Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сколько мощности у двигателя отбирает навесное оборудование

Сколько мощности у двигателя отбирает навесное оборудование

Потеря мощности двигателя из вспомогательного оборудования.

Современный автомобиль нельзя представить без навесного вспомогательного оборудования, начиная от усилителя рулевого управления и заканчивая кондиционером. Но какую цену мы платим (мы имеем в виду лошадиные силы) за присутствие под капотом дополнительного оборудования? Сколько же отнимает мощности у двигателя навесное оснащение двигателя?

Двигателя внутреннего сгорания представляют собой уникальную конструкцию ряда элементов, которые работая в строгой последовательности, извлекают из топлива энергию. То есть, основная функция мотора заключается в возвратно-поступательных движениях поршней, который начинают вращать коленчатый вал, передающий крутящий момент на коробку передач. Но помимо этого двигатель также выполняет ряд других важных вещей для полноценного функционирования автомобиля.

Все двигателя внутреннего сгорания, как правило, используют приводные ремни и приводные ролики, которые передают крутящий момент на вспомогательное навесное оборудование, обеспечивая их взаимосвязь с частотой работы силового агрегата. Но для движения приводных ремней необходима мощность, которая, по сути, забирается у двигателя. В итоге из-за передачи части крутящего момента на вспомогательное оборудование любой двигатель передает на колеса автомобиля гораздо меньше лошадиных сил, чем изначально было выработано в камере сгорания при воспламенении топлива.

Первым важным компонентом, который использует ременный привод, является водяная помпа (водяной насос). Этот насос необходим для циркуляции антифриза в системе охлаждения двигателя.

Напомним, что антифриз, циркулируя через двигатель, забирает избыточное тепло у силового агрегата, что позволяет мотору не перегреваться. Но как регулировать скорость потока антифриза в системе охлаждения по мере увеличения оборотов двигателя?

Все очень просто. Конструкторы, соединив водяной насос ременным приводом со шкивом коленвала, обеспечили насосу взаимосвязь с оборотами силового агрегата. То есть, чем больше оборотов двигателя (что означает рост температуры двигателя из-за увеличения циклов сгорания топлива), тем быстрее начинает работать водяная помпа, увеличивая циркуляцию охлаждающей жидкости. В итоге даже на высоких оборотах двигатель не перегревается.

К сожалению, для того чтобы вращать шкив водяной помпы с помощью приводного ремня необходимо небольшое количество энергии, которое естественно берется от вырабатываемой мощности двигателя.

Также с помощью ремня и крутящего момента двигателя обеспечивается работы генератора, который обеспечивает зарядку аккумуляторной батареи, что позволяет поддерживать в рабочем состоянии многие функции автомобиля.

Генератор, также как и водяная помпа, для своей работы использует шкив, который вращается за счет движения ремня.

Шкив вращает генератор, который с помощью магнитного поля вырабатывает электроэнергию, передающуюся в аккумулятор.

В итоге возвратно-поступательные движение компонентов двигателя, производящие энергию, по сути, являются источником вращения генератора. Так что генератор также немного забирает мощности у силового агрегата.

Кондиционирование воздуха в салоне машины напрямую не связано с частотой вращения двигателя. Но для работы кондиционера также необходима энергия, которая нужна для полноценного функционирования компрессора кондиционера.

Естественно энергия также берется от двигателя с помощью ременного привода, который вращает элементы компрессора кондиционера. При вращении элементов компрессора фреон, заправленный в кондиционер, начинает циркулировать по системе, охлаждая воздух в салоне.

Этот компонент требует для своей работы немало энергии и способен отнять у двигателя приличное количество мощности. Дело в том, чем больше температура на улице в летнее время, тем больше мощности необходимо компрессору кондиционера, чтобы охладить воздух в салоне. Естественно это приводит к лишней нагрузки на силовой агрегат. Вот почему при включенном кондиционере у многих автомобилей существенно пропадает мощность.

Также с помощью приводного ремня работает система рулевого управления оснащенного гидроусилителем. Дело в том, что гидроусилитель рулевого управления, как правило, оснащен насосом, приводящий в движение гидравлическую жидкость в системе, которая облегчает вращение рулевого колеса.

По сути, жидкость гидроусилителя и насос помогают нам вращать рулевое колесо с помощью гидравлической системы. Но для работы насоса гидроусилителя необходим источник питания. Как и водяная помпа, генератор и компрессор кондиционера, насос гидроусилителя работает за счет вращения шкива ременным приводом. В итоге гидравлический насос, получая крутящий момент, создает в рулевом управлении определенное давление, облегчающее процесс вращения рулевого колеса.

Так сколько же энергии теряется двигателем, который передает часть своей мощности на различное вспомогательное оборудование?

Как правило, в автомобилях используются различные системы конструкции двигателей и навесного оборудования. В итоге разные модели автомобилей теряют различный уровень мощности двигателя. К счастью благодаря различным исследованиям автомобильных организаций и инженерным компаниям есть более точная информация о том, сколько же на самом деле теряют мощности автомобили из-за работы различного навесного оборудования.

Согласно исследованиям в среднем автомобильный кондиционер отнимает у двигателя примерно 4 л.с. (исследование Британской лабораторией возобновляемых источников энергии).

Генератор переменного тока в автомобиле в среднем отнимает около 10 л.с., когда двигатель находится под полной нагрузкой (исследование компании ZENA, DC).

Усилитель рулевого управления в среднем забирает у двигателя 2-4 л.с. в зависимости от скорости и амплитуды вращения рулевого колеса.

Рассчитать сколько же отнимает мощности у двигателя водяная помпа намного тяжелее, поскольку мощность работы водяного насоса напрямую зависит от оборотов двигателя.

Но автомобильному эксперту Дэвису Крэйгу, все-таки удалось рассчитать потери двигателя от работы водяной помпы.

Так согласно его расчетам при 1000 об/минуту двигателя водяной насос отнимает всего 0,13 л.с. или 0,1 кВт. При вращении двигателя в 2000 об/минуту водяной насос забирает примерно 1,1 л.с. или 0,8 кВт. При вращении мотора в 4000 об/минуту потери двигателя составляют примерно 8,6 л.с. или 6,4 кВт.

В итоге, сложив все потери из-за навесного вспомогательного оборудования двигателя, можно вычислить, что в среднем каждый автомобиль оснащенный двигателем внутреннего сгорания теряет примерно 16-27 л.с.

Естественно потеря мощности также зависит от величины нагрузки, оказываемой на тот или иной компонент.

Но это опять же приблизительное значение, поскольку все это высчитывается отдельно для каждого компонента, в случае если бы каждый компонент питался отдельным ременным приводом. Но во всех автомобилях, как правило, используется один или два ременных привода, которые питают все навесное оборудование. В итоге естественно потери мощности двигателя, скорее всего немного ниже, чем указано выше.

Также давайте не забывать, что помимо ременного привода и вспомогательного оборудования потеря мощности, вырабатываемой двигателем, происходит и в других компонентах автомобиля, таких как коробка передач, привода, мосты и т.п. Это происходит из-за трения вращающихся компонентов автомобиля, а также за счет их нагрева.

Так что, как правило, до колес доходит совсем не та мощность, которая на самом деле вырабатывается двигателем.

Так что, как видите, вспомогательное оборудование, расположенное в подкапотном пространстве, отнимает немало энергии у двигателя. Но, тем не менее, навесное оборудование играет очень важное значение для любого автомобиля. Да, конечно, многим может не понравиться, что изначально вырабатываемая двигателем мощность в итоге не доходит до колес машины, но отказаться от навесного дополнительного оснащения силового агрегата невозможно.

Хотя в будущем, скорее всего, большинство дополнительного оборудования получит электрическое питание от мощных аккумуляторных батарей, что позволит автопроизводителем существенно увеличить мощность своих автомобилей без существенной модернизации двигателей внутреннего сгорания.

Самое удивительное, что такие автомобили уже начали появляться на авторынке. Например недавно инженеры Мерседес представили новую технологию для шестицилиндровых двигателей, у которых вспомогательное оборудование питается от 48 В аккумуляторной батареи. Это позволяет освободить двигатель от лишней нагрузки, которое оказывает на него навесное оборудование.

Читать еще:  N46 какой ресурс двигателя

Так что, скорее всего, уже в ближайшем будущем на авторынке будет появляться все больше автомобилей без приводных ремней, которые питают навесное оборудование двигателей.

Почему автомобили должны быть «быстрыми»

Речь пойдет о выборе мощности автомобильных двигателей. Чем она обусловлена? С 1976 года максимальная скорость у нас ограничена такими цифрами: 60 км/час в городах и 90 км/час на дорогах. Зачем же выпускать автомобили с моторами, позволяющими развивать 130-150 км/час? Может быть такие двигатели вообще не нужны? А может, уменьшив, сократив «лошадиные силы», мы снизим количество аварий и сбережем немало ценнейшего энергетического сырья — нефти? Как показывает почта редакции, эти вопросы волнуют многих автолюбителей.

Мы попросили изложить современные взгляды на эту тему специалистов научно-исследовательского автомобильного и автомоторного института (НАМИ) доктора технических наук Б. М. ФИТТЕРМАНА и кандидата технических наук А. Г. ШМИДТА.

Порой автомобилисты после более или менее продолжительных рассуждений задаются вопросом, зачем массовому легковому автомобилю высокая мощность, высокая скорость. Одни подходят к нему с осторожным недоумением, другие — с запальчивой убежденностью.

Давайте внесем ясность. Начнем с того, что говорить следует не об абсолютной мощности двигателя, а об удельной, то есть о тех «лошадиных силах», которые приходятся на тонну массы автомобиля в снаряженном состоянии, — только так можно вообще оценивать машины разных классов. Поэтому в дальнейшем, говоря о «мощности», мы, естественно, будем подразумевать ее удельное значение, то есть отнесенное к массе машины. Во всем мире этот параметр для современных массовых легковых автомобилей лежит в пределах от 45 до 65 л. с./т. Почему так?

Три важных обстоятельства

Одно из основных достоинств автомобиля — универсальность и мобильность. На своем «Запорожце» или «Жигулях» вы ездите зимой и летом, в городе и по шоссе, в одиночку и с тремя четырьмя товарищами. Ваш автомобиль — как та солдатская шинель, которая и подстилка, и одеяло, и подушка. Говорить о том, что для эксплуатации в городе вам нужен один, а для поездки в отпуск другой автомобиль с иной мощностью двигателя (и, кроме того, с разными коробкой передач и задним мостом), по меньшей мере, нереально. Во всем мире автомобильные фирмы, выпуская машины с одинаковыми кузовами и разными по мощности силовыми агрегатами, в первую очередь рассчитывают не на разные условия эксплуатации, а на то, чтобы охватить возможно более широкий круг потребителей.

Второе. Мощность влияет на многие эксплуатационные показатели, изменения ее в ту или иную сторону улучшают одни из них и одновременно ухудшают другие. Поэтому выбор мощности всегда представляет собой более или менее удачный компромисс между динамикой и экономичностью, долговечностью и весом и т. д.

И третье. Сама по себе скрытая возможность машины двигаться с той или иной скоростью не может быть причиной аварии. Не конструктор, не автомобиль, а водитель выбирает порой скорость, не соответствующую конкретной дорожной обстановке. Хотя часто именно высокая динамика (достаточный запас мощности) позволяет избежать опасных ситуаций.

А теперь давайте рассмотрим, как влияет мощность двигателя на некоторые важные эксплуатационные показатели автомобиля. Пусть вас не смущают сложные на первый взгляд словосочетания «безопасная дистанция», «обгонные качества автомобиля», «кривая мощностной характеристики» и другие. Это термины, и они, в конечном счете, не осложняют, а облегчают восприятие.

Существует мнение, что в условиях интенсивного городского движения средняя фактическая скорость мало зависит от мощности двигателя (если, конечно, она не настолько мала, чтобы создавать помехи движению), а определяется средней скоростью всего транспортного потока. Верно ли такое утверждение? Лишь в том частном случае, когда автомобиль на протяжении всего маршрута не выходит из этого потока. В реальных же условиях как шоссейного, так и особенно городского движения водителю не раз приходится покидать поток и вновь вливаться в него, пересекать нерегулируемые перекрестки, совершать обгон и ряд других маневров, в которых очень важна хорошая приемистость автомобиля.

Более динамичная машина позволяет быстро и, главное, безопасно совершать эти маневры. Ведь очевидно, что в условиях интенсивного движения вероятность появления больших дистанций между машинами невелика. Значит, водитель автомобиля с низкими разгонными качествами вынужден будет значительно дольше ждать подходящей для совершения маневра дистанции. А это отрицательно повлияет на время преодоления заданного маршрута (вариант «авось», который чреват опасными последствиями, мы не рассматриваем).

«А» и «Б» выходят на шоссе

Проиллюстрируем изложенное на примере машин особо малого класса.

Рассмотрим два варианта одного и того же автомобиля, различающиеся удельной мощностью двигателя. У «А» удельная мощность 40 л. с./т, у «Б» — 60 л. с./т. Мы намеренно не хотим называть конкретные модели — тогда пришлось бы оценивать не двигатели, а автомобили в целом. Естественно, что сопоставление вариантов по приемистости (таблица 1) правомерно лишь при условии, что их двигатели одинаковы по степени технического совершенства (в отношении характера протекания кривых в мощностных, скоростных, разгонных и экономических характеристиках).

Теперь, «держа в уме» данные таблицы 1, рассмотрим показанную на рисунке дорожную ситуацию, когда автомобилю, который стоит у тротуара (в городе) или на обочине (на шоссе), необходимо безопасно и не создавая помех движению влиться в поток, катящийся со скоростью (соответственно в городе и на шоссе) 60 или 90 км/час. Практически это то же самое, как и в случае, если ему надо выехать на главную дорогу с бокового проезда на нерегулируемом перекрестке. Как вы это делаете? Выжидаете подходящую дистанцию между машинами и, когда задняя часть первого из проходящих автомобилей поровнялась с передней частью вашего, разгоняетесь с максимальной интенсивностью до скорости движения потока.

Безопасным и не создающим помех движению указанный маневр может стать лишь в том случае, если по его окончании расстояния между вашим, впереди и сзади идущими автомобилями не будут меньше дистанции безопасности. Будем считать ее для сухой дороги (при ограниченной Правилами скорости потока в 60 и 90 км/час) равной соответственно 30 и 45 метрам. Тут заметим, что в смысле использования проезжей части дороги и ее пропускной способности весьма существенно, чтобы в момент завершения маневра (то есть когда ваша машина достигла скорости потока) расстояние до идущего впереди автомобиля не было чрезмерно большим. В таблице 2 даны значения минимальной дистанции между машинами в транспортном потоке, необходимой для безопасного выполнения рассматриваемого маневра автомобилями с различной мощностью двигателей. В ней приведены и величины расстояния до идущей впереди машины в момент завершения маневра.

Автомобилю «А», как видите, нужен на 30-40% больший разрыв между идущими одна за другой машинами для того, чтобы влиться в поток. В момент завершения нашего маневра (опять заглядываем в таблицу 2 и рисунок) расстояние до находящейся впереди, в том же ряду машины для автомобиля «А» в городских условиях превысит в три раза безопасную дистанцию, а для автомобиля «Б» — только в два раза. Для загородного шоссе такой «запас дистанции» составит соответственно 5,9 и 3,8 раза. Вывод ясен: машина с плохой приемистостью всегда «душит» пропускную способность улиц и дорог. Вот и один из ответов на вопрос, для чего современному автомобилю значительный запас мощности. К аналогичным выводам приводит исследование способности автомобиля к перестроению со сменой полосы движения.

Читать еще:  Что такое частота коммутации двигателя

Идем на обгон

Одним из наиболее неблагоприятных в смысле безопасности движения является случай обгона автопоезда, который идет по дороге с однополосным в каждом направлении движением с предельно допустимой для него скоростью (70 км/час), когда обгоняющий автомобиль вынужден выезжать на полосу встречного движения. Из чего здесь состоит маневр? Водитель обгоняющего автомобиля (имеем в виду легковой) следует за обгоняемым на высшей, четвертой передаче со скоростью 70 км/час и выбирает момент, когда расстояние до встречного транспорта (в наихудшем случае движущегося со скоростью 90 км/час) позволяет сделать это безопасно. Тут обгоняющий переходит на третью передачу, резко набирает допустимую скорость (90 км/час) и совершает обгон (мы не рассматриваем здесь случай с превышением скоростей, то есть нарушением правил движения). Маневр можно считать безопасным лишь в том случае, когда расстояние до встречного транспорта в начале обгона было таким, что в момент его завершения (окончание перехода на первоначальную полосу движения) до встречной машины оставалась безопасная дистанция. Конечно, более мощной машине нужны меньшие время и путь обгона, меньшая дистанция безопасного обгона. Это сделает сам процесс более безопасным. Комментарии излишни? Нет, давайте подумаем над таблицей 3. В ней даны усредненные, как их называют ученые, результаты, которые иллюстрируют зависимость показателей обгонных качеств современного легкового автомобиля от мощности используемого на нем двигателя (удельной мощности).

На первый взгляд кажется, что цифры практически одинаковы. Совсем нет: ведь «А» совершает обгон почти на пределе. Непредвиденное обстоятельство — и запаса уже не хватает. А у варианта «Б» он есть. Мы уж не говорим о возможном подъеме, большей, чем полагается, нагрузке и т. п.

Таким образом, в условиях реального движения автомобилю часто приходится совершать маневры, в которых высокая приемистость, обеспечиваемая достаточным запасом мощности, приобретает очень важное, порой решающее для безопасности значение.

Позвольте посомневаться!

Анализ, который мы сейчас вместе провели, показывает, что в числе условий, определяющих необходимую мощность двигателя для проектируемого автомобиля, не последнее значение имеют требования к его разгонным качествам. Очевидно, что число «лошадиных сил», которое сообщает машине высокую приемистость, значительно выше нужных для обеспечения движения с максимально допустимыми скоростями. Поэтому современные автомобили способны развивать значительно более высокие скорости, чем это допускают введенные ограничения.

Но позвольте посомневаться, возразит технически подкованный читатель. Не проще ли получить хорошую динамику подбором передаточных чисел в трансмиссии? Стоит только дать соответствующие набор передач в коробке и отношение шестерен в ведущем мосту, чтобы обеспечить достаточно интенсивный разгон даже при маломощном двигателе. И пусть при этом пострадает максимальная скорость. Почему бы не сделать так?

Да, можно, но. Резко увеличится износ самого двигателя. Ведь вам придется значительное время пользоваться низшими передачами, а коленчатый вал при той же скорости на каждом километре пути будет совершать во столько раз больше оборотов, во сколько раз будет изменено передаточное число. Увеличится износ синхронизаторов и шестерен коробки передач, дисков и пружин сцепления (частые переключения). Нужно будет смириться с шумом в салоне и более интенсивной работой водителя. Да и расход топлива, как это ни странно, не упадет, а, при определенных условиях, даже возрастет. Ведь если мы примем расход бензина на прямой передаче за единицу, то на низших он вырастает во столько раз, во сколько увеличивается время движения на них и передаточное число. Вот так!

Автомобильная наука сегодня считает, что наивыгоднейшие показатели обгонной динамики и топливной экономичности (вот он компромисс!) требуют соотношения передаточных чисел между высшей (прямой) и предшествующей передачами трансмиссии в пределах от 1,3 до 1,4. Исходя из этого, если вы для безопасного обгона должны иметь возможность двигаться на третьей передаче со скоростью 95-100 км/час (нужен запас!), прямая передача автоматически дает вам те самые 130-140 км/час, которые вы видите в технической характеристике современной модели.

До сих пор мы с вами рассматривали возможность средней скорости движения с определенной удельной мощностью на примере двух вариантов автомобилей, которые принадлежат к особо малому классу. Если же говорить об автомобилях класса «Москвича» или «Жигулей», то для них нужен еще больший запас мощности, и, соответственно, у них выше приемистость и максимальная скорость.

Это все правильно, скажут иные водители, но ведь автомобиль, который может развивать 140-150 км/час, просто опасен, и поэтому все приведенные тут доводы вряд ли нужны. На это легко возразить: опасен, повторяем, не автомобиль, опасен неопытный или слишком самонадеянный водитель, который не соразмеряет свои возможности с возможностью машины и дорожными условиями.

И после аварии надо винить не конструктора, который снабдил автомобиль резервами мощности, а его владельца, легкомысленно распорядившегося этими резервами. И как раз. чтобы предотвратить легкомысленные (трудно найти другое слово) действия водителей, на наших дорогах и введены ограничения максимальной скорости движения. И никому не дано права их не соблюдать.

Однако факт существования этих ограничений вовсе не является основанием для постановки вопроса о снижении мощностей двигателей у современных легковых автомобилей.

Занявшись такой же арифметикой для автомобиля «Б», мы получим соответственно 99 и 221 метр, 65 и 172 метра.» alt=»Чтобы разогнаться до 60 км/ч, автомобилю «А» нужно 14 секунд. За это время он пройдет 140 метров, а «С» и «Д» — по 233 метра. Значит, чтобы «Д» не пр» loading=»lazy»/> Чтобы разогнаться до 60 км/ч, автомобилю «А» нужно 14 секунд. За это время он пройдет 140 метров, а «С» и «Д» — по 233 метра. Значит, чтобы «Д» не пришлось тормозить, минимальная дистанции между «С» и «Д» должна быть равна 233-140+35 м (35 м — дистанция безопасности). Получается 128 метров. Для скорости 90 км/ч, несложно рассчитать, она вырастет до 265 метров. При этом в конце маневра расстояние между «А, и «С» будет соответственно 93 и 265 метров.
Занявшись такой же арифметикой для автомобиля «Б», мы получим соответственно 99 и 221 метр, 65 и 172 метра.

Значение словосочетания «запас мощности»

Значение слова «запас&raquo

ЗАПА́С , -а, м. 1. То, что запасено; то или иное количество чего-л. заготовленного впрок. Запас муки. Запас боеприпасов. (Малый академический словарь, МАС)

Значение слова «мощность&raquo

МО́ЩНОСТЬ , -и, ж. 1. Свойство по прил. мощный (в 1 знач.); сила, могущество. Мощность голоса. (Малый академический словарь, МАС)

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: краснота — это что-то нейтральное, положительное или отрицательное?

Ассоциации к слову «запас&raquo

Ассоциации к слову «мощность&raquo

Синонимы к словосочетанию «запас мощности&raquo

Предложения со словосочетанием «запас мощности&raquo

  • На практике подключение большого количества устройств требует достаточного запаса мощности блока питания, поскольку USB-устройства получают питание прямо через USB-разъем.

Сочетаемость слова «запас&raquo

  • словарный запас
    золотой запас
    неприкосновенный запас
  • запасы воды
    запасы продовольствия
    запас энергии
  • пополнение запасов
    офицер запаса
    часть запасов
  • запасы иссякли
    запасы кончились
    запасы истощились
  • пополнить запасы
    иметь запас
    делать запасы
  • (полная таблица сочетаемости)

Сочетаемость слова «мощность&raquo

  • на полную мощность
    большая мощность
    производственные мощности
  • мощность двигателя
    мощность взрыва
    мощность излучения
  • увеличение мощности
    на пределе мощности
    в зависимости от мощности
  • мощность падает
  • работать на полную мощность
    включить на полную мощность
    увеличить мощность
  • (полная таблица сочетаемости)
Читать еще:  Шум на холодном двигателе bmw

Афоризмы русских писателей со словом «запас&raquo

  • Мы тратим, пропускаем сквозь пальцы лучшие минуты, как будто их и невесть сколько в запасе. Мы обыкновенно думаем о завтрашнем дне, о будущем годе в то время, как надобно обеими руками уцепиться в чашу, налитую без края, которую протягивает жизнь, не прошенная, с обычной щедростью своей — и пить, и пить, пока чаша не перешла в другие руки. Природа долго потчевать и предлагать не любит.

Отправить комментарий

Дополнительно

  • Как правильно пишется слово «запас»
  • Как правильно пишется слово «мощность»
  • Разбор по составу слова «запас» (морфемный разбор)
  • Разбор по составу слова «мощность» (морфемный разбор)
Значение слова «запас&raquo

ЗАПА́С , -а, м. 1. То, что запасено; то или иное количество чего-л. заготовленного впрок. Запас муки. Запас боеприпасов.

Значение слова «мощность&raquo

МО́ЩНОСТЬ , -и, ж. 1. Свойство по прил. мощный (в 1 знач.); сила, могущество. Мощность голоса.

Предложения со словосочетанием «запас мощности&raquo

На практике подключение большого количества устройств требует достаточного запаса мощности блока питания, поскольку USB-устройства получают питание прямо через USB-разъем.

Ведь каждое устройство использует некоторый запас мощности блока питания, который не является безграничным и очень быстро исчерпывается.

Каждое устройство использует определённый запас мощности, который небезграничен и быстро исчерпывается.

Расчет потребной мощности двигателя

Введение

Основной задачей курсовой работы является определение и расчет тяговых характеристик автомобиля, отвечающего условиям езды по дорогам с твердым покрытием, грунтовым дорогам и бездорожью. Автомобиль должен быть маневренным, обладать высокой грузоподъемностью и тяговыми свойствами, а также соответствовать требованиям безопасности. Шины автомобиля должны обеспечивать высокую проходимость автомобиля с полуприцепом, при минимальном снижении грузоподъемности. Полуприцеп автомобиля должен быть предназначенным для тех же типов дорог, что и автомобиль-тягач. Седельно-сцепное устройство должно быть рассчитано на большие углы относительного отклонения продольной оси тягача от продольной оси полуприцепа. Автопоезд должен обладать хорошей управляемостью, а также удовлетворительным передним и задним обзором. Автомобиль должен иметь экономичный двигатель и эффективную систему охлаждения, так как скорости передвижения по грунтовым дорогам и бездорожью не велики и большую часть времени двигатель работает под нагрузкой, при средних и повышенных частотах вращения коленчатого вала.

Тип Седельный тягач

Нагрузка на седельно-сцепное устройство, кг 8000

Снаряженная масса тягача, кг10600

Полная масса тягача, при нагрузке на седло 8000кг, кг18825

Коэффициент обтекаемости тягача, кг/м 0,7

Лобовая площадь тягача, м2

Максимальная скорость, км/ч 62

Колесная база, мм 4600

База тележки, мм 1400

Колея передняя/задняя, мм 2160/2160

Дорожный просвет 360

Рабочий объем, куб.см 14860

Степень сжатия 16,5

Число и расположение цилиндров8, V-образно

Диаметр цилиндра х ход поршня, мм130 х 140

Число клапанов 16

Мощность, л.с. (при об/мин)240 (2100)

Максимальный крутящий момент, Нм (при об/мин) 883(1500)

Система питания непосредственный впрыск

Тип Механическая 5 — ступенчатая

Передаточное число главной передачи8,21

Топливо Дизельное топливо

Емкость топливного бака, л 2х165

Тормозные механизмы всех колес барабанного типа

Тормозной путь автопоезда с 40км/ч, м 21

Передняя на двух продольполуэллиптических рессорах, амортизаторы гидравлические телескопические.

Задняя балансирная, на двух продольполуэллиптических рессорах с реактивными штангами

Тяговый расчет АТС

Список литературы

1. Тарасик В.П. Теория движения автомобилей: Учебник для вузов. СПб.: БХВ-Петербург, 2006. — 478 с.

. Е.Е. Баженов. Теория автомобиля. Методические указания к курсовой работе. Екатеринбург. 1999, 66 с.

. Чернышев В.А. Тягово-динамический и топливно-экономический расчет автомобиля: Методические рекомендации по выполнению курсовой работы. — М.: МГАУ, 2002. — 39 с.

. Теория автомобиля. Методические указания для выполнения контрольной работы по дисциплине «Автомобили, ч. 2» для студентов заочной формы обучения специальности 150200 «Автомобили и автомобильное хозяйство». / Составители: М.М. Мухаметдинов, А.Ю. Барыкин, А.А. Гусева. — Набережные Челны: КамПИ, 2003.

Введение

Основной задачей курсовой работы является определение и расчет тяговых характеристик автомобиля, отвечающего условиям езды по дорогам с твердым покрытием, грунтовым дорогам и бездорожью. Автомобиль должен быть маневренным, обладать высокой грузоподъемностью и тяговыми свойствами, а также соответствовать требованиям безопасности. Шины автомобиля должны обеспечивать высокую проходимость автомобиля с полуприцепом, при минимальном снижении грузоподъемности. Полуприцеп автомобиля должен быть предназначенным для тех же типов дорог, что и автомобиль-тягач. Седельно-сцепное устройство должно быть рассчитано на большие углы относительного отклонения продольной оси тягача от продольной оси полуприцепа. Автопоезд должен обладать хорошей управляемостью, а также удовлетворительным передним и задним обзором. Автомобиль должен иметь экономичный двигатель и эффективную систему охлаждения, так как скорости передвижения по грунтовым дорогам и бездорожью не велики и большую часть времени двигатель работает под нагрузкой, при средних и повышенных частотах вращения коленчатого вала.

Тип Седельный тягач

Нагрузка на седельно-сцепное устройство, кг 8000

Снаряженная масса тягача, кг10600

Полная масса тягача, при нагрузке на седло 8000кг, кг18825

Коэффициент обтекаемости тягача, кг/м 0,7

Лобовая площадь тягача, м2

Максимальная скорость, км/ч 62

Колесная база, мм 4600

База тележки, мм 1400

Колея передняя/задняя, мм 2160/2160

Дорожный просвет 360

Рабочий объем, куб.см 14860

Степень сжатия 16,5

Число и расположение цилиндров8, V-образно

Диаметр цилиндра х ход поршня, мм130 х 140

Число клапанов 16

Мощность, л.с. (при об/мин)240 (2100)

Максимальный крутящий момент, Нм (при об/мин) 883(1500)

Система питания непосредственный впрыск

Тип Механическая 5 — ступенчатая

Передаточное число главной передачи8,21

Топливо Дизельное топливо

Емкость топливного бака, л 2х165

Тормозные механизмы всех колес барабанного типа

Тормозной путь автопоезда с 40км/ч, м 21

Передняя на двух продольполуэллиптических рессорах, амортизаторы гидравлические телескопические.

Задняя балансирная, на двух продольполуэллиптических рессорах с реактивными штангами

Тяговый расчет АТС

Расчет потребной мощности двигателя

, кВт,

— касательная сила тяги на движителе, необходимая для преодоления суммарной силы сопротивления движению, Н;

— максимальная скорость движения АТС, м/с;

=0.8 — КПД трансмиссии.

, Н

— полная масса автомобиля, Н;

— коэффициент сопротивления качению;

ускорение при разгоне до 100км/ч, м/с;

коэффициент приведённых масс;

— угол уклона дороги, град;- коэффициент аэродинамического сопротивления;

— площадь лобовой поверхности автомобиля.

Максимальная скорость движения автомобиля с грузом (асфальтобетонное покрытие).

КПД трансмиссии автомобиля на первой передаче.

— коэффициент приведенных масс без учета моментов инерции двигателя, трансмиссии и маховика;

кг/м — коэффициент обтекаемости тягача;=7,1 м2, — лобовая площадь тягача;=1,5 м2, — лобовая площадь полуприцепа;

кг/м — коэффициент обтекаемости полуприцепа;=18825 кг — полная масса тягача;=10000 кг — полная масса полуприцепа;

) Асфальтобетонная в хорошем состоянии.

Коэффициент сопротивления качению:

колес тягача f=0.02

колес полуприцепа f1=0.018

Максимальная скорость движения, =17,22м/с

Н — полная масса тягача

Н — полная масса полуприцепа

— угол продольного уклона дороги= 0м/с2 — ускорение

Коэффициент сопротивления качению:

колес тягача f=0.035

колес полуприцепа f1=0.035

Рабочая скорость движения,

Н — полная масса тягача

Н — полная масса полуприцепа

— угол продольного уклона дороги= 0м/с2 — ускорение

Коэффициент сопротивления качению:

колес тягача f=0.3

колес полуприцепа f1=0.3

Минимальная скорость движения,

Н — полная масса тягача

Н — полная масса полуприцепа

— угол продольного уклона дороги= 0м/с2 — ускорение

Двигатель ЯМЗ-238 (дизельный четырехтактный, восьмицилиндровый, образный). Рабочий объем 14866 см3

Мощность двигателя 240л.с. (176,47кВт) при 2100 об/мин.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector