Sw-motors.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Из чего состоит автомобиль: основные части, узлы и агрегаты

Из чего состоит автомобиль: основные части, узлы и агрегаты

Первый в мире автомобиль с бензиновым мотором был запатентован еще в далеком 1885 году гениальным немецким инженером Карлом Бенцом. Поразительно, но и в наши дни машина состоит из тех же основных частей, что и сто лет назад – это кузов, шасси и двигатель. Давайте подробнее рассмотрим из чего состоит автомобиль и его основные части.

В одной небольшой статье сложно, конечно, описать подробное устройство автомобиля, поэтому мы рассмотрим лишь основы, которые должен знать каждый автолюбитель.

В конце этого учебного материала вы найдете небольшой видео-урок об устройстве автомобиля с описанием основных частей, из которых он состоит, и их функций.

Также стоит отметить, что незнание общего устройства автомобиля и принципа работы его основных узлов и агрегатов, ведет к повышенным расходам на ремонт машины и её техническое обслуживание.

Общее устройство автомобиля

Основными составными частями в конструкции автомобиля, как мы уже писали выше, являются:

  1. Двигатель;
  2. Кузов;
  3. Шасси;
  4. Электрооборудование.

Все они состоят из множества отдельных элементов, деталей, узлов и агрегатов.

Двигатель – это сердце автомобиля. Он является источником механической энергии и приводит наше авто в движение. Наибольшее распространение в автомобилестроении получили двигатели внутреннего сгорания и дизельные моторы. Однако в последние годы все большую популярность завоевывают автомобили, оснащенные электрическими и гибридными двигателями.

Кузов автомобиля может иметь рамную и безрамную конструкцию. Как правило, в современных легковых автомобилях рама отсутствует, а все узлы и агрегаты крепятся непосредственно к кузову. Именно поэтому такой кузов называют несущим – данное конструкторское решение устройства автомобиля позволяет максимально снизить его массу. Советуем также ознакомиться с классификацией автомобилей по типу кузова.

Шасси автомобиля заслуживает отдельного внимания. Оно представляет собой множество механизмов, в задачи которых входит передача крутящего момента от силового агрегата (двигателя) к ведущим колесам, передвижение автомобиля и управление им. Эти группы механизмов называются трансмиссия, ходовая часть и механизм управления автомобилем.

  • Трансмиссия автомобиля служит для передачи крутящего момента от двигателя к ведущим колесам, тем самым, позволяя изменять крутящий момент по величине и направлению. Трансмиссия двухосного автомобиля с передним расположением двигателя и приводом на задние колеса обычно состоит из таких механизмов: сцепление, коробка передач, карданная передача, главная передача, дифференциал и полуоси.
  • Ходовая часть автомобиля состоит из рамы или несущего кузова, переднего и заднего мостов, подвески (рессоры и амортизаторы), колес и шин. Подробнее о видах и типах подвесок автомобилей.
  • Механизм управления автомобилем состоит из рулевого управления и тормозной системы (с барабанными и дисковыми тормозами). Он позволяет изменять направление и скорость движения автомобиля, останавливать его и удерживать на месте.

Кроме вышеперечисленных узлов, агрегатов и механизмов абсолютно все автомобили оснащены электрооборудованием, состоящим из источников и потребителей электрического тока.

Электрооборудование автомобиля запускает и дает возможность работать двигателю, освещает и обогревает салон машины, позволяет без проблем передвигаться в темное время суток и в непогоду, поддерживает противоугонную систему, заботиться о нашей с вами безопасности на дороге, превращает автомобиль в концертный зал или даже в кинотеатр, и выполняет множество других полезных и очень важных функций.

Видео-урок: из чего состоит автомобиль

КОНСТРУКЦИЯ ОСНОВНЫХ УЗЛОВ ДИЗЕЛЬНЫХ

ДВИГАТЕЛЕЙ

Современный дизельный двигатель представляет собой сложный агрегат, состоящий из ряда отдельных механизмов, систем и устройств. Конструкция дизельного двигателя зависит от его назначения, мощности, области применения и т.д. В любом двигателе можно выделить следующие основные узлы: остов, кривошипно-шатунный механизм, механизм газораспределения и продувочные и наддувочные устройства (рис. 23).

Остов двигателя поддерживает и направляет движущиеся детали, воспринимает все усилия при работе двигателя; представляет собой совокупность неподвижных деталей двигателя – фундаментной рамы, картера, цилиндров, крышек цилиндров, анкерных связей, шпилек и болтов, стягивающих эти детали.

Фундаментная рама является основанием остова, предназначена для укладки коленчатого вала и служит емкостью для сбора масла, вытекающего из узлов смазывания двигателя. Рама нагружена массой двигателя, силами давления газов, силами инерции поступательного движения и вращающихся масс; Если двигатель оборудован навешенными механизмами (водяными, масляными, топливоподкачивающими насосами), то они монтируются на переднем конце рамы; Рамовые подшипники являются опорой для шеек коленчатого вала;

Картер служит для соединения цилиндров с фундаментной рамой, образует закрытое пространство для размещения кривошипно-шатунного механизма (КШМ). Детали картера подвергаются растяжению от действия максимальной силы давления газов и сжатию усилием предварительной затяжки, а также изгибающим усилиям в крейцкопфных двигателях;

Рабочие цилиндрыэто часть двигателя, где осуществляется рабочий цикл. Цилиндр состоит из рубашки и вставной втулки. Во втулке движется поршень и протекают рабочие процессы. Рубашка является опорой для втулки и образует полости для ее охлаждения. Цилиндры устанавливают на верхнюю обработанную плоскость станины или картера и закрепляют шпильками или анкерными связями.

Крышка рабочего цилиндразакрывает и уплотняет рабочий цилиндр и образует вместе с поршнем и втулкой камеру сгорания; на крышку действуют усилия от затяжки крышечных шпилек и переменного давления газов, а также высокая тепловая нагрузка; крышки двухтактных дизелей имеют более простую конструкцию из-за отсутствия клапанов;

Кривошипно-шатунный механизм воспринимает усилие от давления газов и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Основными деталями КШМ в крейцкопфных двигателях являются поршень, шток поршня, крейцкопф, шатун, коленчатый вал; в тронковых двигателях – поршень, поршневой палец, шатун, коленчатый вал.

Поршень воспринимает силу давления газов и передает ее через шатун на коленчатый вал. В тронковых двигателях он выполняет роль ползуна, управляет газообменом в двухтактных дизелях; днище поршня воспринимает давление и теплоту горячих газов, ограничивает и формирует камеру сгорания. Форма днища поршня зависит от примененного способа смесеобразования, расположения камеры сгорания и типа продувки. Поршень уплотняется в цилиндре поршневыми кольцами – компрессионными и маслосъемными. Компрессионные кольца уплотняют рабочий зазор, отводят теплоту от поршня к стенкам цилиндра, маслосъемные кольца регулируют количество масла, удаляя его излишки с зеркала цилиндра;

Читать еще:  Двигатель ady какое масло залить

Шатун соединяет поршень или поперечину крейцкопфа с коленчатым валом, обеспечивает перемещение поршня при совершении вспомогательных ходов; шатун подвергается действию силы от давления газов, сил инерции поступательно движущихся масс и сил инерции, возникающих при качании шатуна;

предохранит. клапан
кулачковый вал ТНДВ

Рис. 23. Конструктивные узлы дизельного двигателя.

Группа коленчатого валасюда входят следующие узлы двигателя: коленчатый вал, противовесы, распределительная шестерня или звездочка, шестерни привода навешенных вспомогательных механизмов, узел осевой фиксации, демпфер, маховик. Коленчатый вал относится к числу наиболее ответственных, напряженных и дорогостоящих деталей. При работе двигателя вал нагружается силами давления газов, силами инерции движущихся возвратно-поступательно и вращающихся деталей. Для уравновешивания центробежных сил коленчатые валы снабжаются противовесами. Если вспомогательные механизмы, обеспечивающие работу дизеля, приводятся во вращение от коленчатого вала самого двигателя, то раздача мощности на механизмы производится от коробки приводов. Отбор мощности производится на механизмы газораспределения, топливные, масляные насосы и насосы системы охлаждения. Для обеспечения равномерности вращения коленчатого вала двигателя применяются маховики.

Механизм газораспределения открывает и закрывает впускные и выпускные органы в соответствии с принятыми фазами газообмена. Механизм газораспределения состоит из рабочих клапанов и деталей, передающих им движение от коленчатого вала двигателя – шестерен, распределительных валов, толкателей, штанг, рычагов. Конструкция механизма газораспределения зависит от конструкции самого дизельного двигателя. Как правило, применяются следующие типы газораспределения: клапанное, золотниковое и комбинированное.

Клапанное газораспределение применяется в четырехтактных дизелях всех типов и в качестве привода выпускных клапанов в двухтактных дизелях при клапанно-щелевой схеме газообмена (рис. 24).

Привод верхних клапанов может осуществляться непосредственно от распределительного вала или через промежуточные детали в виде толкателей, штанг, коромысел, рычагов, траверс. Расположение распределительного вала при этом может быть как верхним над крышкой блока цилиндров (рис. 24.аг), так и нижним – вдоль блока цилиндров (рис. 24.д). Верхние клапаны дают возможность получить компактную камеру сгорания цилиндрической, конической или сферической формы, благоприятной для смесеобразования и сгорания топлива. Верхнее расположение клапанов типично для различного рода дизельных двигателей. При нижнем расположении клапанов (рис. 24.е) упрощается устройство головки цилиндров и механизма привода клапанов, уменьшается число деталей механизма газораспределения и высота самого двигателя. При этом клапаны могут располагаться как с одной, так и с обеих сторон блока цилиндров.

а, б, в, г – верхние клапаны с приводом от верхних распределительных валов; д – верхние клапаны с приводом от нижнего распределительного вала; е – нижний клапан; 1 – кулачковый вал; 2 – рычаг; 3 – траверса; 4 – штанга; 5 – толкатель; 6 – коромысло. Рис. 24. Схемы механизмов клапанного газораспределения

Золотниковое (безклапанное) газораспределение осуществляется поступательно движущимися или вращающимися золотниками, а также золотниками, совершающими одновременно поступательное и угловое перемещения. При золотниковом газораспределении можно обеспечить большие проходные сечения для газов и бесшумную работу двигателя. В двухтактных дизелях в роли золотниковой пары выступает сам поршень и окна во втулках цилиндра.

К продувочным и наддувочным устройствам для зарядки цилиндров двигателя относятся: продувочные насосы (в двухтактных дизелях), наддувочные агрегаты, детали приводов, ресиверы продувочного и наддувочного воздуха, охладители воздуха, воздушные фильтры.

Что такое навесное оборудование для двигателя и что входит в перечень

Двигатель без навесного оборудования не будет полноценно работать. К навесным агрегатам относятся электрооборудование, датчики, системы впуска, выпуска и охлаждения, а также насос гидроусилителя руля и компрессор кондиционера. Навесное на двигатель связано с другими системами автомобиля, они в совокупности обеспечивают нормальный режим работы машины.

Электрооборудование

На схеме двигателя для автомобилей видно, что навесное состоит из связки узлов и агрегатов, которые присоединены к мотору. В сборе с навесным оборудованием мотор работает в обычном режиме. Важнейшим из узлов в этом списке является электрооборудование – оно снабжает электроэнергией систему зажигания, бортовую электронику, заряжает аккумулятор.

Генератор

Генератор подает электричество для устройства зажигания, датчиков, бортового оборудования, он же заряжает аккумулятор. Данный узел крепится к двигателю при помощи кронштейнов. Вращение происходит от шкива коленвала благодаря приводному ремню.

После зарядки приборов генератор понижает расход тока и продолжает работать в обычном режиме. Если в машине включены одновременно обогреватель, фары, датчики, потребляемое электричество может превысить то, которое вырабатывает генератор, тогда дополнительная нагрузка быстро разрядит аккумулятор.

Вращательные движения совершаются за счет силы трения и сцепления. Генератор прикреплен к блоку болтами, для этого часто используют регулировочную планку, чтобы достигнуть нужной фиксации и натяжки.

  • статор;
  • ротор;
  • две крышки – передняя расположена со стороны привода, задняя находится над контактными кольцами;
  • регулятор;
  • диодный мост;
  • подшипник.

Устройство крепится к двигателю болтами, расположенными на кронштейнах.

Генератор имеет вентиляционные окна, через которые вентилятор выдувает воздух.

Стартер

Стартер – это электрический двигатель, который запускает мотор, коленвал и маховик. При запуске системы зажигания зубцы соединяются с венцом маховика, мотор запускается. Стартер находится сзади мотора, установлен продольно, присоединен к блоку цилиндров болтами. В корпусе располагаются 4 магнитных сердечника, их называют статором электродвигателя.

Главным узлом стартера является якорь – вал с прессованным сердечником, сделанный из специальной стали. В пазах стоят рамки, вращающиеся вокруг полюсов магнита. Рамки соприкасаются с коллектором, от него отходят 4 щетки – 2 положительные и 2 отрицательные.

  • щеткодержатель, щетки;
  • вал;
  • статор;
  • электромагнит;
  • сердечник;
  • вилка;
  • бендикс;
  • корпус.

В крышке сзади расположены держатели с пружинами, которые давят на щетки, прижимая их к коллектору, они соприкасаются. В задней части стартера стоит опорный подшипник. На корпусе имеется входной контакт, к нему подключена клемма (+) аккумулятора. Ток идет по якорным рамкам, попадает на отрицательные щетки, соединенные с клеммой (-). Появляется магнитное поле, происходит вращение якоря.

Датчики и их виды

Датчики используют во всех системах машины. Они измеряют температуру, давление масла, топлива, воздуха и охлаждающей смеси. Приборы способны преобразовывать механику в ток.

Датчик давления масла

Прибор преобразует механические движения в электросигнал, воспринимаемый блоком управления. Устанавливают датчик вблизи масляного насоса – вкручивают в блок цилиндров в нижней части двигателя. Без подачи масла трение происходит «всухую», от этого детали перегреваются и изнашиваются очень быстро.

Читать еще:  Шкала температуры двигателя хонда

В датчике находится чувствительный элемент – металлическая мембрана. Она оснащена резистором, изменяющим сопротивление при деформации. Измерительная схема преобразует сопротивление в ток, который передается по проводам.

Низкое или высокое давление указывает на неполадки в двигателе или на неисправность масляного насоса. При высоком давлении возможно, что засорился масляный канал или редукционный клапан, а при низком, скорее всего, ослаблена пружина или износился сам насос.

Датчик детонации

В двигателе внутреннего сгорания может возникнуть металлический стук – это явление называют детонацией. Во время работы двигателя датчик контролирует степень детонации. Прибор установлен на блоке цилиндров мотора, служит для увеличения его мощности и экономии топлива.

Датчик состоит из пьезоэлектрической пластины, на концах которой появляется напряжение. Оно зависит от амплитуды и частоты колебаний пластинки. Если напряжение возрастает выше положенного уровня, электронный блок корректирует работу системы зажигания, уменьшая угол опережения.

Датчик положения коленвала

Это электромагнитный клапан, который отслеживает рабочее положение коленвала и частоту его вращения, обеспечивает деятельность систем силового агрегата: зажигание в бензиновом моторе и впрыскивание топлива в инжекторах.

Устройство состоит из датчика положения и задающего диска. Располагают датчик в алюминиевом корпусе, который с помощью кронштейна крепится возле синхродиска, устанавливают прибор со стороны маховика.

Датчик массового расхода воздуха

ДМРВ – устройство, предназначенное для контроля объема воздуха, поступающего в цилиндры. Оно передает данные системе регулировки впрыскивания бензина. Если не будет хватать воздуха при сгорании топлива, то оно сгорит не полностью, произойдет грязный выхлоп. Если воздуха будет больше нормы, мотор не разовьет нужную мощность.

При нажатии на педаль газа датчик регулирует подачу воздуха, дроссельная заслонка открывается. Топливо поступает в камеры сгорания, двигатель работает быстрее.

Система впуска

Впускная система обеспечивает подачу воздуха в мотор и служит для формирования топливной смеси. Впускной механизм взаимодействует с системой циркуляции газов, системой впрыскивания и вакуумным усилителем тормозов. Совместное действие этих систем обеспечивает управление мотором.

Составляющие системы впуска:

  1. Воздухозаборник берет воздух из атмосферы.
  2. Воздушный фильтр очищает поступающий воздух. Его делают из бумаги, размещая ее в отдельном корпусе. У элемента ограниченный срок действия, его периодически меняют.
  3. Впускной коллектор перемещает поток воздуха в цилиндры мотора, возникает разрежение. Коллектор используют для привода впускных заслонок и при работе вакуумного усилителя тормозов.
  4. Для распределения топлива имеется топливная рампа, по ней бензин попадает в форсунки, которые крепятся к впускному коллектору.
  5. Топливный насос высокого давления предназначен для подачи определенного количества топлива, его устанавливают на мотор. Насос приводят в движение через ремень при помощи шестеренчатой передачи.
  6. Турбина или приводной компрессор подает сжатый воздух в цилиндры мотора. При этом сгорает смесь, повышается КПД. Устанавливают турбину на коллекторе или двигателе.

Для увеличения мощности в системе впуска, улучшения наполнения воздухом цилиндров применяют турбонаддув. Все составляющие впускной системы соединены патрубками.

Система выпуска

К навесному оборудованию системы выпуска автомобиля ВАЗ относится коллектор, присоединенный к ГБЦ. Элемент необходим для вывода газов из цилиндров в выхлопную трубу. Устройство находится на головке блока цилиндров и обеспечивает продувание и наполнение камеры сгорания. К нему на выходе крепится труба выпуска. Прокладка, установленная между головкой блока и выпускной трубой, предотвращает поступление выхлопа под капот.

Бывает цельный и трубчатый коллектор выпуска. В первом короткие каналы объединены в общую камеру, его делают из жаропрочного чугуна. Цельный коллектор низкоэффективный, но прост в изготовлении. Трубчатые коллекторы производят из нержавеющей стали.

Система охлаждения

Предназначена для охлаждения деталей и узлов двигателя. В систему входят термостат, радиатор, вентилятор, насос водяной и шланги для соединения. После включения мотора жидкость начинает движение по малому кругу, перемещается по рубашке охлаждения и головке цилиндров, через байпасные трубки поступает снова в насос. Параллельно она циркулирует в теплообменнике отопителя. При поднятии температуры выше нормы открывается термостат. Основной клапан отправляет влагу в радиатор, где она охлаждается воздухом. Если жидкость не остыла, дополнительно включается вентилятор, смесь продолжает циркулировать.

Помпу устанавливают в торцевой части блока двигателя. Насос обеспечивает движение жидкости для охлаждения системы.

Когда повышается температура, термостат открывает большой контур охлаждения. Прибор прогревает двигатель, поддерживает постоянный температурный режим. Устройство находится на цилиндрах под корпусом.

Без охладительной системы выйдут из строя все системы двигателя.

Другие системы

К навесному оборудованию относятся компрессор кондиционера и насос гидроусилителя руля. Насос беспрерывно работает, чтобы не допустить перепадов давления жидкости. А без компрессора перестанет работать охладительная система двигателя.

Насос гидроусилителя руля

Насос поддерживает давление жидкости. Устройство запускается от коленвала при помощи шестеренчатой или ременной передачи и работает беспрерывно, пока не выключен мотор. Когда машина едет прямо и не поворачивает, жидкость перемещается по малому кругу – от насоса в распределитель, затем в расширительный бачок. Когда золотниковый клапан закрыт, система работает в обычном режиме. Если руль повернут, открывается клапан на распределителе и жидкость попадает в силовой цилиндр.

Уменьшить изнашивание деталей помогает гидравлическая жидкость. При правильной эксплуатации насос может прослужить 8-10 лет. Насосы бывают одноконтурные и двухконтурные, у последних производительность выше.

Компрессор кондиционера

Устройство обеспечивает циркуляцию фреона в кондиционере, сжимает вещество и перегоняет его через радиатор, где оно охлаждается. Расположен компрессор в наружном блоке сплит-системы, состоит из механической части (вал, верхний и нижний фланец, цилиндр, ротор) и электродвигателя.

Ротор располагается на валу с электрическим двигателем, он приводит в движение механизм. Затем засасывает фреон, сжимает его, нагнетает хладагент под давлением радиатора.

Основная цель навесных систем – запуск силового агрегата и обеспечение его коммуникациями. Без навесного оборудования не будет полноценно функционировать двигатель и другие системы автомобиля. За оборудованием нужно постоянно следить, вовремя устранять неполадки, чтобы навесные агрегаты двигателя прослужили не один год.

Читать еще:  Грязный двигатель влияет на расход

Как же устроен ДВС

Двигатель внутреннего сгорания – это основной вид автомобильных силовых агрегатов на сегодняшний день. Принцип работы двигателя внутреннего сгорания основывается на эффекте теплового расширения газов, возникающего во время сгорания в цилиндре топливно-воздушной смеси.

  1. Самые распространенные виды двигателей
  2. Общее устройство ДВС
  3. Рабочий цикл мотора
  4. Двухтактные моторы

Самые распространенные виды двигателей

Существует три разновидности ДВС: поршневой, роторно-поршневой силовой агрегат системы Ванкеля и газотурбинный. За редким исключением на современные авто устанавливаются четырехтактные поршневые моторы. Причина кроется в низкой цене, компактности, малом весе, многотопливности и возможности установки практически на любые транспортные средства.

Сам по себе двигатель автомобиля – это механизм, преобразующий тепловую энергию горящего топлива в механическую, работу которого обеспечивает множество систем, узлов и агрегатов. Поршневые ДВС бывают двух- и четырехтактными. Понять принцип работы двигателя автомобиля проще всего на примере четырехтактного одноцилиндрового силового агрегата.

Четырехтактным мотор называется потому, что один рабочий цикл состоит из четырех движений поршня (тактов) или двух оборотов коленчатого вала:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Общее устройство ДВС

Чтобы понять принцип работы мотора, необходимо в общих чертах представить его устройство. Основными частями являются:

  1. блок цилиндров (в нашем случае цилиндр один);
  2. кривошипно-шатунный механизм, состоящий из коленчатого вала, шатунов и поршней;
  3. головка блока с газораспределительным механизмом (ГРМ).


Кривошипно-шатунный механизм обеспечивает преобразование поступательно-возвратного движения поршней во вращение коленчатого вала. Поршни приходят в движение благодаря энергии сгорающего в цилиндрах топлива.

Работа данного механизма невозможна без работы механизма газораспределения, который обеспечивает своевременное открытие впускных и выпускных клапанов для впуска рабочей смеси и выпуска отработавших газов. Состоит ГРМ из одного или нескольких распределительных валов, имеющих кулачки, толкающие клапаны (не менее двух на каждый цилиндр), клапанов и возвратных пружин.

Двигатель внутреннего сгорания способен работать только при слаженной работе вспомогательных систем, к которым относятся:

  • система зажигания, отвечающая за воспламенение горючей смеси в цилиндрах;
  • впускная система, обеспечивающая подачу воздуха для образования рабочей смеси;
  • топливная система, обеспечивающая непрерывную подачу топлива и получение смеси горючего с воздухом;
  • система смазки, предназначенная для смазывания трущихся деталей и удаления продуктов износа;
  • выхлопная система, которая обеспечивает удаление отработавших газов из цилиндров ДВС и снижение их токсичности;
  • система охлаждения, необходимая для поддержания оптимальной температуры для работы силового агрегата.

Рабочий цикл мотора

Как было сказано выше, цикл состоит из четырех тактов. Во время первого такта кулачок распредвала толкает впускной клапан, открывая его, поршень начинает двигаться из крайнего верхнего положения вниз. При этом в цилиндре создается разрежение, благодаря которому в цилиндр поступает готовая рабочая смесь, либо воздух, если двигатель внутреннего сгорания оснащен системой непосредственного впрыска топлива (в таком случае горючее смешивается с воздухом непосредственно в камере сгорания).

Поршень через шатун сообщает движение коленчатому валу, поворачивая его на 180 градусов к моменту достижения крайнего нижнего положения.

Во время второго такта – сжатия – впускной клапан (или клапаны) закрывается, поршень меняет направление движения на противоположное, сжимая и нагревая рабочую смесь или воздух. По окончанию такта, системой зажигания на свечу подается электрический разряд, и образуется искра, поджигающая сжатую топливно-воздушную смесь.

Принцип воспламенения горючего у дизельного ДВС иной: в завершении такта сжатия, через форсунку, в камеру сгорания впрыскивается мелкораспыленное дизтопливо, где оно смешивается с нагретым воздухом, и происходит самовоспламенение получившейся смеси. Необходимо отметить, что по этой причине степень сжатия дизеля намного выше.

Коленвал тем временем повернулся еще на 180 градусов, сделав один полный оборот.

Третий такт именуется рабочим ходом. Образующиеся во время сгорания топлива газы, расширяясь, толкают поршень в крайнее нижнее положение. Поршень передает энергию коленвалу через шатун и поворачивает его еще на пол-оборота.

По достижении нижней мертвой точки начинается заключительный такт – выпуск. В начале данного такта кулачок распределительного вала толкает и открывает выпускной клапан, поршень движется вверх и выгоняет отработавшие газы из цилиндра.

ДВС, устанавливаемые на современные автомобили, имеют не один цилиндр, а несколько. Для равномерной работы мотора в один и тот же момент времени в разных цилиндрах выполняются разные такты, и каждые пол-оборота коленвала как минимум в одном цилиндре происходит рабочий ход (исключение составляют 2- и 3-цилиндровые моторы). Благодаря этому удается избавиться от лишних вибраций, уравновешивая силы, действующие на коленвал и обеспечить ровную работу ДВС. Шатунные шейки расположены на валу под равными углами относительно друг друга.

Из соображений компактности многоцилиндровые моторы делают не рядными, а V-образными или оппозитными (визитная карточка фирмы Subaru). Это позволяет сэкономить немало пространства под капотом.

Двухтактные моторы

Помимо четырехтактных поршневых ДВС существуют двухтактные. Принцип их работы несколько отличается от описанного выше. Устройство такого мотора проще. В цилиндре имеется для окна – впускное и выпускное, расположенное выше. Поршень, находясь в НМТ, перекрывает впускное окно, затем, двигаясь вверх, перекрывает выпускное и сжимает рабочую смесь. По достижении им ВМТ на свече образуется искра и поджигает смесь. В это время впускное окно оказывается открытым, и через него в кривошипную камеру попадает очередная доза топливно-воздушной смеси.

Во время второго такта, двигаясь вниз под воздействием газов, поршень открывает выпускное окно, через которое отработавшие газы выдуваются из цилиндра новой порцией рабочей смеси, которая попадает в цилиндр через продувочный канал. Частично рабочая смесь при этом также уходит в выпускное окно, что объясняет прожорливость двухтактного ДВС.
» alt=»»>
Подобный принцип работы позволяет достичь большей мощности двигателя при меньшем рабочем объеме, однако за это приходится расплачиваться большим расходом топлива. К преимуществам таких моторов можно отнести более равномерную работу, простую конструкцию, малый вес и высокую удельную мощность. Из недостатков следует упомянуть более грязный выхлоп, отсутствие систем смазки и охлаждения, что грозит перегревом и выходом агрегата из строя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector