Датчики частоты вращения колеса
Датчики частоты вращения колеса
Датчики частоты вращения колеса
Применение
Датчики частоты вращения колеса служат для определения скорости вращения колес автомобиля (числа оборотов колеса). Сигналы частоты вращения передаются по кабелю в блок управления ABS, ASR или ESP автомобиля, который индивидуально управляет силой торможения каждого колеса. Этот контур регулирования предотвращает блокирование (при наличии ABS) или прокручивание колес (при наличии ASR или ESP) и гарантирует устойчивость и управляемость автомобиля. Системы навигации также нуждаются в сигналах частоты вращения колеса, чтобы рассчитывать пройденный путь (например, в туннелях или при отсутствии сигналов спутника).
Конструкция и принцип действия
Сигналы для датчика частоты вращения колеса формируются с помощью стального импульсного датчика, жестко соединенного со ступицей колеса (для пассивных датчиков), или мультиполюсного магнитно-импульсного датчика (для активных датчиков). Этот импульсный датчик имеет такую же скорость вращения, что и колесо, и проходит бесконтактно чувствительную зону головки датчика. Датчик «считывает» без прямого контакта через воздушный зазор величиной до 2 мм (рис. 2).
Воздушный зазор (с небольшими допусками) служит для того, чтобы обеспечить процесс получения сигнала без помех. Возможные помехи, такие как колебания, вибрации, температура, влажность, условия установки на колесе и пр. исключаются.
а Резцовый контактный штифт (плоский индуктор)
b Ромбовидный контактный штифт (крестовидный индуктор)
С 1998 г. вместо пассивных (индуктивных) датчиков частоты вращения в новейших разработках используются практически исключительно активные датчики частоты вращения колеса. Пассивные (индуктивные) датчики частоты вращения состоят из постоянного магнита (рис. 2, поз. 1) и соединенного с ним магнитомягкого полюсного контактного штифта (3), который вставлен в катушку (2). Таким образом, создается постоянное магнитное поле.
Полюсный контактный штифт находится прямо над импульсным колесом (4), зубчатым колесом, жестко соединенным со ступицей. Во время вращения импульсного колеса существующее постоянное магнитное поле «нарушается» из-за постоянной смены зубца и впадины. За счет этого изменяется магнитный поток, проходящий через полюсный контактный штифт, а вместе с ним и магнитный поток, проходящий через витки катушки. Смена магнитных полей индуцирует в обмотке переменное напряжение, которое снимается на концах обмотки.
Как частота, так и амплитуда переменного напряжения пропорциональны числу оборотов колеса (скорости вращения) (рис. 3). Когда колесо не движется, индуцируемое напряжение также равно нулю.
Форма зубцов, воздушный зазор, крутизна скачка напряжения и входная чувствительность прибора управления определяют минимальную измеряемую скорость автомобиля, а также минимально возможную для использования ABS чувствительность срабатывания и скорость переключения.
1 Постоянный магнит
2 Магнитная катушка
3 Полюсный контактный штифт
4 Импульсное колесо из стали
5 Магнитные линии поля
Поскольку условия монтажа на колесе не везде одинаковые, существуют различные формы полюсных контактных штифтов и различные варианты монтажа. Наиболее распространены резцовый полюсный контактный штифт (рис. 1а, также называемый плоским индуктором) и ромбовидный контактный штифт (рис. lb, также называемый крестовидным индуктором). Оба полюсных контактных штифта при монтаже должны быть точно направлены к импульсному кольцу.
а Пассивный датчик скорости вращения с импульсным кольцом
b Сигнал датчика при постоянной скорости вращения колеса
с Сигнал датчика при возрастающей скорости вращения колеса
Активный датчик скорости вращения
Сенсорные элементы
В современных тормозных системах используются практически исключительно активные датчики скорости вращения (рис. 4). Обычно они состоят из герметично залитой пластиком кремниевой интегральной микросхемы, распложенной в головке датчика.
Наряду с магниторезистивными интегральными микросхемами (изменение электрического сопротивления при изменении магнитного поля) фирма «Bosch» все еще использует в больших объемах сенсорные элементы Холла, которые реагируют на малейшие изменения магнитного поля и поэтому могут использоваться при воздушных зазорах большего размера по сравнению с пассивными датчиками скорости вращения.
Активное (импульсное) кольцо
В качестве импульсного кольца активного датчика скорости вращения используется мультиполюснное колесо. Речь идет о поочередно расположенных постоянных магнитах, расположенных в форме кольца на немагнитном металлическом носителе (рис. 6 и рис. 7а). Северный и южный полюса этих магнитов выполняют функцию зубцов импульсного кольца. На интегральную микросхему датчика воздействует постоянно изменяющееся магнитное поле. Поэтому магнитный поток, проходящий через интегральную микросхему, также изменяется при вращении мультиполюсного кольца.
Рисунок № 4 Активный датчик скорости вращения | |
![]() |
В качестве альтернативы мультиполюсному кольцу можно использовать стальное зубчатое колесо. В этом случае на интегральную микросхему Холла устанавливается магнит, вырабатывающий постоянное магнитное поле (рис. 7b). Во время вращения импульсного кольца существующее постоянное магнитное поле подвергается воздействию «помех» из-за постоянной смены зубца-выемки. В остальном принцип измерения, обработки сигнала и интегральная микросхема идентичны таковым в датчике без магнита.
1 Ступица колеса
2 Шарикоподшипник
3 Мультиполюсное кольцо
4 Датчик скорости вращения колеса
Характеристики
Типичное явление для активного датчика скорости вращения — интеграция измерительного элемента Холла, усилителя сигнала и подготовки сигнала в интегральной микросхеме (рис. 8). Данные о скорости вращения передаются в виде подводимого тока в форме прямоугольных импульсов (рис. 9). Частота импульсов тока пропорциональна числу оборотов колеса, а считывание показаний возможно почти до остановки колеса (0,1 км/ч).
1 Сенсорный элемент
2 Мультиполюсное кольцо со сменным
намагничиванием север-юг
а Интегральная микросхема Холлас мультиполюсным импульсным датчиком
b Интегральная микросхема Холла со стальным
импульсным кольцом и магнитом в датчике
1 Сенсорный элемент
2 Мультиполюсное кольцо
3 Магнит
4 Стальное импульсное колесо
Питающее напряжение находится в диапазоне между 4,5 и 20 Вольт. Уровень прямоугольного выходного сигнала составляет 7 мА (низкий) и 14 мА (высокий). При такой форме передачи цифровых сигналов, например, индуктивное напряжение помех является неэффективным по сравнению с пассивным индуктивным датчиком. Связь с блоком управления осуществляется двухпроводным кабелем.
Рисунок № 8 Блок-схема интегральной микросхемы Холла |
![]() |
Компактная конструкция и небольшой вес позволяют монтировать активный датчик скорости вращения на подшипнике колеса или в нем (рис. 10). Для этого подходят различные стандартные формы головки датчика.
а Исходный сигнал
b Выходной сигнал
0S1 Верхний порог переключения
US1Нижний порог переключения
Рисунок № 10 Подшипник колеса с датчиков скорости вращения | |
![]() | 1 Датчик скорости вращения |
Цифровая обработка сигнала позволяет передавать кодированную дополнительную информацию с помощью широтноимпульсно-модулируемого выходного сигнала (рис. 11).
Определение направления вращения колес: это особенно необходимо для функции «Hill Hold Control», предотвращающей откат автомобиля назад во время подъема на гору. Определение направления вращения также используется для навигации автомобиля.
Определение состояния остановки: эти данные также обрабатываются в функции «Hill Hold Control». Дальнейшая обработка данных входит в раздел самодиагностики.
Качество сигнала датчика: можно передавать данные о качестве сигнала датчика. Посредством этого водитель в случае ошибки может получить информацию о необходимости своевременно обратиться в сервисную службу.
Рисунок № 11 Кодированная передача данных с помощью широтно-импульсно-модулируемых сигналов
а Сигнал скорости при движении назад
b Сигнал скорости при движении вперед
с Сигнал, когда автомобиль стоит
d Качество сигнала датчика, самодиагностика
Датчик частоты вращения вала АКПП
Современная автоматическая трансмиссия является сложным агрегатом. В зависимости от типа, коробка-автомат является целым комплексом электронных, механических и гидравлических узлов и компонентов.
Что касается управления, ЭБУ АКПП контролирует работу трансмиссии, получая сигналы от многочисленных датчиков коробки — автомат и ЭСУД, а также формирует управляющие сигналы в соответствии с прописанным в память блока алгоритмами.
В этой статье мы поговорим о том, что такое датчик входной скорости АКПП, какие неисправности возникают с указанным элементом, а также как диагностировать проблемы, причиной которых может оказаться датчик вращения АКПП.
Датчик частоты вращения входного вала (входной сокрости) АКПП: назначение, неисправности, ремонт
Среди различных датчиков, которые тесно взаимодействуют с ЭБУ коробкой автомат и могут быть причиной неисправностей, следует отдельно выделить датчик входного и датчик выходного вала АКПП.
Если говорит о датчике входной скорости АКПП, его задачей является диагностика неполадок, управление моментами переключения передач, регулировка рабочего давления, а также выполнение блокировки гидротрансформатора (ГДТ).
Признаками того, что датчик входной скорости АКПП вышел из строя или работает некорректно, является заметное ухудшение динамики автомобиля, плохой и слабый разгон, загорание «чека» на панели приборов или переход коробки автомат в аварийный режим.
В такой ситуации многие водители считают, что причиной является низкое качество топлива, неисправности системы питания двигателя или загрязнение трансмиссионного масла.
При этом следует учитывать, что вместо чистки инжектора или замены масла в коробке автомат может быть необходима углубленная диагностика АКПП или проверка датчика частоты вращения входного вала коробки.
Если же аварийная лампа горит/моргает постоянно, коробка упала в аварию (включается только 3-я передача, переключения жесткие, заметны рывки, толчки, машина не разгоняется), тогда нужно проверить датчик входного вала.
Указанная проверка зачастую позволяет быстро определить проблему, особенно если она связана с работой датчика частоты вращения вала АКПП. Кстати, в большинстве случаев некорректно работающий датчик входной скорости АКПП нужно менять на новый или заведомо исправный.
Как правило, хотя датчик является надежным и достаточно простым электронным устройством, в процессе эксплуатации могут возникать неполадки. Неисправности в этом случае обычно сводятся к следующим:
- Поврежден корпус датчика, имеются дефекты, возникли проблемы с его герметизацией. Обычно корпус может повреждаться в результате значительных перепадов температур (высокий нагрев и сильное охлаждение) или механического воздействия. В этом случае нужна замена на новый элемент.
- Сигнал от датчика не постоянный, проблема плавающая (сигнал пропадает и снова появляется). В такой ситуации возможны как проблемы с проводкой, так и окисление/повреждение контактов в корпусе датчика. Если это так, в ряде случаев датчик можно не менять. Чтобы отремонтировать неисправный элемент, нужно разобрать сам корпус, выполнить чистку контактов (при необходимости пайку), после производится обжимка контактов, изолирование и т.д.
Затем нужно снять датчик и проверит его при помощи мультиметра, сравнив показания с теми, которые указаны в мануале. Если заметны отклонения от нормы, выполняется замена или ремонт датчика входного вала АКПП.
Подведем итоги
Как видно, датчик частоты вращения вала АКПП является простым элементом, при этом от его исправности напрямую зависит качество работы коробки автомат в целом. Если заметны какие-либо сбои и отклонения от нормы (машина плохо разгоняется, загорается «чек», моргает индикатор HOLD, передачи переключаются жестко и грубо, момент переключений сдвинут, наблюдаются запаздывания и т.д.), тогда в рамках проведения комплексной диагностики АКПП не следует исключать возможные неисправности датчика частоты вращения входного вала коробки автомат.
При этом сама замена может быть произведена своими силами в условиях гаража. Главное, отдельно изучить по мануалу всю необходимую информацию касательно места установки, особенностей снятия и последующего монтажа датчика входного вала АКПП.
Основные датчики в устройстве АКПП: назначение и принцип работы датчиков автоматической трансмиссии. Неисправности датчиков коробки автомат, признаки.
Что такое аварийный режим АКПП. Почему коробка автомат переходит в аварийный режим: причины, по которым автомат «встает» в режим аварии, диагностика.
Почему коробка-автомат пинается, дергается АКПП при переключении передач, в автоматической коробке возникают толчки рывки и удары: основные причины.
Пробуксовка автоматической коробки при переключении передач: основные причины, по которым пробуксовывает автомат. Диагностика коробки, устранение неполадок.
ЭБУ АКПП: как устроен и работает электронный блок управления автоматической коробкой передач. Неисправности ЭБУ коробки автомат, ремонт блока управления.
Как работает коробка-автомат: классическая гидромеханическая АКПП, составные элементы, управление, механическая часть. Плюсы, минусы данного типа КПП.
Датчик оборотов двигателя устройство
- Аксессуары
- Блоки питания для ПЛК и датчиков
- Датчики и преобразователи давления промышленные
- Датчики линейных перемещений и расстояний
- Датчики оптические для специальных задач
- Датчики положения
- Датчики, реле потока воздуха и промышленных газов
- Датчики, реле потока жидкости
- Датчики температуры промышленные
- Датчики ускорения — акселерометры
- Датчики угла наклона — инклинометры
- Датчики угловых перемещений, энкодеры, потенциометры
- Датчики щелевые
- Индикаторы, преобразователи и регуляторы
- Мониторинг и диагностика
- Расходомеры жидкости
- Расходомеры сжатого воздуха и промышленных газов
- Сигнализаторы уровня жидкости и сыпучих веществ
- Сканеры штрих-кодов промышленные
- RFID компоненты
- Уровнемеры
- Сигнальное оборудование
- Безопасность на производстве
- Промышленные интерфейсы
- Системы освещения на производстве
- Бесконтактные системы передачи данных
- Аксессуары
- Блоки питания для ПЛК и датчиков
- Датчики и преобразователи давления промышленные
- Датчики линейных перемещений и расстояний
- Датчики оптические для специальных задач
- Датчики положения
- Емкостные датчики
- Индуктивные датчики
- Индуктивные датчики для контроля частоты вращения
- Индуктивные датчики кольцевые
- Магнитные датчики
- Магнитные датчики для пневмоцилиндров
- Оптические датчики диффузионные
- Оптические датчики — однолучевые барьеры
- Оптические датчики — многолучевые барьеры
- Оптические датчики рефлекторные
- Радарные датчики движения
- Ультразвуковые датчики — однолучевые барьеры
- Датчики касания и сенсорные кнопки
- Датчики двойного листа и контроля склейки
- Детекторы транспорта
- Электромеханические выключатели
- Все
- IFM Electronic
- Pepperl+Fuchs
- Turck
- Telemecanique
Каталог бесконтактных индуктивных датчиков предназначенных для контроля частоты вращения или числа оборотов вращающихся деталей механизмов. Компактный прибор в стандартном корпусе включает в себя микроконтроллер с настройкой точки переключения потенциометром или кнопкой.
Корпус: M18x1. Расстояние срабатывания: 12 мм. Монтаж: незаподлицо. Выходной сигнал: PNP NO/NC. Настройка параметров в пределах : 3. 6000 имп/мин. Задержка при включении: 0. 15 с. Температурный диапазон эксплуатации: -20. +80 °C. Материал корпуса: нержавеющая сталь. Питание: 10. 36 V DC. Подключение: разъем М12 4 pin.
Корпус: M18x1. Расстояние срабатывания: 8 мм. Монтаж: незаподлицо. Выходной сигнал: PNP NO/NC. Настройка параметров в пределах : 3. 6000 имп/мин. Задержка при включении: 0. 15 с. Взрывозащита: с ертификат ATEX, II 3D Ex tc IIIC T80°C. Температурный диапазон эксплуатации: -20. +50 °C. Материал корпуса: нержавеющая сталь. Питание: 10. 36 V DC. Подключение: разъем М12 4 pin.
Корпус: M30x1,5. Расстояние срабатывания: 10 мм. Монтаж: заподлицо. Выходной сигнал: NO. Настройка параметров в пределах : 50. 3000 имп/мин. Задержка при включении: 12 с. Температурный диапазон эксплуатации: -25. +80 °C. Материал корпуса: латунь, покрытая специальным слоем. Питание: 20. 250 V AC/DC . Подключение: кабель PVC, 2 м.
Корпус: M30x1,5. Расстояние срабатывания: 10 мм. Монтаж: заподлицо. Выходной сигнал: NO. Настройка параметров в пределах : 5. 300 имп/мин. Задержка при включении: 12 с. Температурный диапазон эксплуатации: -25. +80 °C. Материал корпуса: латунь, покрытая специальным слоем. Питание: 20. 250 V AC/DC . Подключение: кабель PVC, 2 м.
Корпус: M30x1,5. Расстояние срабатывания: 10 мм. Монтаж: заподлицо. Выходной сигнал: NO. Настройка параметров в пределах : 5. 300 имп/мин. Задержка при включении: 0,5 с. Температурный диапазон эксплуатации: -25. +70 °C. Материал корпуса: латунь, покрытая специальным слоем. Питание: 20. 250 V AC/DC . Подключение: кабель PVC, 2 м.
Корпус: M30x1,5. Расстояние срабатывания: 10 мм. Монтаж: заподлицо. Выходной сигнал: NO. Настройка параметров в пределах : 50. 3000 имп/мин. Задержка при включении: 12 с. Взрывозащита: с ертификат ATEX, II 3D Ex tc IIIC T80°C. Температурный диапазон эксплуатации: -20. +50 °C. Материал корпуса: латунь, покрытая специальным слоем. Питание: 20. 250 V AC/DC. Подключение: кабель PVC, 2 м.
Какой датчик отвечает за обороты двигателя? Список и нужная информация
Скачать PDF
При возникновении проблем с двигателем можно услышать вопрос, какой датчик отвечает за обороты двигателя. Часто именно на эти электронные устройства водители грешат в первую очередь. Но проверять датчики следует в последнюю очередь. Плавать обороты могут по самым разным причинам. Сначала следует убедиться в отсутствии других поломок.
Часто проблемы с оборотами начинаются после заправки топливом низкого качества. В таком случае система впрыска просто не в состоянии сделать нормальную смесь.
Содержание
- Где искать поломку?
- Датчик на холостой ход
- На положение дроссельной заслонки
- Датчик на массовый расход воздуха
Где искать поломку?
Какой датчик отвечает за обороты двигателя? Ответ на этот вопрос и прост и сложен одновременно. Причина может находиться в 4 различных датчиках:
- Холостого хода (ДХХ);
Датчик на холостой ход
Нужно отметить, что при его повреждении обороты будут плавать в основном на холостом ходу. Но в любом случае проверку следует начинать с ДХХ. Для этого нужно скинуть колодку проводов с датчика. После чего проверяется напряжение. Для этого один вывод проводов пускают «на массу», то есть прикладывают к двигателю. Второй провод присоединяют к датчику и замеряют напряжение.
Мультиметр должен выдавать напряжение не меньше 12В. Если показатель меньше, то возможно разряжен аккумулятор. После восстановления его заряда возможно и работа двигателя восстановится. Также нужно проверить сопротивление на выводах, оно должно равняться 53 ОМ. Замеры нужно производить на парных контактах. Нужно поменять датчик, если сопротивление ниже или выше.
На положение дроссельной заслонки
Этот датчик предназначен для расчета контроллером уровня открытия дроссельной заслонки. Его устанавливает на ось дросселя. При нажатии на педаль акселератора он поворачивается вместе с дросселем. По сути это переменный резистор, который в зависимости от угла поворота меняет уровень напряжения подаваемого на контроллер.
Проверяется таким образом. Включается зажигание, и замеряется напряжение на выводах датчика. Оно должно колебаться от 0 В при стартовом положении, до 12 В при максимальном. Также можно измерить сопротивление, но это не обязательно. Если напряжение отсутствует, либо растет нестабильно, то ДПДЗ неисправен, необходимо его поменять.
Датчик на массовый расход воздуха
Этот датчик контролирует и позволяет нормализовать поступление воздуха в топливную смесь. Признаками его неисправности являются следующие проблемы:
- Нестабильные обороты;
- Проблемы с заводом теплого двигателя;
- Снижение мощности.
Проверка этого датчика производится по разному. Самым простым из них является отключение ДМРВ и поездка без него. Если негативные моменты пропали, то скорее всего причина именно в датчике. Также отказ датчика может быть спровоцирован некачественной прошивкой. Для этого под упор заслонки дросселя помещают пластинку толщиной 1 мм. При этом обороты немного должны увеличиться. После снимают фишку с интересующего нас датчика. Если двигатель продолжил работать, причина в «кривой» прошивке.
Также проверка выполняется путем замера напряжения. Для этого возьмите мультиметр, его следует выставить на максимальное напряжение 2 В. Далее замеряется напряжение на выводах. На новом полностью исправном датчике оно должно колебаться в пределах 0,98-1,01 В. О неисправности ДМРВ говорит напряжение более 1,05 В. В таком случае его следует заменить.