Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рабочие циклы двигателей

Рабочие циклы двигателей.

ДВС

Рабочий процесс

Цикл. Такт. Рабочие процессы 4-х-тактных двига­телей. Кру­говая диаграмма газораспределения.

1. Рабочим циклом называется совокупность последователь­ных и периодически повторяющихся процессов в цилиндре двигателя.

2. Отдельный процесс рабочего цикла, совершающийся в цилиндре двигателя за один ход поршня (всасывание, сжатие, рабочий ход, выпуск газов) называется тактом.

3. Рабочий цикл ДВС может быть осуществлен за 2 или 4 хода поршня (1 или 2 оборота коленчатого вала). В первом случае двигатель будет называется двухтактным, а во втором — четырехтактным.

4. Положения коленчатого вала, при которых поршень дос­тигает крайних положений во время его перемещений в ци­линдре, называются верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ).

5. Длина пути, который проходит поршень от ВМТ до НМТ и наоборот, называется ходом поршня. Ход поршня соответству­ет повороту коленвала на 180°.

6. Длина хода поршня S и число оборотов n определяют сред­нюю скорость поршня Сm, которая характеризует быстроход­ность двигателя,

7. Объем пространства, заключенный между головкой цилин­дра и днищем поршня при его положении в ВМТ, называется камерой сжатия или камерой сгорания, а объем, образующийся при движении поршня от ВМТ до НМТ, рабочим объемом цилиндра.

Рабочие циклы двигателей.

1-й такт — всасывание. Поршень движется от ВМТ к НМТ, в цилиндре образуется разрежение и воздух через открытый впускной клапан идет в цилиндр,

2-й такт — сжатие. Поршень движется от НМТ к ВМТ (все клапаны закрыты). Давление в цилиндре повышается и темпе­ратура смеси достигает 300÷400˚C.

3-й такт — рабочий ход. В цилиндр впрыскивается топли­во, оно воспламеняется, давление в цилиндре повышается и поршень движется к НМТ.

4-й такт — выпуск. Поршень движется к ВМТ, через от­крытый выпускной клапан из цилиндра удаляются газы.

Затем цикл повторяется в том же порядке.

Двухтактный двигатель.

В двухтактном двигателе рабочий цикл совершается за один оборот коленчатого вала. Наполнение цилиндра воздухом, сжа­тие и сгорание горючей смеси, а также расширение и выпуск газов происходит за два хода поршня. При этом и выпуск продуктов сгорания, и зарядка воздухом совершается лишь на некотором уча­стке рабочего хода поршня.

Если процессы сжатия, сгорания и расширения в двух- и четырехтакт­ных двигателях аналогичны, то очи­стка цилиндра от остаточных газов и наполнение его свежим воздухом у них существенно различаются. В че­тырехтактном двигателе основная масса остаточных газов вытесняется поршнем при его ходе к ВМТ. В двух­тактном двигателе очистка произво­дится при открытых продувочных выхлопных окнах, то есть продувка и выпуск происходят одновременно. У двухтактных двигателей применя­ются следующие типы продувок: П- образная (контурная) и прямоточно-­клапанная.

Схема наддува двухтактного двигателя и четырех­тактного.

Увеличение массы воздушного заряда в цилиндре за счет предварительного сжатия воздуха в компрессоре называют над­дувом. Компрессор входит в состав газотурбонагнетателя (ГТН). Воздух после компрессора охлаждается в воздухоохладителе и потом попадает в продувочный рессивер или в подпоршневое пространство крейцкопорных двигателей. При наличии проду­вочных насосов воздух из продувочного рессивера в подпорш­невое пространство подают продувочные насосы — это двух­ступенчатый наддув.

У четырехтактных двигателей схема наддувов следующая: ГТН — вохдухоохладитель — продувочный ресивер.

Индикаторное давление, индикаторная и эффек­тивная мощность. Характеристики двигателя.

Pi — среднее индикаторное давление — условное среднее постоянное давление в рабочем цилиндре.

Ni — индикаторная мощность — мощность, развиваемая газами внутри цилиндра.

Ne — эффективная мощность двигателя, ƞmax — механи­ческий КПД двигателя, Ne = Ni · ƞmax.

Характеристики двигателя

Характеристиками двигателя называются кривые, определяющие зависимость мощности и крутящего момента от различ­ных показателей: числа оборотов вала, расхода топлива, на­грузки и пр. Характеристики составляются при испытании двигателя на стенде.

Различают характеристики: скоростные, нагрузочные и ре­гулировочные.

Скоростные характеристики определяют зависимость мощ­ности от оборотов n.

Нагрузочные характеристики определяют связь между пара­метрами, оценивающими работу двигателя, и параметрами нагрузки. Обычно нагрузочные характеристики выражают за­висимость расхода топлива и температуры отработавших газов от эффективности мощности Ne,

Регулировочные характеристики показывают влияние на мощность и экономичность двигателя параметров регулировки при n = const. Например, зависимость мощности и расхода топлива от угла опережения подачи топлива и др.

КОНСТРУКЦИЯ ДВС

Классификация дизелей по конструктивному вы­полнению.

ДВС классифицируется по следующим основным признакам:

1. По способу осуществления рабочего цикла — на 4-х тактные и 2-х тактные.

2. По способу воздухоснабжеиия — с наддувом и без наддува.

3. По способу воспламенения топлива — с воспламенением от сжатия (дизели), с искровым зажиганием (карбюраторные и газовые).

4. По роду применяемого топлива — жидкого топлива и газовые.

5. По способу смесеобразования — с внутренним смесеобра­зованием (дизели) и с внешним смесеобразованием (карбюра­торные и газовые).

6. По частоте вращения коленчатого вала: малооборотные двигатели (МОД) с оборотами до 240 в мин.; среднеоборотные двигатели (СОД) с оборотами от 240 до 750 в мин.; повышен­ной оборотности (ПОД) с оборотами от 750 и выше.

7. По назначению — главные и вспомогательные.

8. По принципу действия — простого действия (рабочий цикл совершается только в одной полости цилиндра); двойного дей­ствия (рабочий цикл совершается над и под поршнем) и с про­тивоположно движущимся поршнями),

9. По конструктивному исполнению кривошипно-шатунного механизма — тронковые и крейцкодфные.

10. По расположению цилиндров — вертикальные, горизон­тальные, однорядные, двухрядные, V/W-образные, звездообраз­ные и т.п.

Показатели рабочего цикла и двигателя. Системы питания и наддува

Изучаемые вопросы:

Показатели рабочего цикла. Индикаторные и эффективные показатели двигателя. Тепловой баланс

Индикаторные и эффективные показатели рабочего цикла двигателя

Для оценки процессов, происходящих в цилиндре двигателя, используются так называемые индикаторные показатели: индикаторная мощность Ni , среднее индикаторное давление рi , индикаторный КПД hi и индикаторный расход топлива gi.

Читать еще:  Датчик схема принципиальная двигатель

Конечными (эффективными) показателями, характеризующими работу и экономичность двигателя являются: эффективная мощность Ne, среднее эффективное давление рe , эффективный КПД he , и удельный эффективный расход топлива ge.

Эффективные и индикаторные показатели связаны между собой через показатели, характеризующие механические потери: мощность механических потерь Рм , среднее давление механических потерь рm , механический КПД hм.

Полная работа цикла

Полная работа расчетного цикла (рис.15) может быть определена как разность работ на линии горения-расширения L2 = VSP2 и на линии сжатия L1 =VhP1

,

где – среднее индикаторное давление расчетного цикла.

Используя ряд полученных ранее выражений для L1 и L2 , получим

.

Среднее индикаторное давление

Средним индикаторным давлением называют такое условное, постоянное по величине давление, которое, действуя на поршень, совершает работу за один его ход от ВМТ до НМТ, равную работе газа за рабочий цикл.

Рис. 15. Работа и среднее индикаторное давление расчетного цикла

,

где – работа цикла со смешанным подводом теплоты.

После некоторых преобразований получим

,

.

Площадь действительной индикаторной диаграммы меньше расчетной, скругление связано с предварительной подачей и самовоспламенением до точки с, а также конечной скоростью горения.

Среднее индикаторное давление действительного цикла будет

,

где x — коэффициент полноты индикаторной диаграммы;

для четырехтактных двигателей x = 0,94…0,98;

для двухтактных двигателей x = 0,96…1,0.

В двухтактных двигателях .

Индикаторная мощность – секундная работа газов во всех цилиндрах

.

Индикаторный КПД hi — отношение индикаторной работы к теплоте, затраченной на получение этой работы:

.

Подставив значение индикаторной работы действительного цикла , получим .

Удельный индикаторный расход топлива, кг/кВт

, после подстановки hi получим

.

Механические потери

В эффективную (полезную) работу на валу двигателя преобразуется только часть индикаторной работы газов в цилиндре. Некоторая часть индикаторной работы затрачивается на преодоление внутренних сопротивлений: потери на трение между деталями ртр , насосные потери рнас (у 4-тактных ДВС), на привод вспомогательных механизмов рвсп, вентиляционные потери рвент.

Мощность механических потерь определяется по формуле

Эффективные показатели

Между эффективными, индикаторными и показателями, характеризующими механические потери в двигателях, существуют следующие связи:

Показателями экономичности работы ДВС служат эффективный КПД -hэ и удельный эффективный расход топлива ge.

; ge =GT/Ne.

Механическим КПД hМ называется отношение эффективной работы (мощности) к индикаторной работе (мощности).

В общем случае механический КПД комбинированного двигателя можно представить

,

где dnк , dm , dк — соответственно относительные работы приводного компрессора, турбины и компрессора.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Циклы двигателей внутреннего сгорания

Двигатель внутреннего сгорания (ДВС) – это тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. В ДВС процесс горения топлива происходит внутри рабочего цилиндра.

По роду применяемого топлива ДВС подразделяются на двигатели жидкого топлива и газовые.

По способу заполнения цилиндра свежим зарядом двигатели подразделяются на четырехтактные и двухтактные . В двухтактном ДВС рабочий процесс осуществляется за два хода поршня и один оборот коленвала, в четырехтактном ДВС рабочий цикл совершается за четыре хода поршня и за два оборота коленвала.

По способу приготовления рабочей смеси из топлива и воздуха ДВС подразделяют на двигатели с внутренним смесеобразованием – дизельные двигатели, где топливо воспламеняется при впрыскивании его в сжатый воздух, нагретый до высоких температур; и внешним – карбюраторные, где зажигание рабочей смеси производится электрической искрой.

Первый практически пригодный газовый ДВС был сконструирован французским механиком Ленуаром в 1860 г.. В 1876г. немецкий изобретатель Отто построил более совершенный четырехтактный газовый двигатель, в 1880 г. инженер Костович в России построил бензиновый карбюраторный двигатель, а в 1897 г. немецкий инженер Дизель создал двухтактный ДВС с воспламенением от сжатого воздуха – дизельный двигатель.

Рис. 1.14 Схема работы 4 – х тактного карбюраторного двигателя.

На рисунке 1.14 показана схема работы четырехтактного карбюраторного двигателя внутреннего сгорания.

В цилиндре 1 расположен поршень 2, шатун 3 соединен с одной стороны с поршнем, а с другой с коленчатым валом. В верхней части цилиндра расположены впускной 4 и выпускной 5 клапаны. Крайние положения поршня называются верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ), расстояние между ВМТ и НМТ называется ходом поршня .

Двигатель работает следующим образом. При первом такте всасывании — поршень движется вниз и засасывает горючую смесь в цилиндр за счет создаваемого разряжения. При этом всасывающий клапан открыт, выпускной закрыт.

Второй такт — сжатие происходит при движении поршня вверх от НМТ. При этом оба клапана закрыты. При приближении к ВМТ горючая смесь зажигается от электрической искры.

Третий такт-рабочий ход осуществляется за счет давления газа. Действием давления поршень движется вниз от ВМТ до НМТ, создавая крутящий момент на коленчатом валу.

Четвертый этап – выпуск, при котором через открытый выпускной кран при движении поршня вытесняются из цилиндра продукты сгорания.

Таким образом, из четырех тактов только при третьем такте совершается полезная работа; во всех остальных происходит затрата работы.

Рабочий процесс в двухтактном двигателе осуществляется следующим образом. После сгорания топлива начинается процесс расширения газа. В конце расширения поршень открывает выпускные окна, через которые удаляется часть отработанных газов. Далее, продолжая двигаться вниз, поршень открывает продувочные окна, при этом цилиндр продувается сжатым воздухом. В начале второго такта — сжатия продолжается процесс удаления отработанных газов и заполнения цилиндра свежим зарядом. После того, как поршень закроет окна, начинается сжатие горючей смеси. Типы двигателей:

Читать еще:  Гольф 4 датчики запуск двигателя

1) с подводом тепла при постоянном объеме (идеальный цикл Отто) ;

2) с подводом тепла при постоянном давлении (цикл Дизеля);

3) цикл со смешанным подводом тепла – частично при v=const и p=const (идеальный цикл Тринклера).

Рассмотрим принцип действия различных ДВС с использованием теоретической диаграммы идеального двигателя. При этом в рассматриваемом термодинамическом процессе вводится ряд допущений:

1) рабочее тело – идеальный газ;

2) рабочее тело не покидает цилиндр;

3) свойства рабочего тела не меняются.

На рисунке 1.15 представлена теоретическая диаграмма четырехтактного двигателя с циклом подвода тепла при v=const. Этот способ подвода тепла имеет место в карбюраторном двигателе с использованием легкого топлива – бензин, газ, спирт и т.п.

Рис. 1.15 –цикл Отто

а-1 – всасывание рабочей смеси;

1-2 – адиабатное сжатие рабочего тела;

2-3 – изохорный подвод тепла (сгорание топлива);

3-4 – адиабатное расширение рабочего тела (рабочий ход);

4-1 – изохорный отвод тепла;

При ходе поршня вниз (1 такт) в цилиндр двигателя 1 засасывается через впускной клапан 4 готовая рабочая смесь. Это смесь горючих газов или паров жидкого топлива с воздухом. В теоретической диаграмме предполагается, что всасывание происходит при постоянном давлении, равном атмосферному ( линия а-1 ).

В точке 1 всасывающий клапан закрывается, после чего, при ходе поршня вверх (2 такт) рабочая смесь сжимается адиабатно, с повышением давления. Давление зависит от степени сжатия

(1.96)

Где v1 полный объем цилиндра; v2 – объем цилиндра в конце сжатия (линия 1-2).

В конце сжатия(т. 2) смесь зажигается с помощью электрической искры. Сгорание смеси происходит мгновенно. При рассмотрении термодинамического цикла процесс горения заменяют условно обратимым подводом тепла к рабочему телу от горячего источника в изохорном процессе ( 2-3 ).

В результате выделения теплоты при сгорании (условный подвод тепла) давление увеличивается до p3 . далее поршень вновь перемещается вниз (3 такт) в результате адиабатного расширения газа (линия 3-4). Это рабочий ход поршня . В нем совершается положительная работа расширения за счет внутренней энергии газа.

В конце расширения открывается выхлопной клапан. При этом давление мгновенно падает до атмосферного. Принимается, что падение давления происходит при постоянном объеме (v=const) ( линия 4-1 ). В действительности же при падении давления часть газов выпускается в атмосферу. При рассмотрении идеального термодинамического цикла процесс падения давления заменяется эквивалентным изохорным процессом 4-1 с обратимым отводом теплоты q2 к холодному источнику.

Четвертый такт происходит при открытом выпускном клапане. В этом случае продукты сгорания выталкиваются в атмосферу при атмосферном давлении p=const. Линия выталкивания 1-а .

Площадь индикаторной диаграммы (1234) характеризует полезную работу газа за первый цикл.

Термический КПД цикла с подводом тепла при v=const определяют из общего выражения:

, (1.97)

где – отводимое количество тепла по изохоре 4-1;

где – подводимое количество тепла по изохоре 2-3.

Отсюда при сv = const:

(1.98)

Между температурами для адиабат 4-3 и 1-2 следующие зависимости:

(1.99)

; (1.100)

Как мы уже говорили, – степень сжатия.

(1.101)

Таким образом получаем:

(1.102)

Из полученного выражения видим, что КПД цикла с подводом тепла при v=const тем больше, чем больше степень сжатия . Для реальных ДВС .

Рис 1.16- цикл Дизеля

По линии а-1 в цилиндр засасывается воздух при p1=1атм., по линии 1-2 воздух сжимается, Т2 – температура самовоспламенения топлива, p2=3 4 МПа. В конце сжатия ( т.2 ) в камеру впрыскивается распыленное жидкое топливо, которое воспламеняется и горит при p=const – этому процессу соответствует подвод тепла q1 ( линия 2-3 теоретической диаграммы).

Благодаря сжатию воздуха, а не горючей смеси, достигается более высокая степень сжатия =18 20. В точке 3 начинается расширение газа – рабочий ход ДВС. В точке 4 открывается выпускной клапан. Мгновенное падение давления происходит при V=const c отводом тепла q2 (линия 4-1).

,

Где – степень предварительного расширения:

Из соотношения параметров для адиабатного процесса:

;

(1.103)

Из полученного выражения следует, что цикла с подводом тепла при p=const увеличивается с увеличением , K и уменьшается с возрастанием . При более высоких значениях степени сжатия увеличивается максимальное давление в цилиндре, что вызывает конструктивные затруднения. Среднее значение КПД цикла Дизеля

Бензиновые двигатели

Бензиновые двигатели – одна из разновидностей ДВС (двигателей внутреннего сгорания) в которых поджег смеси из воздуха и топлива, осуществляется в цилиндрах, посредством искр от свечей зажигания. Роль регулятора мощности выполняет дроссельная заслонка, которая регулирует поток поступающего воздуха.

Существует несколько видов дросселей, например карбюраторная дроссельная заслонка, регулирует количество поступающего в цилиндры ДВС топлива. Она состоит из пластины, закрепленной на главной вращающейся оси и помещенной в трубке, по которой и протекает топливо. Вращая пластинку, можно регулировать пропускную способность трубки (если пластинка находится в перпендикулярном положении относительно трубки, то топливо поступать не будет). Дроссель управляется водителем, наиболее распространена двойная система привода: ножная от педали и ручная от рычага или кнопки. При использовании педали, кнопка ручного управления блокируется, а при вытягивании кнопки ручного управления опускается педаль. В дальнейшем, дроссель опять открывается педалью, но при опускании педали, он остается в положении, установленным ручным управлением.

Читать еще:  Волга 31029 402 двигатель сколько

Классификация бензиновых двигателей:

По кол-ву цилиндров – одноцилиндровые, двухцилиндровые, многоцилиндровые;

По системе охлаждения – двигатели с жидкостной и воздушной СО.

По типу смазки – смешанные (топливная смесь перемешивается с маслом), раздельный тип (масло заливается в картер).

По виду применяемого топлива: бензиновые или многотопливные.

По степени сжатия. Подразделяют двигатели высокого (E=12…18) и низкого (E=4…9) сжатия.

По способу смесеобразования — подразделяют на двигатели с внешним смесеобразованием, топливная смесь готовится вне цилиндров двигателя (газовые и карбюраторные), и двигатели с внутренним смесеобразованием (инжекторные – рабочая смесь образуется внутри цилиндров).

По размещению цилиндров – V-образные, у которых цилиндры располагаются под углом (если угол составляет 180 градусов, то двигатель является оппозитным [с противолежащими цилиндрами]). В «рядных» двигателях цилиндры располагаются вертикально или горизонтально в один ряд.

По способу осуществления рабочего цикла – двухтактные и четырехтактные. Двухтактные двигатели обладают большей мощностью на единицу объема, однако проигрывают в КПД. Поэтому они нашли свое применение там, где важна компактность, а не экономичность (мотоциклы, моторные лодки, бензопилы и другие моторизованные инструменты). Четырехтактные двигатели доминируют в остальных средствах передвижения. Интересен тот факт, что двухтактные дизельные двигатели лишены многих недостатков двухтактных бензиновых двигателей, однако применяются в основном на больших судах (иногда на тепловозах и грузовиках).

По частоте вращения: малооборотистые, повышенной частоты вращения, высокооборотистые.

По предназначению: стационарные, судовые, автотракторные, авиационные, тепловозные и др.

По способу подачи топлива: существуют атмосферные двигатели, в которых поступление топлива осуществляется за счет разницы атмосферного давления и давления внутри двигателя, при всасывающем ходе поршня; в двигателях с наддувом горючая смесь подается в цилиндр под давлением, которое поддерживается турбокомпрессором, для увеличения мощности двигателя.

Рабочий цикл бензинового двигателя:

Четырехтактный двигатель.

Рабочий цикл четырехтактного двигателя состоит из четырех основных этапов – тактов:

1. Впуск. На этом такте происходит перемещение поршня из верхней мертвой точки (ВМТ) в нижнюю (НМТ). Кулачки распределительного вала открывают впускной клапан, через который в цилиндр всасывается новая горючая смесь.

2. Сжатие. Поршень переходит в прежнее состояние (из НМТ в ВМТ), сжимая при этом рабочую смесь. Согласно термодинамике, температура рабочей смеси увеличивается. Степенью сжатия называется отношение рабочего объема цилиндра в НМТ к объему камеры сгорания в ВМТ. Это очень важный параметр, на практике, чем он больше, тем экономичнее двигатель. Однако и тут есть противоречия, для двигателей с высокой степенью сжатия требуется особенное топливо, с более высоким октановым числом, которое стоит дороже.

3. Сгорание и расширение (рабочий ход поршня). Перед завершением цикла сжатия смесь топлива и воздуха поджигается искрой от свечи зажигания. Топливо сгорает во время движения поршня из ВМТ в НМТ, образуется газ, который расширяется, толкая поршень. Углом опережения зажигания называется степень «недоворота» коленвала двигателя до ВМТ при поджигании смеси. Необходимость преждевременного зажигания обосновывается тем, что процесс воспламенения горючей смеси медленный относительно скорости работы поршневых систем двигателя. Только в том случае, когда основная масса топлива успеет воспламениться, польза от использования энергии сгоревшего топлива будет максимальной. Процесс сгорания топлива занимает фиксированное время, поэтому, при повышении оборотов двигателя, необходимо увеличивать угол опережения зажигания, для повышения эффективности работы двигателя. Раньше, в старых автомобилях, использовалось механическое устройство (центробежный и вакуумный регулятор, который воздействовал на прерыватель). Сейчас в автомобилях установлена электроника, которая отвечает за определение угла опережения зажигания, работающая по емкостному принципу.

4. Выпуск. В последнем такте происходит вытеснение отработанных газов из цилиндра через выпускной клапан. Поршень перемещается из нижней мертвой точки в верхнюю, при достижении которой цикл начинается сначала. При этом совсем не необходимо, чтобы начало нового цикла совпадало с окончанием предыдущего. Положение, в котором открыты сразу два клапана: впускной и выпускной, называется перекрытием клапанов. Перекрытие клапанов способствует лучшему наполнению цилиндров топливом, а также более качественной очистки цилиндров от продуктов сгорания.

Двухтактный двигатель.

Двухтактный и четырехтактный цикл схожи лишь тем, что в них присутствует сжатие и расширение рабочего тела. Такты наполнения топливом двигателя и его последующей очистки от продуктов сгорания заменены продувкой двигателя вблизи НМТ положения поршня. А весь рабочий цикл укладывается в течение одного оборота коленвала.

Если говорить о двухтактном цикле, то он делится на следующие такты: изначально, поршень поднимается вверх, сжимая рабочую смесь в цилиндре, а также создавая разрежение в кривошипной камере. Клапан впускного коллектора открывается от воздействия этого разряжения, и новая порция горючей смеси (зачастую с добавлением масла) втягивается в кривошипную камеру. При опускании поршня вниз закрывается клапан в кривошипной камере, а также повышается давление. В остальном же: поджег, сгорание топлива, и расширение рабочего тела происходят идентично, как и в четырехтактных двигателях. Но есть один нюанс, в момент, когда поршень опускается, примерно за 60° до НМТ открывается выпускное окно (поршень перестает его перекрывать). Выхлопные газы, находящиеся под большим давлением, устремляются в выпускной коллектор через это окно. Немного позже, поршень открывает и впускное окно, которое расположено со стороны впускного коллектора. Новая порция топлива из кривошипной камеры, попадает в рабочий объем цилиндра, под воздействием опускающегося поршня, и вытесняет оставшиеся отработанные газы. При этом, небольшая часть рабочей смеси попадает в выпускной коллектор, однако на обратном ходе поршня она втягивается обратно в кривошипную камеру.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector