгорания 120 бар, т. е. при отношении р zе ? 6, то это отношение у названного выше опытного двигателя составляло 120/15 = 8; 15 бар вместо 20 бар среднего эффективного давле­ния означают потери мощности, равные 25%. К этому добав­ляется еще и то, что для обеспечения оптимального к. п. д. сред­няя скорость поршня не должна быть слишком высокой в связи с механическими потерями на трение. Упомянутый опытный дви­гатель имел среднюю скорость поршня лишь 6 м/с, что также предопределяет на 25% меньшую мощность по сравнению с сов­ременной аналогичной установкой, так как в настоящее время значения средней скорости поршня 8 м/с и выше являются обыч­ными для среднеоборотных двигателей.

По указанным выше причинам на существующих дизелях еще не достигнуты значения к. п. д., равные 45%, однако возмож­ности дальнейшего повышения этого параметра были исследованы на базе специальных расчетов [7.9].

В основу расчетов была положена рV -диаграмма опытного двигателя при тех же параметрах наддувочного воздуха и при равном количестве подводимого топлива. В связи с этим можно было ограничиться расчетом процесса газообмена и балансов мощностей лопаточных машин. Так как дополнитель­ная силовая турбина вследствие более высокого подпора выпускных газов за двигателем обусловливает увеличение количества остаточных газов в цилиндре и вместе с тем снижение мощности, то расчеты были проведены для схем, показанных на рис. 7.13 и 7.14 и устраняющих отрицательное влияние увеличения коли­чества остаточных газов в цилиндре.

На схеме (рис. 7.13) показан комбинированный двигатель с силовой турбиной и двумя выпускными клапанами, управляе­мыми независимо друг от друга. Если управление клапанов осу­ществляется в соответствии с диаграммой газораспределения, изображенной на рис. 7.15, то клапан б действует как продувоч­ный. Основная часть газов поступает через клапан в под высо­ким давлением сначала в силовую турбину 1 и затем в турбину 2, связанную с компрессором. Через клапан б в конце хода выпуска вытекают остаточные газы (т. е. лишь малая часть заряда), вы­талкиваемые к турбине 2 за счет перепада давления при про­дувке.

Как показали расчеты, при этой схеме может быть достигнуто повышение к. п. д. на 4,7%. Если исходить из к. п. д., равного 45% у опытного двигателя, то это означает, что для схемы с си­ловой турбиной и продувочным клапаном можно достигнуть к. п. д., несколько превышающий 47% (произведение 45 на 1,047).

Если клапаны установки (см. рис. 7.13) управлялись бы в со­ответствии с диаграммой газораспределения, показанной на рис. 7.16 (кривые 2), то через клапан в протекала бы к турбине 1 только малая часть выпускных газов под высоким давлением (разделение предварительного выпуска), а основная часть газов вытекала бы через клапан б под более низким давлением в тур­бину 2.

Необходимо учитывать, что при этом способе результат в зна­чительной степени зависит от выбранного время- или угла-се­чения клапанов. Двигатель имеет два впускных и два выпускных клапана, которые при обычном способе наддува по очереди совместно открываются и закрываются. Так как из-за ограничен­ности места в крышке цилиндра может быть размещен только один маленький дополнительный клапан, то при расчете предпо­лагалось, что этот добавочный клапан работает как клапан пред­варения выпуска в, а оба больших выпускных клапана — как клапаны, через которые осуществляется выталкивание. В связи с этим получается время-сечение, соответствующее кривым 2 па рис. 7.16, которое, несмотря на большую суммарную площадь проходного сечения клапанов, намного меньше, чем время — се­чение клапанов при обычной схеме наддува, соответствующее кривой 1 , так как вследствие измененных фаз газораспределения и малой продолжительности открытия клапанов большая часть время-сечения теряется. Расчетное значение улучшения к. п. д. составляло при этом 3,7%. Другие схемы подключения клапанов с другими фазами газораспределения были еще менее удачными.

Если согласно рис. 7.14 для предварения выпуска преду­смотреть специальные окна в цилиндровой втулке, а оба вы­пускных клапана (а и б), предназначенные для выпуска основной массы газов, оставить в крышке цилиндра, то изменение про­ходных сечений клапанов будет соответствовать кривым 3 на рис. 7.16 и при этом будет достигаться значительно большее время-сечение, чем по кривым 2. В этом случае рассчитанное улучшение к. п. д. составляло 6,7%, что при исходном значе­нии 45% давало общий к. п. д. около 48%.

Эти расчеты показывают, что хотя и не невозможно, но сложно и дорого еще больше повысить уже сам по себе высокий к. п. д. дизеля. Говоря об абсолютной величине этого показателя, сле­дует также отметить, что к. п. д. дизеля при прочих равных усло­виях хотя и не намного, но все же увеличивается с ростом диа­метра цилиндра, и что V -образные двигатели вследствие лучшего соотношения числа цилиндров и числа коренных подшипников имеют несколько меньшие потери на трение. Значения к. п. д. ? 43% уже достигнуты на среднеоборотных двигателях больших базовых размеров цилиндров при обычных средних скоростях поршней и средних эффективных давлениях. Такого же порядка наиболее высокие значения к. п. д. и у мало­оборотных двухтактных двигателей с наддувом.

Читать еще:  Гидравлический запуск дизельного двигателя

Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.
Читать еще:  Шланги для двигателя тюнинг

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

ВАЗ и турбонаддув: за и против

Вопросы о возможности турбирования вазовских моторов не дают покоя автомобилистам­патриотам. Может, пришло время попытаться ответить на них? Первый и главный вопрос — ЗАЧЕМ? Смысл любой доводки мотора — увеличение его мощности. Этой цели можно достичь двумя способами: вышеупомянутым турбированием двигателя или же его форсированием. Второй способ в этой статье не рассматриваем — не до него пока. С наддувом бы разобраться… Как известно, мощность ДВС определяется, помимо прочего, массой топливовоздушного заряда, попадающего в цилиндры в единицу времени, поэтому — чем больше воздуха (и топлива) поступает в цилиндры, тем больше мощности можно выжать из мотора. Азы! Поэтому моторы и «наддувают», силой загоняя воздух в цилиндры. Мощность и момент (при прочих равных условиях) повышаются, ответ на первый вопрос — получен.

Немного теории Двигатели с наддувом имеют меньшую геометрическую степень сжатия. Если в двигателях без наддува (бензиновых) ее значение порядка 9,5­11,0, то с наддувом степень сжатия, как правило, не превышает 8,5. Дело в том, что при увеличении давления смеси в начале сжатия (что и дает наддув) пропорционально увеличивается и давление в конце его. Если давление не уменьшить увеличением объема камеры сгорания (т.е. уменьшением геометрической степени сжатия), то двигатель не сможет надежно работать из­за детонации. Снижение геометрической степени сжатия — важнейший нюанс, который необходимо учитывать, приступая к турбированию любого двигателя! Далее: поскольку количество топливовоздушной смеси увеличивается (с сохранением рабочего объема), то увеличивается и количество выделившегося при сгорании тепла. Возрастает температура и давление в цилиндрах, что приводит к необходимости усиливать и изменять детали двигателя. Чем выше давление наддува — тем больше изменений требует конструкция. Аксиома, которую упорно игнорируют… Ученье — свет, а неученых — тьма.

Конструктивные особенности установки ТКР на двигатели ВАЗ Прежде всего необходимо определить максимальное избыточное давление, создаваемое ТКР, при котором у двигателя будет сохранен запланированный вами ресурс (чем больше давление наддува — тем ресурс меньше). В зависимости от запланированного давления и определяется, на сколько нужно понижать исходную (заводскую) степень сжатия. Конструктивно это осуществляется утолщением прокладки ГБЦ либо увеличением камеры сгорания путем выборки металла в поршне, или сочетанием перечисленных методов. Далее — установка турбокомпрессора требует замены штатного выпускного коллектора на специальный, предусмотренный под ТКР. Следующие шаги: установка «интеркулера» (радиатора охлаждения надуваемого воздуха), масляного радиатора, замена форсунок на более производительные (для сохранения пропорций топливной смеси). Да и свечи желательно поменять… Заключительный этап — настройка фаз газораспределения и перепрошивка ЭБУ.
Роберт Ишкулов, мастер одной из тюменских СТО:*- Я собирал ВАЗ­21 083 для участия в ралли. Мотор подверг форсировке — от родного двигателя, грубо говоря, остался только блок цилиндров. Остальные узлы были заменены на более прочные — кованые, но и они не устроили — некоторые узлы дорабатывали вручную, на заводе. Сначала я участвовал в гонках на атмосферном моторе, потом — на турбированном. Честно говоря, турбированный понравился меньше: в гонках двигатели традиционно работают на высоких оборотах, а турбодвигатель особо не раскрутишь. Поэтому турбина здесь скорее мешает, нежели помогает. А вот в городском режиме турбовой ВАЗ великолепно показал себя. Нет рывков, смесь более качественно сгорает в цилиндрах. Как следствие — выше КПД. Однако мы не смогли решить проблему «турбоямы» на низких оборотах. Решение видится в установке системы «битурбо»: маленькой «улитки», работающей «на низах», и большой, добавляющей жару «на верхах». …Говорить о сохранении моторесурса нет смысла — автомобиль собирался исключительно для спорта, а там одна гонка — один двигатель… Так что отстраивали работу мотора так, чтобы получить максимальную отдачу. Остальное — неважно! Стоимость установки турбины (с учетом интеркулера, масляного радиатора, патрубков ) составила приблизительно 100 тысяч рублей, что в сравнении с постройкой высокофорсированного атмосферного мотора — мелочь.
*
Денис Ефимов — главный механик завода «СибЭС»; Станислав Чикишев — выпускник ИнТра ТюмГНГУ:*- Мы установливали на ВАЗ­21 083 «турбокит», заказанный в Москве. Когда начинали — думали, что равных машине не будет, все японцы будут глотать выхлоп, но — увы. Ожидаемого эффекта мы не получили. Да, на «низах» двигатель действительно хорошо «подрывает», но «крутить» его бесконечно нельзя — в инструкции к турбине указан рекомендуемый предел — 6500 об./мин. (максимальные обороты стандартного 8­клапанного «восьмерочного» мотора по инструкции — 6300 об./мин.). Турбированный ВАЗ очень хорошо зарекомендовал себя в городском трафике с постоянными рывками и ускорениями. Пропадают рывки, которые так раздражают водителей отечественных автомобилей, плавность хода напоминает иномарку. При установке ТКР на ВАЗ динамические характеристики автомобиля впечатляют. Моторесурс же при грамотной установке «турбокита» не снижается, он остается приблизительно равным заводскому. Однако не все так гладко. Турбированный двигатель требует к себе больше внимания, чем атмосферный — нужно обязательно следить за уровнем масла. Далее — синонимом к слову «турбоВАЗ» должен стать турботаймер. Минусом турбированного мотора является и увеличение расхода топлива — ведь новые форсунки впрыскивают его больше
(мы устанавливали волговские).*При тестировании автомобиля на трассе после 150 км/час температура двигателя начала подниматься до 130° С и более. Причину мы так и не нашли, но решили, что тосол нужно менять на более теплоемкую жидкость…
…Наше мнение: если «турбокит» устанавливается для городской — «овощной» — езды, то это выход. А вот для спорта вряд ли — там нужны кардинальные конструктивные изменения, моторы там работают на максимальных оборотах.
Евгений Виноградов, директор «Турбо­Центра»:­ Не готов был я к такому развитию событий — не ожидал столь высокого интереса молодежи к установке турбины на ВАЗ. Непрекращающиеся звонки побудили разобраться в этом не интересном мне с технической точки зрения вопросе. ТКР на ВАЗ? Зачем? Мощность увеличить? Резонно, но на сколько и для чего? Хочешь быть самым быстрым — купи «японку» с «твин­турбо»! Быть самым быстрым из ВАЗов? Это что­то дает. Автомобиль при рождении наделен некими генами. Грузовик — для грузов, F­1 — для гонок. «Смарт» — для города, джип — понятно для чего, лимузин — для шика… «Лада» — для чего? Явно не для гонок. Сделай ты хоть «химию» дворняжке — не станет она болонкой……А если серьезно — материалы, применяемые в отечественном машиностроении, не соответствуют требованиям, которые предъявляет им турбированный двигатель. Пока мы не научимся создавать качественные материалы, турбировать «наш» двигатель бес­по­лез­но! Он все равно долго не «проживет» — даже при грамотной установке ТКР наши материалы не выдержат возросших нагрузок. Еще в СССР на заводах велись работы по созданию «турбокитов» для «атмосферного» двигателя, но когда при расчетах выяснилось, что затраты на изменение конструкции двигателя таковы, что легче создать новый, изначально турбированный мотор — работы прекратились! Полученный эффект не соответствует материальным и трудовым затратам… При установке ТКР нагрузки возрастают кратно, а вазовский мотор на них не рассчитан.Я считаю, что увеличивать динамические характеристики автомобиля ВАЗ необходимо методом форсирования «атмосферного» мотора. Этим способом можно добиться большего соответствия материальных затрат и полученного эффекта.
Самостоятельно заниматься «творчеством» можно (мотивация у всех своя), но никто не отменял принцип разумности. Установка ТКР на ВАЗ возможна, как, впрочем, и на ЗАЗ. Но! 1. Как рассчитать соотношение воздуха и топлива («настроить» топливо)? 2. Как оптимизировать работу двигателя и турбокомпрессора? Задачка не из легких — переборщили с наддувом, и мотор развалили в первой же поездке. Покупка второго. 3. Турбина — импортный агрегат, данных на который, как правило, нет… 4. Как «прошить мозги»? К специалистам? 5. Коллекторы — их геометрию надо рассчитывать. Как и распредвал, кстати. 6. Поршни, вал, шатуны, блок — читай выше про материалы… 7. Усиление кузова, тормозов (разогнаться проще, чем тормозить!), сцепления, КПП… 8. При штатном масляном фильтре турбина долго жить не будет, масла — только для турбированных моторов… 9. А детонация. Достаточно? У вас еще не пропало желание? Тогда — вперед, и кто знает — может, вы измените ВАЗ, как никто другой! Но что­то не видно турбо­ВАЗов на улицах города… Может, в гаражах — на ремонте. Плюсы турбированного двигателя ВАЗ (по сравнению с атмосферным)

    Неисправности систем турбонаддува

    Типовые неисправности систем турбонаддува, сопряженных с ней систем двигателя и основные причины выхода из строя турбокомпрессоров

    ************************************************************************************************* *************************************************************************************************

    1. Выброс моторного масла в нагнетающий патрубок турбокомпрессора и (или) в приемную трубу глушителя

    1.1 Запредельный износ поверхностей трения турбокомпрессора (радиальных и упорного подшипников, вала, дистанционных втулок, уплотнительных колец)

    Читать еще:  Buildcraft как повернуть двигатель

    Увеличенные зазоры между поверхностями трения вызывают многократное увеличение объема моторного масла, проходящего через картридж турбокомпрессора при его работе. В этом случае сливная магистраль не справляется с объемом масла, внутренний объем картриджа полностью заполняется маслом. Динамические уплотнения перестают работать, давление внутри картриджа превышает давление в турбине и в компрессоре, что приводит к интенсивному выбросу моторного масла во внутренние полости турбины и компрессора.

    — Износ уплотнительного кольца со стороны корпуса компрессора (7)

    — Износ упорной наружной втулки (9)

    — Износ рабочей поверхности уплотнительного диска (18)

    — Износ уплотнительного кольца со стороны корпуса турбины (6)

    — Износ вала турбокомпрессора (посадочное место уплотнительного кольца со стороны корпуса турбины) (22)

    — Износ корпуса подшипников (посадочное место уплотнительного кольца со стороны корпуса турбины)(23)

    1.2. Неисправность системы вентиляции картера ДВС.

    Система вентиляции картера любого двигателя внутреннего сгорания предназначена для устранения избыточного давления в картере двигателя, возникающего вследствие прорыва газов из камеры сгорания в картер при работе двигателя. Патрубок вентиляции картера любого ДВС подключается к зоне пониженного давления (т.е. разряжения). В нетурбированных двигателях это, как правило, впускной коллектор, в двигателях с турбонаддувом — это всасывающий патрубок турбокомпрессора. Сливная масляная магистраль турбокомпрессора подключается к масляной системе двигателя, как правило, ниже нормального уровня масла в картере. Таким образом, если в картере возникает избыточное давление картерных газов, масло не может нормально сливаться по сливной магистрали турбокомпрессора, оно «подпирается» в корпусе подшипников. Происходит заполнение внутренней полости картриджа моторным маслом, динамические уплотнения перестают работать, происходит выброс моторного масла в корпус компрессора (как правило).

    Причиной такого явления может быть сильная закоксованность масляного сепаратора системы вентиляции картера, закоксованность патрубка системы вентиляции картера, перелом или зажатие этого патрубка и т.д.

    1.3. Неисправность маслосливной магистрали турбокомпрессора.

    Затруднен нормальный слив отработанного масла из турбокомпрессора по различным причинам: механическое повреждение (деформация) маслосливной магистрали, приведшее к уменьшению проходного сечения; закоксованность маслосливной магистрали; применение герметика при монтаже маслосливной магистрали, что влечет за собой уменьшения сечения маслосливного отверстия корпуса подшипников и т.д. Происходит заполнение внутренней полости картриджа моторным маслом, динамические уплотнения перестают работать, происходит выброс моторного масла в корпус компрессора.

    1.4. Неисправность воздухозаборной магистрали.

    Затруднен нормальный забор воздуха на турбокомпрессор вследствие сильной загрязненности фильтра очистки воздуха или из-за частичной блокировки воздухозаборного патрубка (например, сильно перегнут, за счет чего уменьшается его проходное сечение).

    При работе турбокомпрессора за счет динамических сил за вращающимся на огромной скорости турбинным колесом создается некоторое разрежение. Если возникает излишнее сопротивление забору воздуха, это разрежение многократно увеличивается, масло просто «высасывается» из среднего корпуса турбокомпрессора.

    1.5. Неисправность системы выпуска отработанных газов.

    Излишнее сопротивление в системе выпуска отработанных газов (засорен или закоксован катализатор, неисправна или деформирована банка глушителя и т.д.) вызывает увеличение давления в корпусе турбины (т.е. в «горячей» улитке турбокомпрессора). В свою очередь, увеличение давления в корпусе турбины вызывает прорыв выхлопных газов в средний корпус турбокомпрессора (картридж) и увеличение давления внутри его, что, в свою очередь, вызывает выброс масла со стороны компрессора в нагнетающую воздушную магистраль.

    1.6. Неисправность поршневой группы ДВС.

    При неисправности поршневой группы одного или нескольких цилиндров (износ поршневых колец, износ или повреждение одного или нескольких поршней, «залегание» поршневых колец вследствие перегрева и т.д.) в двигателе возникает избыточное давление картерных газов. При превышении критического значения этого давления система вентиляции картера не будет справляться с объемом картерных газов. В результате давление в корпусе подшипников превысит давление в корпусе турбины и корпусе компрессора, что приведет к интенсивному выбросу моторного масла в корпус компрессора и корпус турбины.

    2. Повышенный шум турбокомпрессора в различных режимах его работы

    2.1. Запредельный износ поверхностей трения турбокомпрессора (радиальных и упорного подшипников, вала, дистанционных втулок)

    Увеличенные зазоры между поверхностями трения вызывают образование значительных люфтов вала и крыльчаток, что приводит к соприкосновению крыльчаток с корпусами турбины и компрессора при работе турбокомпрессора. При вращении ротора на высоких оборотах соприкосновение крыльчаток со стенками корпусов приводит к возникновению сильного шума (вой, свист).

    — Износ радиального подшипника турбокомпрессора (1,2), большой радиальный люфт вала (22), как следствие – соприкосновение при работе колеса турбины (22) с корпусом турбины (21) и (или) колеса компрессора (24) с корпусом компрессора (25)

    — Износ вала турбокомпрессора (22), большой радиальный люфт вала, как следствие – соприкосновение при работе колеса турбины (22) с корпусом турбины (21) и (или) колеса компрессора (24) с корпусом компрессора (25)

    — Износ упорного подшипника турбокомпрессора (12), большой осевой люфт вала, как следствие – соприкосновение при работе колеса турбины (22) с корпусом турбины (21) и (или) колеса компрессора (24) с корпусом компрессора (25)

    2.2. Повреждение элементов турбокомпрессора посторонними предметами.

    При механическом повреждении элементов турбокомпрессора (лопастей крыльчатки компрессора и (или) лопастей крыльчатки турбины) происходит резкое многократное увеличение значения остаточного дисбаланса ротора, что, в свою очередь, приводит к возникновению специфического «реактивного» звука при работе турбокомпрессора. Звук возникает вследствие чрезмерных радиальных нагрузок на вал, что, в конечном итоге, приводит к поломке турбокомпрессора.

    — Нарушение геометрии колеса компрессора (24) из-за внешнего механического воздействия (попадание постороннего предмета со стороны воздушного фильтра), как следствие – превышение допустимого дисбаланса ротора турбокомпрессора

    — Нарушение геометрии колеса турбины (22) из-за внешнего механического воздействия (попадание постороннего предмета со стороны выпускного коллектора двигателя), как следствие – превышение допустимого дисбаланса ротора турбокомпрессора

    2.3. Неисправность воздухозаборной магистрали

    Затруднен нормальный забор воздуха на турбокомпрессор вследствие сильной загрязненности фильтра очистки воздуха или из-за частичной блокировки воздухозаборного патрубка (например, сильно перегнут, за счет чего уменьшается его проходное сечение). Излишнее сопротивление при заборе воздуха вызывает дополнительный крутящий момент, воздействующий на вал в направлении, противоположном его вращению. При резком изменении момента воздействия на вал (при резком нажатии на акселератор, или при резком сбросе газа) возникает плавающий «реактивный» шум. Дальнейшая эксплуатация турбокомпрессора в таких условиях может вызвать его поломку.

    2.4. Усталостные разрушения лопастей колеса компрессора или лопастей колеса турбины

    Усталостные разрушения лопастей колеса компрессора или лопастей колеса турбины (т.е. отрыв части лопасти) при работе турбокомпрессора вызывает резкое многократное увеличение значения остаточного дисбаланса ротора, что вызывает появление постоянного значительного шума во всем диапазоне рабочих частот турбокомпрессора. Звук возникает вследствие чрезмерных радиальных нагрузок на вал, что, в конечном итоге, приводит к полному выходу из строя турбокомпрессора.

    2.5. Неисправность системы выпуска отработанных газов

    Излишнее сопротивление в системе выпуска отработанных газов (засорен или закоксован катализатор, неисправна или деформирована банка глушителя и т.д.) вызывает возникновение резонансных звуковых явлений в корпусе турбины (в горячей улитке) на различных рабочих частотах турбокомпрессора. Особенно часто резонансные шумы проявляются при неисправности системы выпуска отработанных газов в турбокомпрессорах с изменяемой геометрией турбины (с системой VNT).

    2.6. Избыточное значение давления наддува

    При превышении по различным причинам предельного значения давления наддува возникает избыточный крутящий момент, воздействующий на ротор в направлении, противоположном его вращению. Такое явление может приводить к возникновению высокотонального шума (свиста) при резкой перемене нагрузки на ротор турбокомпрессора (особенно при резком сбросе газа).

    3. Турбокомпрессор не развивает номинального давления наддува

    3.1. Неисправность системы рециркуляции отработанных газов двигателя

    Система рециркуляции отработанных газов предназначена для частичного повторного дожигания отработанных газов с целью улучшения экологических показателей двигателя. Система рециркуляции обычно связывает впускной и выпускной коллектора, запирающим и регулирующим устройством является электромагнитный клапан (клапан EGR). При неисправности клапана EGR (электрической или механической) происходит постоянный частичный перепуск отработанных газов с выпускного коллектора во впускной. В этой ситуации потока отработанных газов через корпус турбины недостаточно для раскручивания ротора до номинальных оборотов. Плюс к этому двигатель «душится» от избыточного количества отработанных газов, поступающих в камеры сгорания через систему рециркуляции. В итоге двигатель теряет в этой ситуации до 60% мощности.

    3.2. Неисправность системы выпуска отработанных газов

    Излишнее сопротивление в системе выпуска отработанных газов (засорен или закоксован катализатор, неисправна или деформирована банка глушителя и т.д.) приводит к значительному снижению скорости потока отработанных газов через систему выпуска (в частности, через корпус турбины), что, в свою очередь, приводит к падению давления наддува и мощности двигателя.

    3.3. Неисправность байпасной системы управления турбонаддувом

    При неисправности «нормально открытой» байпасной системы управления турбонаддувом (система, в которой рабочий клапан управляется вакуумом, в исходном состоянии при незаведенном двигателе он открыт) турбокомпрессор не сможет развить требуемую мощность, так как часть потока отработанных газов будет отводиться через открытый байпасный клапан, а не через крыльчатку турбины. Такая же ситуация будет наблюдаться, если будет неисправен вакуумный рабочий клапан или присутствует утечка вакуума в магистрали управления.

    3.4. Повреждение элементов турбокомпрессора посторонними предметами.

    При механическом повреждении элементов турбокомпрессора (лопастей крыльчатки компрессора и (или) лопастей крыльчатки турбины) происходит резкое многократное увеличение значения остаточного дисбаланса ротора. При работе турбокомпрессора в таких условиях происходит разрушение масляной пленки в зоне трения вал-подшипник, сопротивление вращению ротора резко возрастает, вследствие чего турбокомпрессор не может развить номинальной мощности. Падение мощности турбокомпрессора в этой ситуации происходит также и из-за нарушения геометрических параметров лопастей крыльчаток турбины и (или) компрессора.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector