Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое ярмо двигателя

Русский

Морфологические и синтаксические свойства

падежед. ч.мн. ч.
Им.ярмо́я́рма
Р.ярма́я́рм
Д.ярму́я́рмам
В.ярмо́я́рма
Тв.ярмо́мя́рмами
Пр.ярме́я́рмах

Имеется также другой вариант склонения:

падежед. ч.мн. ч.
Им.ярмо́я́рма
Р.ярма́я́рм
Д.ярму́ярма́м
В.ярмо́я́рма
Тв.ярмо́мярма́ми
Пр.ярме́ярма́х

Корень: -ярм-; окончание: .

Произношение

Семантические свойства

Значение
  1. деревянный хомут для упряжки рабочего рогатого скота ◆ К чему стадам дары свободы? // Их до́лжно резать или стричь. // Наследство их из рода в ро́ды // Ярмо с гремушками да бич. А. С. Пушкин, «Свободы сеятель пустынный…», 1823 г. ◆ Други, и мы покоримся настигнувшей сумрачной ночи; // Вечерю здесь учредим. Ратоборцы, коней пышногривых // Всех вы от ярм отрешивши, задайте обильно им корму. Гомер, «Илиада» / перевод Н. И. Гнедича ◆ Он почти не шевелился и только медленно поглядывал кругом, как бык из-под ярма . И. С. Тургенев, «Певцы», 1850 г. ◆ Вол пыхтит под ярмом . [Даль]
  2. перен. , книжн. , только ед. бремя, тяжесть, иго ◆ Стряхнуть ярмо тяжёлого гнетущего труда. Н. А. Некрасов ◆ Ярмо забот сложить когда-нибудь. Баратынский ◆ . разреши оковы неправды, развяжи узы ярма , // и угнетенных отпусти на свободу, // и расторгни всякое ярмо . Книга пророка Исаии
  3. техн.остов электрической машины, на котором укреплены сердечники ◆ Отсутствует пример употребления (см. рекомендации ).
Синонимы
  1. бремя, тяжесть, иго; книжн., устар.: ярем
  2. якорь
Антонимы
Гиперонимы
  1. хомут
  2. трудность, тяжесть
  3. остов
Гипонимы
  1. головное ярмо, зашейное ярмо
Холонимы
  1. упряжь
  2. электрическая машина
Меронимы

Родственные слова

Этимология

Фразеологизмы и устойчивые сочетания

  • воловье ярмо

Перевод

  • Английский en: yoke
  • Болгарский bg: ярем
  • Немецкий de: Joch
  • Финский fi: ies

Библиография

Это незаконченная статья. Вы можете помочь проекту, исправив и дополнив её .
В частности, следует уточнить сведения о:

Значения слова ярмо

Словарь Ушакова

ярм о , ярма, мн. ярма, ср.

1. Деревянный хомут для упряжки рабочего рогатого скота. Волы под ярмом.

2. перен., только ед. Бремя, тяжесть, иго (книж.). «Стряхнуть ярмо тяжелого гнетущего труда.» Некрасов . «Ярмо забот сложить когда-нибудь.» Баратынский . «. Он (советский рабочий) не страдает у нас от безработицы, он свободен от ярма капитализма, он больше не раб, а хозяин своего дела.» Сталин .

3. Остов электрической машины, на котором укреплены сердечники (тех.).

Словарь Ожегова

ЯРМО, а, мн. ярма, ярм, ярмам и ярмам, ср.

1. Деревянный хомут для рабочего рогатого скота. Воловье я.

2. перен. Бремя, тяжесть, иго (высок.). Я. самодержавия. Я. колониализма.

| прил. яремный, ая, ое (к 1 знач.).

Словарь Ефремовой

  1. ср.
    1. Деревянный хомут для упряжки рабочего крупного рогатого скота.
    2. :
      1. перен. Непосильное бремя.
      2. Гнет, иго.
  2. ср. Часть электрической машины, аппарата, соединяющая между собою полюсы.

Энциклопедия Брокгауза и Ефрона

— в запряжке волов заменяет хомут; различают Я. головное, притом лобное (прилегает внутрен. поверхностью с подушкой ко лбу и прикрепляется к рогам ремнями) или затылочное (также прикрепляется к рогам), и Я. зашейное. В южной России употребляется зашейное Я., которое зацепляется за дышло простым деревянным (лозовым) кольцом и запирается на шее притыкою. Ср. Черняев, «Плужные запряжки» (1876).

Тезаурус русской деловой лексики

Syn: см. гнет, см. притеснение

Фразеологический словарь русского языка

Под ярмом — в зависимости, угнетенном, порабощенном положении

Словарь забытых и трудных слов ХVIII-ХIХ веков

, а, ср.

1. Деревянный станок, хомут, надеваемый на шею рабочего рогатого скота.

2. Бремя, тяжесть.

* Так заметается песком твой след на этих берегах, Где ты шагаешь под ярмом Не краше узника в цепях, // Некрасов. Стихотворения // /; Он думал, что письмо было шалостью, что молодой человек не так- то легко наденет на себя ярмо брачной жизни. // Герцен. Кто виноват //* *

Словарь антонимов русского языка

Библейская энциклопедия арх. Никифора

(Иер 2:20). Ярмо обыкновенно полагалось на выю животного и прикреплялось к оному и к плугу ремнями. Таким образом, оно сделалось символом неволи, рабства и деспотического правления, тогда как свержение с себя ярма или ига значило полное освобождение от всех сих тягостей. «Сокрушение ярма и расторжение уз» (Иер 5:5, Наум. 1:13) представляет также свержение с себя каким либо народом деспотической царской власти.

Библейский Словарь к русской канонической Библии

ярм’о — тугой обруч, деревянный хомут, надеваемый рабочему животному на шею. К нему прикрепляется плуг или повозка. В переносном смысле означает бремя, рабство, подчинение ( 2Кор.6:14 ).

1. Какие бывают электрические двигатели и где они применяются?

Какие бывают электрические двигатели и где они применяются?

Электрические двигатели бывают постоянного и переменного тока (рис. 2). Наиболее распространены электрические двигатели переменного тока. Они просты по устройству, неприхотливы в эксплуатации. Основной недостаток — практически не регулируемая частота вращения.

Читать еще:  Ямаха викинг заклинило двигатель причина

Электрические двигатели переменного тока изготавливают одно- и многофазными. Основные элементы таких двигателей — статор (неподвижная часть) и ротор (вращающаяся часть). Выпускаются электродвигатели с коротко замкнутыми обмотками ротора (типа беличьей клетки) и обмотками, выведенными на коллектор (систему контактных колец) и замыкающимися через регулируемые резисторы. Такие роторы называют фазными, а электродвигатели — электродвигателями с фазным ротором.

Электрические двигатели переменного тока применяют для привода рабочих машин различного назначения (насосы, деревообрабатывающие станки, дробилки и т. д.), не требующих регулирования частоты вращения. Выпускаются на мощности от 0, 2 до 200 и более киловатт.

Электродвигатели постоянного тока состоят из подвижной части (якоря) и неподвижной части (статора). Они выпускаются с параллельным, последовательным и смешанным соединением обмоток якоря и статора. Достоинством двигателей постоянного тока является способность регулировать частоту вращения, но они требуют значительных усилий при эксплуатации.

Рис. 2. Электрические двигатели: а постоянного тока; б — синхронные; в

асинхронные с фазным ротором; г — асинхронные трехфазные с коротко замкнутым ротором серии 4А. 1 — вал, 2

шпонка, 3 —подшипник, 4 — статор, 5 — обмотка статора, 6 — ротор (якорь); 7 — вентилятор; 8 — коробка выводов; 9 — лапа, 10 — коллектор; 11 — щетки; l1, l2 — продольное и поперечное расстояния в лапах; l3 — длина выступающего конца вала; l4. — размер выступающей крышки; hвысота оси вращения; d1, d2 — диаметры вала и отверстий в лапах.

Универсальные коллекторные двигатели применяются в промышленных и бытовых электроустановках (электрифицированный инструмент, вентиляторы, холодильники, соковыжималки, мясорубки, пылесосы и др.). Они рассчитаны для работы как от сети постоянного тока (110 и 220 В), так и от сети переменного тока частотой 50 Гц (127 и 220 В). Эти двигатели имеют большой пусковой момент и сравнительно малые размеры.

По своему устройству универсальные коллекторные двигатели принципиально не отличаются от двухполюсных двигателей постоянного тока с последовательным возбуждением.

В универсальных коллекторных двигателях не только якорь набирается из листовой электротехнической стали, но и неподвижная часть магнитопровода (полюса и ярмо).

Обмотка возбуждения этих двигателей включается с обеих сторон якоря. Такое включение (симметрирование) обмотки позволяет уменьшить радиопомехи, создаваемые двигателем.

Для получения примерно одинаковых частот вращения при номинальной нагрузке как на постоянном, так и на переменном токе обмотку возбуждения выполняют с ответвлениями: при работе двигателя от сети постоянного тока обмотку возбуждения используют полностью, а при работе от сети переменного тока — лишь частично.

Вращающий момент создается за счет взаимодействия тока в обмотке якоря (ротора) с магнитным потоком возбуждения.

Эти двигатели выпускаются на сравнительно небольшие мощности — от 5 до 600 Вт (для электроинструмента — до 800 Вт) и частоты вращения — 2770 — 8000 об/мин. Пусковые токи таких двигателей невелики, поэтому их в сеть включают непосредственно без пусковьк сопротивлений. Универсальные коллекторные двигатели имеют минимум четыре вывода: два для подключения к сети переменного тока и два для подключения к сети постоянного тока. КПД универсального двигателя на переменном токе ниже, чем на постоянном. Это вызвано повышенными магнитными и электрическими потерями. Величина тока, потребляемого универсальным двигателем при работе на переменном токе, больше, чем при работе этого же двигателя на постоянном токе, так как переменный ток помимо активной составляющей имеет еще и реактивную составляющую.

Частоту вращения таких двигателей регулируют, изменяя подводимое от сети напряжение, например, автотрансформатором, а у двигателей небольшой мощности — реостатом.

Однофазный коллекторный двигатель нельзя пускать в ход при малой нагрузке, потому что он может пойти «вразнос».

Отечественная промышленность выпускает универсальные коллекторные двигатели серий УЛ, МУН, УМТ, ДТА-4, УВ, М-1Д, ЭП, УД, Д2-03, ЭПП-1 и др.

Принцип действия машины постоянного тока

Хотя в современном электроприводе преобладают машины переменного тока (асинхронные электродвигатели), двигатели постоянного тока все еще используют и не только в предыдущих решениях.

Устройство простейшего электродвигателя постоянного тока

На рисунке ниже приведена простейшая машина постоянного тока:

Схематическое отображение электродвигателя постоянного тока в осевом направлении показано ниже:

Неподвижная часть двигателя постоянного тока называется индуктором или статором. Состоит он из полюсов и круглого стального ярма, к которому крепятся полюса. Главным назначением индуктора является генерация постоянного (основного) магнитного потока машины. Индуктор простейшей машины, отображенный выше, имеет два полюса 1 (ярмо индуктора не показано).

Вращающаяся часть машины состоит из цилиндрического якоря 2, укрепленного на валу, и коллектора 3. Якорь состоит из набранного из листов электротехнической стали сердечника и обмотки, укрепленной на сердечника якоря. Обмотка якоря в показанном на рисунке простейшем двигателе имеет один виток. Концы витка соединяются с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. Две неподвижные щетки 4 налегают на коллектор. С помощью щеток обмотка якоря соединяется с внешней цепью.

Читать еще:  Мойка двигателя автомобиля

Основной магнитный поток в электродвигателях постоянного тока создается обмоткой возбуждения, которая запитывается постоянным напряжением и располагается на сердечниках полюсов. Магнитный поток «идет» через якорь от северного полюса N к южному полюсу S, а от него через ярмо снова к северному. Ярмо и сердечники полюсов также изготавливаются из ферромагнитных материалов.

Генераторный режим двигателя постоянного тока

Предположим, что в нашем случае якорь электрической машины (рисунок 1 и рисунок 2 а)) движется по часовой стрелке. Тогда в проводниках обмотки якоря будет индуцироваться ЭДС, направление которой можно определить используя правило правой руки (рисунок 3 а)), что и показано на рисунках 1 и 2а). Поскольку поток полюсов является неизменным, то ЭДС сможет индуцироваться только в случае вращения якоря электродвигателя постоянного тока и называется ЭДС вращения.

Величина индуктируемой в проводнике обмотки якоря ЭДС будет равна:

Где: B – магнитная индукция воздушного зазора между якорем и полюсом в месте расположения проводника; l – активная длина проводника с током, то есть это длина, на протяжении которой проводник расположен в магнитном поле; υ – скорость движения проводника в магнитном поле (линейная).

В обоих проводниках из-за симметрии индуктируются одинаковые ЭДС, которые складываются по контуру витка, и поэтому полная ЭДС якоря двигателя постоянного тока будет равна:

ЭДС Еа является величиной переменной, так как проводники якорной обмотки попеременно проходят под южным и северным полюсами, в результате чего направление ЭДС в проводниках изменяется. Кривая ЭДС проводника по форме повторяет кривую распределения индукции B вдоль воздушного зазора в зависимости от времени t (рисунок 4 а)).

В двухполюсной машине частота ЭДС f равна скорости вращения якоря n, выраженной в оборотах в секунду: f = n. А вот в общем случае, когда двигатель постоянного тока имеет p пар полюсов с чередующеюся полярностью:

Обмотка якоря с помощью щеток замыкается через внешнюю цепь и, соответственно, в этой цепи начинает протекать ток Ia. В обмотке якоря будет протекать переменный ток и его кривая аналогична кривой ЭДС (рисунок 4). Однако во внешней цепи протекает постоянный ток, это объясняется действием коллектора. При повороте коллектора и якоря на 90 0 (рисунок 1) происходит смена коллекторных пластин под щетками и изменение направления ЭДС в проводниках. Вследствие чего под верхней щеткой всегда будет находиться пластина соединенная с проводником северного полюса, а под нижней щеткой пластина соединенная с проводником южного полюса. В результате такого соединения направление тока и полярность щеток для внешней цепи остаются неизменными.

Таким образом, коллекторный узел является механическим выпрямителем, который преобразовывает переменный ток якоря в постоянный ток внешней цепи.

Изменив знак второго полупериода кривой на рисунке 4 а), получим форму кривой напряжения и тока внешней цепи (рисунок 4 б)). Пульсирующий ток внешней цепи малопригоден для практических целей. Для избавления от пульсаций применяют более сложные по своему устройству коллектор и якорь двигателя постоянного напряжения, однако основные свойства машины постоянного тока могут быть рассмотрены на примере рассматриваемого нами простейшего двигателя постоянного тока.

Постоянное напряжение на зажимах якоря генератора будет меньше Еа на величину падения напряжения в сопротивлении обмотки якоря ra:

Поскольку проводники якоря находятся в магнитном поле и через них протекает ток Ia, то на них будут действовать электромагнитные силы (рисунки 1, 2 а)):

Направление этих сил определяют с помощью правила левой руки (рисунок 3 б)). Данные силы и создают электромагнитный вращающий момент, который будет равен:

Здесь Da это диаметр якоря машины. Из рисунков 1-2 а) можно увидеть, что в генераторном режиме данный момент действует против направления вращения якоря и является тормозящим.

Режим двигателя

Простейший двигатель постоянного напряжения может работать не только в режиме генератора, но и в режиме двигателя, если к обмотке якоря подвести напряжение от внешнего источника. На проводники обмотки якоря будут действовать электромагнитные силы Fпр в результате чего создается электромагнитный момент Мэм. Как и для режима генератора, величины Fпр и Мэм вычисляются из равенств (4) и (5). При достаточной величине Мэм якорь электрической машины придет в движение и будет развивать механическую мощность. Момент Мэм в таком случае будет являться движущим, и приводить в движение якорь в направлении вращения.

Если мы хотим, чтобы при той же полярности полюсов направление вращения генератора (рисунок 1-2 а)) и двигателя (рисунок 1-2 б)) были одинаковы, то направление действия Мэм, а также тока Iа у электродвигателя постоянного напряжения должны быть обратными по сравнению с генератором (рисунок 1-2 б)).

Коллектор превращает постоянный ток из внешней цепи в переменный ток якоря в режиме двигателя, что смело можно назвать механическим инвертором тока.

Читать еще:  Винтовой забойный двигатель конструкция работа

Проводники обмотки якоря электрической машины тоже вращаются в магнитном поле, из-за чего в обмотке якоря двигателя индуцируется ЭДС Еа, величину которой можно определить из формулы (1). В электродвигателе направление этой ЭДС (рисунок 1-2 б)) такое же, как и в генераторе (рисунок 1-2 а)). Таким образом, ЭДС якоря Еа в двигателе направлена против тока Ia и приложенного напряжения Ua к зажимам якоря. Поэтому довольно часто ЭДС якоря называют противоэлектродвижущей силой.

Напряжение, приложенное к якорю электрической машины, уравновешивается падением напряжения на обмотке якоря и ЭДС Еа:

Если сравнить уравнения (3) и (6) можно увидеть одну очень важную особенность – в режиме генератора Ua Ea.

Принцип обратимости электродвигателя

Из изложенных выше формул и описаний следует вывод, что каждая машина постоянного тока (и не только постоянного) может работать как в режиме двигателя, так и в режиме генератора. Такое свойство имеют все электрические машины, и оно носит название обратимость.

Для перехода двигателя постоянного тока из режима генератора в режим двигателя и обратно при неизменной полярности щеток и полюсов, а также при неизменном направлении вращения необходимо всего лишь изменить направление тока в обмотке якоря (что сейчас легко делается с помощью тиристорных преобразователей и других управляемых выпрямителей).

В современных системах такой переход осуществляется автоматически.

Преобразование энергии в двигателе постоянного тока

На рисунке 5 показаны направления действия электрических и механических величин в якоре двигателя и генератора постоянного тока.

В соответствии с первым законом Ньютона в применении к вращающемуся телу, действующие на это тело тормозящие и вращающие моменты уравновешивают друг друга. Поэтому в установившемся режиме работы генератора электромагнитный момент будет равен:

Здесь Мв – момент на валу генератора, который развивает приводной двигатель, Мтр – момент трения на коллекторе электрической машины и в подшипниках, а также сопротивления воздуха, Мс – тормозящий момент, вызываемый потерями на вихревые токи и гистерезис в сердечнике якоря. Данные потери мощности возникают вследствие вращения сердечника якоря в неподвижном магнитном поле полюсов. Электромагнитные силы, возникающие при вращении ротора электрической машины постоянного тока, оказывают на ротор тормозящее действие и в таком представлении ведут себя подобно силам трения.

Электромагнитный момент двигателя постоянного тока в установившемся режиме работы будет равен:

Здесь Мв – развиваемый рабочей машиной (насос, тележка, кран…) тормозящий момент на валу электродвигателя.

В режиме генератора электромагнитный момент Мэм является движущем, а в режиме двигателя наоборот, тормозящим. При этом в обеих случаях Мв и Мэм противоположны по направлению.

Электромагнитная мощность Рэм, развиваемая электромагнитным моментом Мэм, будет равна:

В данном случае ω – это угловая скорость машины постоянного тока.

Подставив значения Мэм и ω в формулу (8) из формул (5) и (9) и учтем, что линейная скорость на окружности якоря:

Или же на основании выражения (1):

Под действием тока Ia и ЭДС Еа в обмотке якоря развивается внутренняя электрическая мощность:

Исходя из формул (10) и (11), Рэм = Ра, то есть внутренняя электрическая мощность якоря равна электромагнитной мощности, которую развивает электромагнитный момент, что довольно наглядно демонстрирует процесс преобразования электрической энергии в механическую в режиме двигателя, и процесс преобразования механической энергии в электрическую в режиме генератора.

Умножив соотношения (3) и (6) на Ia получим следующие выражения для генератора:

Левые части приведенных выше формул представляют собой электрическую мощность на зажимах якоря, первые члены первых частей электромагнитную мощность все того же якоря, и последние выражение мощность потерь в якорной цепи.

Хотя полученные формулы приведены для простейшей машины постоянного тока (рисунок 1), они все равно будут действовать и в более сложной обмотке якоря, так как моменты отдельных проводников и ЭДС складываются. Данные формулы являются выражением закона сохранения энергии и отражают процесс преобразования энергии в машине постоянного тока.

Подведем итоги

Развиваемая на валу генератора приводным электродвигателем механическая мощность, за вычетом магнитных и механических потерь, превращается в электрическую мощность (с вычетом потерь в обмотке) и передается во внешнюю цепь. В режиме двигателя электрическая мощность, подающаяся на якорь электрической машины, частично расходуется на потери, а остальная ее часть преобразуется в мощность электромагнитного поля – потом в механическую мощность, которая после вычета потерь в стали якоря и сил трения с помощью вала передается рабочей машине (лифт, станок, тяговый привод электротранспорта и другие).

Общие закономерности превращения энергии для двигателей постоянного тока также актуальны и для двигателей переменного тока.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector