Sw-motors.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Классификация преобразователей температуры

Классификация преобразователей температуры

Датчики температуры: классификация и особенности

Наиболее важной характеристикой термодатчиков является диапазон измеряемых температур. Другие значимые параметры: класс точности и допуска прибора, быстродействие, помехоустойчивость, наработка на отказ, наличие защиты и т.д. Измерители температуры могут отличаться по принципу работы: термометры сопротивления, биметаллические, основанные на термопаре. Вне зависимости от типа устройства, поступающий от чувствительного элемента сигнал преобразуется в электрический ток, по величине которого прибором и определяется температура.

Датчики сопротивления (терморезистивные датчики)

Действие таких устройств основано на том, что электрическое сопротивление материалов (проводников или полупроводников) зависит от температуры. Чувствительным элементом в датчиках сопротивления является терморезистор, сопротивление которого и контролируется. К основным преимуществам терморезистивных датчиков относится высокая чувствительность (включая класс допуска АА), длительная стабильность результатов и простота устройства. Они подходят для использования в системах безопасности 2Н — 4.

Чаще всего в качестве материала для резистивных детекторов температуры применяется платина, отличающаяся длительной стабильностью и высокой прочностью. Для температур выше 600 °С обычно применяется вольфрам, однако датчикам на его основе свойственна нелинейность характеристик и дороговизна. Кроме этого для изготовления датчиков используются кремний и металл-оксиды.

Специальные полупроводниковые датчики

В полупроводниковых датчиках используется принцип изменения характеристик p-n перехода под влиянием температуры. Такие свойства характерны практически любому транзистору или диоду. Полупроводниковые детекторы дёшевы и просты в устройстве, отличаются линейностью характеристик. Они легко интегрируются в электрические схемы, поскольку их можно создавать непосредственно на кремниевой подложке.

Термопары (термоэлектрические датчики)

Принцип работы термопар заключается в способности двух соединённых между собой разных электрических проводников генерировать ЭДС на своих свободных концах. Разность потенциалов зависит от разности температур между местом соединения металлов и свободными концами. Область измеряемых температур зависит от типа используемых металлов и колеблется от -200 до 2200 °С. Неблагородные металлы дают возможность измерить температуру среды до 1100 °С, а благородные — до 1600 °С.

Термометры биметаллические

Для измерения температуры в биметаллических термометрах используется двухслойная пластина или пружина из свальцованных двух разных металлов. Коэффициент температурного расширения у материалов отличается, благодаря чему под действием температуры биметалл изгибается. К биметаллической винтовой пружине прикрепляется стрелка, которая под действием деформации пружины показывает текущую температуру на градуированной шкале. Биметаллические термометры являются самыми простыми приборами для измерения температуры.

Виды датчиков температуры

Ввиду того что условия и диапазоны измерений для разных задач могут сильно отличаться, а требования к измерению различных температурных параметров быть разными, соответственно, и для выполнения тех или иных задач термопреобразователь должен соответствовать этим условиям и определённым требованиям. Поэтому они могут быть разными и использовать в работе различные свойства материалов. Таким образом, датчики бывают:

  • Полупроводниковые;
  • Терморезистивные;
  • Акустические;
  • Термоэлектрические;
  • Пьезоэлектрические;
  • Пирометры.

Коротко опишем особенности каждого из них, чтобы можно было представлять, в каких случаях необходимо использовать тот или иной прибор.

Полупроводниковые термоэлектрические

Термопреобразователи этого типа востребованы в производствах, так как являются недорогими и довольно точными приборами с низкой погрешностью. Под воздействием температуры такой датчик регистрирует изменения в свойствах p-n перехода. Здесь может использоваться практически любой диод или же биполярный транзистор. Высокая точность полупроводниковых термодатчиков достигается за счёт зависимости напряжения на транзисторе от абсолютной температуры.

Терморезистивные термоэлектрические преобразователи

Основными положительными сторонами подобных термодатчиков является их долговечность, стабильность и высокая чувствительность. Они прекрасно вписываются практически в любую схему.

Работа таких термопреобразователей основывается на изменении сопротивления под действием температуры на проводник или полупроводник. Проще говоря, они содержат в своей конструкции терморезистор, который реагирует на изменение замеряемой среды.

В зависимости от материала, используемого в терморезистивных термодатчиках, их разделяют на:

  1. Кремниевые резистивные, которые отличаются долговременной стабильностью и высокой точностью.
  2. Резистивные детекторы температуры, отличающиеся высокой стабильностью, прочностью и точностью. В основе их работы заложена способность металлов изменять своё сопротивление при воздействии температуры. Чаще в таких датчиках используют платину или медь, а при контроле особо высоких температур — вольфрам. Единственным их недостатком является относительно высокая стоимость.
  3. Работа термисторов основана на использовании металлооксидных соединений. Применяют их лишь для замеров абсолютных температур. Основным из минусов можно выделить необходимость калибровки и недолговечность.

Акустические бесконтактные устройства

Такой тип температурного датчика применяется преимущественно для измерения высоких температур. Принцип действия их основан на изменении характеристик звука при различных температурах. Состоит такой термодатчик из приёмника и излучателя. Звук, проходя через исследуемую среду, попадает в приёмник, где фиксируются его параметры, и на их основе определяется температура.

Акустические термодатчики часто используются в медицине и там, где невозможно измерить температуру контактными способами. Одним из основных их недостатков является низкая точность измеряемых температур и высокая погрешность вследствие дополнительных особенностей.

Термоэлектрические датчики

Термоэлектрические датчики, или, проще говоря, термопары отличаются широким спектром измеряемых показателей — от -200 до 2200 градусов Цельсия. При этом их возможности зависят от использованных материалов. Так, термопары из неблагородных металлов позволяют измерять температуру до 1100 °C, с благородными до 1600 °C, а для замера особо высоких терморежимов используются термопары с тугоплавкими металлами типа вольфрама.

Принцип работы термоэлектрических датчиков основан на эффекте Зеебека, т. е. используются спаи разнородных металлов, образующих замкнутый контур, в котором возникает электрический ток, когда места спаев имеют различную температуру. Состоит термопара из двух концов: рабочий и свободный. Первый погружается непосредственно в рабочую среду, а второй нет. Таким образом, возникает разность температур, что отображается в виде выходного напряжения, которое фиксируется мультивольтметром, зачастую входящим в комплект с термоэлектрическим датчиком.

Пьезоэлектрические кварцевые приборы

Принцип работы датчика температуры пьезоэлектрического основан на использовании кварцевого пьезорезонатора. Используемый в нём пьезоматериал исполняет роль резонатора. Когда на него подаётся электрический ток, то этот материал начинает колебаться при воздействии разных терморежимов, и частота колебаний также изменяется, что и положено в основу пьезоэлектрических датчиков.

Бесконтактные термопреобразователи пирометры

Бесконтактные датчики, способные фиксировать тепловое излучение от нагретых тел, называются пирометрами. Удобство подобных приборов заключается в том, что нет необходимости помещать его непосредственно в среду. Однако без прямого контакта точность их показаний относительно низка, ведь здесь могут присутствовать побочные явления, влияющие на показания.

Существует три типа пирометров:

  1. Интерферометрические пирометры испускают два луча, которые проходят один через среду, а второй является контрольным. Два этих луча попадают на кремниевый чувствительный элемент, после чего сравнивается преломление и длина лучей, непосредственно зависящие от нагрева среды.
  2. Флуоресцентные термодатчики работают по более сложному принципу: на поверхность, где необходимо замерить количество тепла, наносятся компоненты на основе фосфора. После этого объект подвергается ультрафиолетовому импульсному излучению, в результате чего происходят определённые реакции, а излучение подвергается анализу.
  3. Датчики, которые содержат растворы, способные менять окраску под воздействием температур. Хлорид кобальта, применяемый в подобных пирометрах, при контакте с измеряемой средой способен изменять цветовой спектр в зависимости от степени нагрева. Таким образом, величина света, проходящего через раствор, позволяет измерять необходимые термопараметры.

Преимущества продукции ЭЛЕМЕР-УФА

Компания предлагает большой выбор термопреобразователей (модели ТСМУ, ТСПУ, ТХАУ, ТХКУ, ТПУ), датчиков сопротивления, термопар, биметаллических термометров, отдельные чувствительные элементы для датчиков (платиновые и медные), а также кабели и провода для КИП. Доступны как высокоточные модели (класс точности АА), так и устройства с большим диапазоном рабочих температур, например, термопары с контролируемыми температурами -40. +1800 °С. По индивидуальным заказам возможно изготовление специфических моделей, например, с нижней температурной границей -200 °С.

Компания выпускает измерители РОСА-10 и ИПТВ, предназначенные для контроля температуры и влажности. Все приборы хорошо интегрируются в системы автоматического учёта и контроля благодаря поддержке интерфейса RS-232. Все датчики и преобразователи температуры изготавливаются в пыле- и влагозащищённом исполнении (классы: IP54, IP65 и IP5Х).

Квалифицированные инженеры компании предоставят полную информацию по продуктам КИПиА и помогут выбрать наиболее подходящее для целевых условий устройство. По вопросам подбора, комплектации и приобретения контрольно-измерительного оборудования можно обратиться по телефонам:

  • в г. Уфа,
  • в г. Казань, (843) 292-14-62

Что это — датчик температуры, и для чего он нужен?


Датчик температуры представляет собой относительно простое устройство, которое измеряет и сравнивает с эталонной степень нагрева охлаждающей жидкости в двигателе. Данные, полученные с этого прибора, поступают в электронный блок управления (ЭБУ), где обрабатываются и сообщают бортовому компьютеру о состоянии мотора автомобиля. В связи с этим подобное устройство считается важным и незаменимым, поскольку именно от него зависит режим и качество работы двигателя.
Датчик температуры масла оказывает влияние на систему управления автомобилем и мотором в частности. К примеру, величина импульса открытия форсунок. Изменением данного параметра можно изменить качество работы двигателя на холостом ходу, расход топлива, состав топливной смеси и многое другое. Помимо этого, датчик температуры будет воздействовать на угол опережения зажигания, что, в свою очередь, приведет к изменению количества отработавших газов, расхода топлива, а также колебаниям эксплуатационных характеристик автомобиля. Продувка фильтра в системе улавливания паров топлива, состав топливной смеси, рециркуляция отработавших газов, обороты холостого хода – все это зависит от подобного устройства, установленного в системе охлаждения.

Датчик температуры представляет собой терморезистор, который меняет свое сопротивление при изменении величины нагрева охлаждающей жидкости в системе двигателя. Подобное устройство традиционно располагается либо на корпусе термостата впускного коллектора, либо же на головке цилиндра. Последний случай размещения предусматривает установку двух датчиков, один из которых находится на электронном блоке управления, а другой – на вентиляторе. Либо же возможен вариант расположения парных устройств на каждом из блоков цилиндров.

Читать еще:  Шаговый двигатель от какого принтера

Неисправный датчик температуры может привести к значительному ухудшению ходовых характеристик автомобиля, увеличению расхода топлива, ухудшению состава отработавших газов, а также к общему ухудшению управления автомобилем.

Однако не все могут сразу распознать характерные особенности, свидетельствующие о поломке. Поэтому далее в статье будут рассмотрены основные признаки неисправности. Цифровой датчик температуры в широком смысле представляет собой электронное устройство. То есть это несколько приборов, соединенных между собой сетью проводов. Вследствие чего основной проблемой становится плохая проводка, обрыв контакта или заржавевшее соединение. Кроме того, особое место в устройстве занимает термостат. Если он открыт, то прогрев двигателя будет медленным, при этом датчик будет давать сигнал о низкой температуре мотора. В том случае, если конкретное устройство не подходит под модель вашего автомобиля, или же его вовсе нет, то также будут поступать сигналы о том, что двигатель еще не достиг рабочих температурных величин.

Выявить имеющиеся неисправности датчика температуры можно при тщательном визуальном осмотре (ржавчина, обрыв провода) или же во время прохождения компьютерной диагностики.

Датчик температуры охлаждающей жидкости. Датчик температуры охлаждающей жидкости предназначен для измерения температуры

Датчик температуры охлаждающей жидкости предназначен для измерения температуры охлаждающей жидкости в системе охлаждения двигателя. Датчик включен в систему управления двигателем.

Информация от датчика используется системой управления для корректировки основных параметров работы двигателя в зависимости от теплового состояния:

· частоты вращения коленчатого вала;

· качественного состава топливно-воздушной смеси;

· угла опережения зажигания.

Таким образом, работа датчика температуры охлаждающей жидкости обеспечивает быстрый прогрев двигателя при запуске и поддержание оптимальной его температуры на всех режимах.

В недалеком прошлом датчик температуры охлаждающей жидкости надвигателе внутреннего сгорания был представлен термореле, например, всистеме впрыска K-Jetronic. Применение данного устройства обеспечивало только два режима работы:

1. прогрев двигателя при запуске за счет обогащения топливно-воздушной смеси (при открытом контакте термореле);

2. поддержание номинальной температуры (при закрытом контакте термореле).

В настоящее время датчик температуры охлаждающей жидкости является элементом электронного управления системы охлаждения, с помощью которого осуществляется непрерывный контроль и регулирование температурного режима двигателя. В качестве датчика применяется термистор – резистор, изменяющий сопротивление в зависимости от температуры.

Термистор изготавливается из полупроводниковых материалов (оксид никеля, оксид кобальта), которые характеризуются ростом свободных электронов при увеличении температуры и соответственно уменьшением сопротивления. Термистор помещается в защитный теплопроводный корпус, на котором выполнена крепежная резьба и электрический разъем для соединения.

Термистор имеет отрицательный температурный коэффициент, т.е. его сопротивление уменьшается с ростом температуры. Когда двигатель холодный сопротивление датчика максимально. На датчик подается напряжение порядка 5В, которое уменьшается с изменением сопротивления датчика. По падению напряжения на датчике блок управления двигателем рассчитывает температуру охлаждающей жидкости.

Датчик температуры охлаждающей жидкости ввернут в выпускной патрубок головки блока цилиндров. Новые возможности температурного регулирования открываются с применением двух датчиков температуры охлаждающей жидкости. Один из датчиков устанавливается на выходе из двигателя, другой – на выходе из радиатора.

Необходимая температура охлаждающей жидкости определяется в зависимости от нагрузки двигателя (массе засасываемого воздуха) и частоте вращения коленчатого вала двигателя. По показаниям датчиков определяется характер работывентилятора, степень открытия термостата, включение реле дополнительного насоса охлаждения в системе рециркуляции отработавших газов, реле охлаждения двигателя после остановки.

Датчик детонации


Датчик детонации служит для контроля степени детонации при работе бензинового двигателя внутреннего сгорания. Датчик устанавливается на блоке цилиндров двигателя. Он является важным компонентом системы управления двигателем, т.к. позволяет реализовать максимальную мощность двигателя и обеспечить топливную экономичность. Под степенью детонации понимается часть топливно-воздушной смеси, сгорающая с детонацией. Детонация или правильно детонационное сгорание возникает, когда удаленная от свечи зажигания часть топливно-воздушной смеси вследствие поджатия фронтом пламени нагревается и самовоспламеняется с образованием взрыва. Детонация сопровождается акустическими признаками – металлическим стуком в кривошипно-шатунном механизме.

Причинами детонации являются:

· химический состав топлива (октановое число);

· конструктивные особенности двигателя (степень сжатия, расположение свечей зажигания, форма камеры сгорания и др.);

· условия эксплуатации (состав топливно-воздушной смеси, угол опережения зажигания, нагрузка на двигатель, нагар на деталях камеры сгорания и др.).

Последствием детонационного сгорания выступает повышенная теплоотдача элементов кривошипно-шатунного механизма, сопровождающаяся повышенным износом, поломками и разрушением.

Принцип действия датчика детонации основан на пьезоэффекте. В конструкцию датчика включена пьезоэлектрическая пластина, в которой при возникновении детонации на концах возникает напряжение. Чем больше амплитуда и частота колебаний, тем выше напряжение. Когда напряжение на выходе датчика превышает заданный уровень, соотвествующий определенной степени детонации, электронный блок управления корректирует характеристику работы системы зажигания в сторону уменьшения угла опережения зажигания. Таким образом, достигается оптимальная характеристика работы системы для конкретных условий эксплуатации.

При неисправности датчика детонации (отсутствии сигнала) на панели приборов загорается соответствующая сигнальная лампа, двигатель при этом продолжает работать.

Датчик кислорода

Кислородный датчик (другие названия — лямбда-зонд, датчик концентрации кислорода) служит для определения количества кислорода в отработавших газах.

Для обеспечения эффективной (экономичной и экологичной) работы двигателя внутреннего сгорания соотношение воздуха и топлива в топливно-воздушной смеси должно быть постоянным на всех режимах работы. Это достигается использованием кислородного датчика в выпускной системе. Сам процесс управления содержанием кислорода в выхлопных газах называется лямбда-регулирование.

Так, при недостатке воздуха в топливно-воздушной смеси, углеводороды и угарный газ полностью не окисляются. С другой стороны, при избытке воздуха оксиды азота полностью не разлагаются на азот и кислород.

Лямбда-зонд устанавливается в выпускной системе. На отдельных моделях автомобилей применяется два кислородных датчика: один устанавливается до каталитического нейтрализатора, другой – после. Применение двух кислородных датчиков усиливает контроль за составом отработавших газов и обеспечивает эффективную работу нейтрализатора.

В зависимости от конструкции различают два вида кислородных датчиков: двухточечный и широкополосный.

Двухточечный датчик устанавливается как перед нейтрализатором, так и за ним. Датчик фиксирует коэффициент избытка воздуха в топливно-воздушной смеси (λ) по величине концентрации кислорода в отработавших газах.

Двухточечный датчик представляет собой керамический элемент, имеющий двухсторннее покрытие из диоксида циркония. Измерение осуществляется электрохимическим способом. Электрод одной стороной контактирует с выхлопными газами, друго — с атмосферой.

Принцип действия двухточечного кислородного датчика основан на измерении содержания кислорода в отработавших газах и атмосфере. При разной концентрации кислорода в отработавших газах и атмосфере на концах электрода создается напряжение. Чем выше содержание кислорода (обедненная топливно-воздушная смесь), тем ниже напряжение, чем ниже содержание кислорода (обогащенная топливно-воздушная смесь), тем выше напряжение.

Электрический сигнал от кислородного датчика поступает в электронный блок управления системы управления двигателем. В зависимости от величины сигнала блок управления воздействуют на исполнительные органы подконтрольных ему систем автомобиля.

Широкополосный датчик представляет собой современную конструкцию лямбда-зонда. Он применяется в качестве входного датчика каталитического нейтрализатора. В широкополосном датчике значение «лямбда» определяется с использованием силы тока закачивания.

В отличие от двухточечного датчика широкополосный датчик состоит из двух керамических элементов — двухточечного и закачивающего. Под закачиванием понимается физический процесс, при котором кислород из отработавших газов проходит через закачивающий элемент под воздействием определенной силы тока.

Принцип работы широкополосного датчика основан на поддержании постоянного напряжения (450 мВ) между электродами двухточечного элемента за счет изменения силы тока закачивания.

Снижение концентрации кислорода в отработавших газах (обогащенная топливно-воздушная смесь) сопровождается ростом напряжения между электродами двухточечного керамического элемента. Сигнал от элемента подается в электронный блок управления, на основании которого создается ток, определенной силы, на закачивающем элементе.

Ток, в свою очередь, обеспечивает закачку в измерительный зазор и напряжение достигает нормативного значения. Величина силы тока при этом является мерой концентрации кислорода в отработавших газах. Она анализируется электронным блоком управления и преобразуется в управляющие воздействия на исполнительные устройства системы впрыска.

При обеднении топливно-воздушной смеси работа широкополосного датчика осуществляется аналогичным образом. Отличие состоит в том, что под действием тока происходит выкачивание кислорода из измерительного зазора наружу.

Эффективная работа кислородного датчика осуществляется при температуре 300°С. Для скорейшего достижения рабочей температуры лямбда-зонд оборудуется нагревателем.

Датчик скорости

Датчик скорости предназначен для информирования электронного блока управления о скорости движения автомобиля. Кроме этого, на него возложена также информационная функция – показания спидометра на панели управления.

Режимы работы двигателя, которые связанные с отсеканием подачи топлива в случае закрывания дроссельной заслонки, когда автомобиль находится в движении, а также плавность перехода двигателя на режим холостого хода, зависят от оборотов двигателя и скорости движения. Блок управления, получив необходимые импульсы, подстраивает или меняет параметры режимов работы двигателя. Поэтому, при движении автомобиля на высокой скорости холостые обороты поддерживаются чуть выше, чем при движении на малой скорости или на стоящем авто.

Датчик скорости монтируется на корпусе коробки переключения передач.

Принцип работы достаточно простой и основан на эффекте Холла. Во время движения автомобиля от датчика к электронному блоку управления передаются импульсы напряжения, частота которых прямо пропорциональна скорости вращения ведущих колес автомобиля. Задача устройства сгенерировать определенное количество частотных импульсов за один оборот колеса автомобиля. Эти импульсы являются своего рода частотным сигналом контроллеру для проведения необходимых расчетов. Каждый автомобиль при проектировании рассчитывается на колеса определенных размеров. Поэтому, в случае установки на машину колес другого не предусмотренного изготовителем типоразмера, скоростные показания автомобиля могут несколько измениться.

Читать еще:  Что такое газотурбинный двигатель танка

Датчик скорости за каждый пройденный километр генерирует приблизительно 6004 импульса. Контроллер по временным интервалам между импульсами определяет скорость движения автомобиля. Данные о скорости движения после вычисления отображаются также на спидометре в удобной для водителя форме.

Авто Приват

Как работает датчик температуры охлаждающей жидкости | Пособие автомобилиста

В данной публикации разберемся, как работает датчик температуры охлаждающей жидкости автомобильного двигателя. Во всех современных автомобилях в системе охлаждения устанавливаются датчики температуры, которые представляют собой полупроводниковые резисторы, имеющие отрицательный температурный коэффициент сопротивления (ТКС), — это сопротивление изменяется в зависимости от той или иной температуры окружающей среды. Если сравнивать металлические терморезисторы и полупроводниковые то вторые имеют раз в 10 большее значение ТКС, т.е. перемена температуры влияет на резкое изменение их сопротивления. Следовательно, чтобы датчик функционировал, его нужно подключить к электрической цепи контрольного прибора. После изменения температуры среды, в которой находится рабочий элемент, ток проходящий через датчик температуры вызывает отклонение стрелки в контрольном приборе При изменении температуры охлаждающей жидкости проходящий ток меняется, что вызывает отклонение стрелки указателя контрольного прибора. Сопротивление терморезистора датчика нелинейно зависит от температуры

Устройство и принцип работы. Указатели температуры охлаждающей жидкости (термометры), которые устанавливаются в автомобилях являются логометрического типа (рис. 1.3.), принцип их действия основан на взаимодействии поля постоянного магнита 6 соединенного со стрелкой 2,с результирующим магнитным полем трех измерительных обмоток (1,3,4),по ним протекает ток, и его величина в обмотке 1 зависит от сопротивления датчика.

Датчик термометра (рис. 1.4) изготовлен из латунного или бронзового баллона (корпус) 3, где на верхней, расширенной его части имеется шестигранник под ключ и резьба коническая, с помощью которой ,собственно, и крепится сам датчик. К плоскому дну баллона прикреплен терморезистор 1. Терморезистор и зажим разделяет изолированная токоведущая пружина 2. Когда температура ОЖ совсем низкая, сопротивление датчика велико, а значит ток ток в обмотке 1 (см. рис. 1.3) будет низким. Таким образом действия результирующего магнитного потока всех трех обмоток постоянный магнит и вместе с ним стрелка 2 будут повернуты в левую часть шкалы. Когда температура увеличится сопротивление терморезистора уменьшится увеличится ток в обмотке 1 и уменьшится создаваемый ею магнитный поток. Результирующий магнитный поток обмоток также изменяется, и стрелка 2 поворачивается в правую часть шкалы указателя.

Похожие публикации:

Как работает датчик температуры охлаждающей жидкости

Датчик температуры охлаждающей жидкости – это механизм, который создан, чтобы делать из температуры этой жидкости напряжение постоянного тока. Благодаря его информации можно провести коррекцию главных параметров, которые управляют двигателем в зависимости от того, каково его тепловое состояние.

Датчик температуры охлаждающей жидкости – это агрегат, питающийся рабочим током, который исходит от стабилизированного источника управляющего блока. Его выходное напряжение может корректироваться. Это зависит от величины температуры внешней среды. Так и осуществляется принцип работы датчика температуры. Если она увеличивается – то становится больше и выходное напряжение датчика.

Стоит рассказать, как сконструирован датчик температуры охлаждающей жидкости. Он состоит из металлического корпуса, у которого имеется цилиндрический наголовник. Внутри него располагается чувствительный элемент. Также в его комплектацию входит хвостовая пластмассовая часть с двухконтактной вилкой.

Как монтируется и устанавливается такая вещь, как датчик охлаждающей жидкости? Данный механизм устанавливают на двигателе, как правило, на корпусе блочного термостата цилиндров двигателя. А датчик температуры воздуха помещают на ресивере двигательной впускной трубы. Этот механизм ввинчивают в резьбовое посадочное отверстие, после чего, с помощью герметика, уплотняют соединение. К жгуту проводов датчик подключается благодаря двухконтактной розетке с защелкой. Хочется отметить, что эти механизмы по схеме включения полярны, то есть состояние обрыва равносильно обратному включению датчика.

Существует несколько типов данного механизма. Наиболее часто встречается такой тип, как датчик охлаждающей жидкости — терморезистор. Сопротивление такого механизма изменяется, если температура жидкости также претерпевает изменения. Наиболее часто это терморезисторы, имеющие отрицательный температурный коэффициент. В них сопротивление уменьшается при повышении температуры и, наоборот, становится больше, если двигатель холодный. Когда он прогревается – сопротивление падает, когда его температура достигает минимума – начинает осуществляться работа.

Не каждый датчик температуры охлаждающей жидкости обладает одной функцией. Иногда применяются механизмы с двойной функцией. То есть, когда температура достигает какого-то уровня, то электронный блок управления меняет значение напряжения так, чтобы показания приобрели более высокое разрешение.

На старых моделях машин используют и другие агрегаты. В основном они имеют переключатель с двумя позициями. Эти датчики только при конкретной температуре могут открыться или закрыться. Кроме того, они имеют прямое подключение к реле для того, чтобы была возможность выключить и включить охлаждающий вентилятор. Или же он отправляет на приборную панель сигнал, и после этого начинает гореть лампа, показывающая, что сигнал получен. Подобные датчики (которые являются однопроводными) посылают на измерительный прибор, что находится на панели приборов, сигнал.

Датчики измерения температуры. Типы, принцип работы

Практически в любой современной аппаратуре есть датчики температуры. Это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Не смотря на то, что все термодатчики призваны измерять температуру, разные типы датчиков делают это абсолютно по-разному. Давайте подробнее разберем принцип работы и характеристики основных видов термодатчиков.

По принципу измерения все датчики измерения температуры подразделяются на:

Термоэлектрические датчики температуры (термопары)

Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.

Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел. Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.

Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.

Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°. Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.

Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения. Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения. Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.

Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.

Акустические датчики температуры

Принцип работы этих устройств – разная скорость звука в среде при разной температуре. Зная изначальные данные, можно рассчитать изменения температуры по скорости прохождения звуковой волны в веществе. Это бесконтактный метод, позволяющий измерять температуру в закрытых полостях, а также в среде, недоступной для прямого измерения. Используются такие датчики в медицине и промышленности – там, где проникновение к измеряемому веществу невозможно.

Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.

Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.

Пьезоэлектрические датчики температуры

Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока. При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры. Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.

Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.

Рекомендуйте эту статью другим!

Что такое датчик температуры, и для чего он нужен?

Датчик температуры представляет собой относительно простое устройство, которое измеряет и сравнивает с эталонной степень нагрева охлаждающей жидкости в двигателе. Данные, полученные с этого прибора, поступают в электронный блок управления (ЭБУ), где обрабатываются и сообщают бортовому компьютеру о состоянии мотора автомобиля. В связи с этим подобное устройство считается важным и незаменимым, поскольку именно от него зависит режим и качество работы двигателя.

Читать еще:  Двигатель z22se не заводится

Датчик температуры масла оказывает влияние на систему управления автомобилем и мотором в частности. К примеру, величина импульса открытия форсунок. Изменением данного параметра можно изменить качество работы двигателя на холостом ходу, расход топлива, состав топливной смеси и многое другое. Помимо этого, датчик температуры будет воздействовать на угол опережения зажигания, что, в свою очередь, приведет к изменению количества отработавших газов, расхода топлива, а также колебаниям эксплуатационных характеристик автомобиля. Продувка фильтра в системе улавливания паров топлива, состав топливной смеси, рециркуляция отработавших газов, обороты холостого хода – все это зависит от подобного устройства, установленного в системе охлаждения.

Датчик температуры представляет собой терморезистор, который меняет свое сопротивление при изменении величины нагрева охлаждающей жидкости в системе двигателя. Подобное устройство традиционно располагается либо на корпусе термостата впускного коллектора, либо же на головке цилиндра. Последний случай размещения предусматривает установку двух датчиков, один из которых находится на электронном блоке управления, а другой – на вентиляторе. Либо же возможен вариант расположения парных устройств на каждом из блоков цилиндров.

Неисправный датчик температуры может привести к значительному ухудшению ходовых характеристик автомобиля, увеличению расхода топлива, ухудшению состава отработавших газов, а также к общему ухудшению управления автомобилем.

Однако не все могут сразу распознать характерные особенности, свидетельствующие о поломке. Поэтому далее в статье будут рассмотрены основные признаки неисправности. Цифровой датчик температуры в широком смысле представляет собой электронное устройство. То есть это несколько приборов, соединенных между собой сетью проводов. Вследствие чего основной проблемой становится плохая проводка, обрыв контакта или заржавевшее соединение. Кроме того, особое место в устройстве занимает термостат. Если он открыт, то прогрев двигателя будет медленным, при этом датчик будет давать сигнал о низкой температуре мотора. В том случае, если конкретное устройство не подходит под модель вашего автомобиля, или же его вовсе нет, то также будут поступать сигналы о том, что двигатель еще не достиг рабочих температурных величин.

Выявить имеющиеся неисправности датчика температуры можно при тщательном визуальном осмотре (ржавчина, обрыв провода) или же во время прохождения компьютерной диагностики.

Датчики температуры. Виды и принцип действия, Как выбрать

Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.

Виды и принцип действия

Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.

Термопары

Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.

Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.

Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.

Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.

Во-первых , она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.

Во-вторых , другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.

Терморезисторы

Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.

Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.

Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения. Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению. Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.

Комбинированный датчик

Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.

Цифровой датчик

Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.

Бесконтактные датчики (пирометры)

В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.

Кварцевые преобразователи температуры

Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.

Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.

Шумовые датчики температуры

Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.

Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.

Датчики температуры ЯКР (ядерного квадрупольного резонанса)

Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.

Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.

Объемные преобразователи

Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.

Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector