Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое трансформаторы и двигатели

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

В чем разница между силовым трансформатором и распределительным трансформатором

Трансформатор являет собой электрическое устройство, которое передает электрическую энергию между двумя или более цепями посредством электромагнитной индукции. Его принцип действия заключается в том, что переменный ток в одной катушке трансформатора создает переменное магнитное поле, которое, в свою очередь, индуцирует переменную электродвижущую силу (ЭДС) или «напряжение» во второй катушке.

На сегодняшний день существует немало различных типов трансформаторов. Наиболее часто встречающимися типами в промышленности являются силовые трансформаторы и распределительные трансформаторы. Иногда их путают, поэтому в данном материале постараемся ответить на вопрос, чем силовые трансформаторы отличаются от распределительных.

Если говорить коротко, то те трансформаторы, которые установлены в конечной или принимающей точке длинной высоковольтной линий электропередач, являются силовыми трансформаторами. А распределительные трансформаторы – это те устройства, которые установлены рядом с терминалами нагрузки (например, город или село), чтобы обеспечить использование напряжения на потребительских терминалах. Ниже приведены некоторые дополнительные различия между силовыми и распределительными трансформаторами.

  • Силовые трансформаторы используются в сети передачи с более высоким напряжением для повышения и понижения напряжения (400 кВ, 200 кВ, 110 кВ, 66 кВ, 33 кВ) и, как правило, имеют номинальное значение свыше 200 МВА (мега вольт ампер)
  • Распределительные трансформаторы используются для распределительных сетей с низким напряжением в качестве средства для подключения конечных пользователей. (11 кВ, 6,6 кВ, 3,3 кВ, 440 В, 230 В) и обычно имеют номинальное значение менее 200 МВА
  • Силовой трансформатор обычно имеет одну первичную обмотку и одну вторичную обмотку, а также один вход и выход. Распределительный трансформатор может иметь одну первичную обмотку и одну разделенную вторичную обмотку или две или более вторичных обмоток.
  • Силовые трансформаторы, как правило, работают при почти полной нагрузке. Однако распределительный трансформатор работает при легких нагрузках в течение большей части дня.
  • Производительность силовых трансформаторов обычно анализируется коммерческой или максимальной эффективностью, поскольку они рассчитаны на максимальный КПД при полной нагрузке. Принимая во внимание, что производительность распределительного трансформатора оценивается по эффективности суточного времени работы трансформатора, поскольку они рассчитаны на максимальный КПД при нагрузке 60-70%, поскольку они обычно не работают при полной нагрузке в течение всего дня.
  • В силовых трансформаторах плотность потока выше, чем в распределительных трансформаторах.
  • В силовых трансформаторах первичная обмотка всегда подключена в звезду и вторичная обмотка имеет соединение в виде треугольника, в то время как в распределительных трансформаторах, первичная обмотка соединена в треугольник, а вторичная в звезду.
  • В подстанции на конце линии передачи подключение силового трансформатора представлено в виде «звезда-треугольник» (чтобы понизить уровень напряжения).
  • В начале линии передачи подключение силового трансформатора принимает вид «треугольник-звезда» (для повышения напряжения).

Виды трансформаторов

    Содержание:
  • Понятие и виды трансформаторов
  • Трансформаторы напряжения
  • Трансформаторы тока
  • Силовые трансформаторы
  • Трансформаторы сварочные
  • Расчет трансформатора

Понятие и виды трансформаторов

Трансформатор – это устройство, которое преобразует переменный напряжения одного определенного уровня в переменный ток напряжения уровня другого. Частота при этом не изменяется, как не изменяется и мощность. Трансформатор включает в свое устройство магнитопровод, изготовленный с применением ферромагнитного материала, на который намотано несколько изолированных обмоток из проволоки (либо одна в случае автотрансформатора). Эти обмотки охвачены общим магнитным потоком.

Различают трансформаторы:

  • трансформаторы напряжения (преобразуют напряжение, снижая его до нужной величины);
  • трансформаторы тока (снижают первичный ток до уровня, необходимого в работе устройства);
  • силовые (преобразует электроэнергию в электрических сетях в приборах, которые ее используют; самый распространенный вид трансформаторов);
  • автотрансформаторы (первичная и вторичная обмотки соединены и часто не изолированы; отличает высокое КПД; применяют в случаях, когда преобразование электроэнергии незначительно);
  • импульсные трансформаторы (преобразуют импульсные сигналы, практически не искажают сигналы тока);
  • разделительные трансформаторы (обмотки не соединены и никак не связаны друг с другом, что позволяет обеспечивать безопасность в случае повреждения изоляции электросетей);
  • пик-трансформаторы (преобразуют напряжение в напряжение, которое меняет свою полярность каждую половину периода).

Трансформаторы напряжения

Трансформаторы напряжения предназначены для трансформации и снижения напряжения в более низкое. Обычно необходимо это для измерения напряжения электроэнергии, идущей из сети. Трансформаторы напряжения помогают изолировать цепи измерения и защиты от самой электросети с электроэнергией высокого напряжения.

Трансформаторы напряжения бывают заземляемыми и незаземляемыми. Заземляемый трансформатор может быть однофазным и трехфазным. Однофазный имеет один заземленный конец первичной обмотки, а в трехфазном заземлена нейтраль обмотки первого уровня.

В незаземляемом трансформаторе напряжения вся первичная обмотка изолирована и земли.

Кроме того, различают трансформаторы напряжения каскадные и емкостные. В каскадных первичную обмотку разделяют на несколько секций, последовательно соединенных друг с другом. В этом случае мощность к обмотке вторичной передается с помощью дополнительных, играющих соединительную роль, обмоток. В емкостном трансформаторе напряжения есть емкостный делитель.

Также трансформаторы напряжения различаются по количеству обмоток. В двухобмоточных есть лишь одна вторичная обмотка, в трехобмоточных помимо основной вторичной обмотки присутствует и вторая. В зависимости от того, где необходимы трансформаторы напряжения, выбирают тот или иной тип устройств.

Читать еще:  Что такое двухобъемный двигатель

Трансформаторы тока

Трансформаторы тока применяют, когда необходимо преобразовать лишь ток электроэнергии, идущей от сети, а также, когда нужно измерить эту величину. В этом случае первичную обмотку включают в цепь с переменным током, который будут измерять, последовательно, а ко второй подключают прибор для самого измерения.

Ток исходный пропорционален току, полученному в результате преобразования. Таким образом измеряют ток электричества, идущего от станции.

На трансформаторы тока распространяются строгие требования по точности измерения, так как они применяются в основном в приборах релейной защиты систем в сфере электроэнергетики. Именно эти устройства помогают обеспечить безопасность измерения тока, так как они изолируют цепи для измерения от первичных цепей, по которым обычно проходит ток высокого напряжения (от 100 кВт). Высокая точность и безопасность трансформатора тока – вот главные требования к этим приборам, поэтому трансформаторы тока производятся с несколькими группами вторичной обмотки.

Как минимум, групп две: к первой подключают защитные приборы, а ко второй – измерительные устройства, различные счетчики. Вторичную обмотку во время работы трансформатора тока никогда не размыкают.

Силовые трансформаторы

Силовые трансформаторы – это устройства стационарные, которые имеют как минимум две обмотки, использующиеся для преобразования напряжения и тока до необходимого в работе уровня. Как правило, частота преобразованной электроэнергии остается прежней. Силовые трансформаторы состоят из клемм, охладителей и приборов для регулирования уровня выходного напряжения. Кроме того, на такой трансформатор можно установить газовое реле, устройства для сброса давления, защиты от перенапряжений и резкого повышения давления. Также возможна установка на силовые трансформаторы поглотителей влаги и дополнительных трансформаторов тока, расходомеров, индикаторов температуры, давления, уровня масла и горючих газов. Помимо данных устройств, на силовые трансформаторы можно установить полозья или колеса, которые сделают их транспортабельными.

Обычно силовые трансформаторы применяют в случае необходимости увеличить ток и снизить напряжение электроэнергии, идущей от основной электростанции, поэтому силовые трансформаторы используются в различных отраслях промышленности. То есть везде, где применяют устройства, работающие на электроэнергии, а также везде, где жизненно необходимо регулировать параметры электричества, преобразуя ее в электричество нужного тока и напряжения и препятствуя резким скачкам этих параметров.

Силовые масляные трансформаторы

Во многих отраслях народного хозяйства активно используются силовые масляные трансформаторы. Такой большой спрос на них обуславливается тем, что установить их легко можно как снаружи, так и внутри помещения. Обмотки силовых масляных трансформаторов отлично защищены от воздействия окружающей среды, за счет чего заметно увеличивается и их срок службы. Это делает их также надежными и неприхотливыми в процессе эксплуатации.

Есть у силовых масляных трансформаторов и недостаток – он заключается в том, что окружающая среда должна иметь минимум пыли в воздухе. Кроме того, она должна быть пассивной химически и совершенно невзрывоопасной. Этот недостаток можно назвать единственным, но при этом он довольно существенный.

Силовые масляные трансформаторы, в которых устанавливается еще маслоуказатель МС, способны выдерживать очень большие нагрузки напряжения. Использовать трансформаторы можно как в жарком, так и в холодном климате. Необходимы они с целью понижения напряжения в сети электрической.

Трехфазные и высоковольтные трансформаторы

Могут быть трансформаторы трехфазными и высоковольтными.
Высоковольтные трансформаторы отличаются способностью выдерживать достаточно высокую нагрузку. За счет этого использовать их можно даже на крупных предприятиях. Их основная работа заключается в том, чтобы от высоковольтной линии преобразовывать ток в более низкие частоты.

Трехфазные трансформаторы способны преобразовывать ток при разных температурах воздуха. Но в условиях тряски, вибрации или ударов такие трансформаторы использовать запрещено.

Трансформаторы сварочные

Трансформатор сварочный – устройство для сварочных приборов, которое преобразует высокое напряжение в напряжение низкое для вторичных электросетей уровня, необходимого в работе.

Сварочный трансформатор применяют для сварочных работ во время производства конструкций из стали. Кроме того, трансформаторы необходимы для сварки цветных металлов. Применяются эти устройства в основном в промышленном строительстве. Их используют во время монтажа технических или строительных конструкций из металла, изготовлении деталей и во время сварки арматуры, труб и узлов.

Трансформатор сварочный состоит из сердечника, изготовленного из специальной стали, на котором есть первичная и вторичная обмотка. Первая пропускает переменный ток и намагничивает магнитопровод, а во второй переменный ток нужного для сварки уровня индуктируется.

Существует два основных вида сварочных трансформаторов, один из которых отличается повышенным магнитным рассеянием, а второй имеет нормальное рассеяние и дроссель.

Трансформатор сварочный применяется при создании сварочных швов любого вида и назначения в любом труднодоступном месте и расположении самого работника. Используя это устройство, вы сможете практически без замены инструментов выполнять многие сварочные работы.

Расчет трансформатора

Расчет трансформатора производят во время его изготовления для того, чтобы получить необходимые параметры напряжения, частоты или тока электроэнергии, которая выходит в результате его применения. Обычно расчет трансформатора делают, когда устройство подключают в сеть в 50Гц частотой, и в случае, если сам прибор весит мало.

Читать еще:  Двигатель бмв м44 тех характеристики

Начинают производить расчет трансформатора с выбора сердечника – с выбора его размеров и конфигурации. В зависимости от конструкции сердечники бывают прямоугольной формы с заостренными или закругленными краями и круглой формы, т.е. броневые пластинчатые, броневые ленточные или кольцевые ленточные соответственно. Так, броневые трансформаторы применяют для малых мощностей. Такие устройства очень просты в производстве и состоят всего из одного каркаса. Кольцевой сердечник пригоден для мощностей до 1000 Вт. Для того, чтобы произвести дальнейший расчет трансформатора необходимо знать напряжение первичной и вторичной обмотки (Ui и Uz), ток обмотки вторичной (l2) и ее мощность (Рвых).

Расчет трансформатора производят по уравнению, в котором величина умножения сечения стали в месте катушки на площадь окна сердечника равна величине, полученной в результате арифметических действий. А именно, — деления величины мощности вторичной обмотки, умноженной на 0.901, на число, которое получилось в результате умножения магнитной индукции, плотности тока, коэффициентов заполнения окна и заполнения магнитопровода сталью.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ТРАНСФОРМАТОРА

Трансформатор это электротехническое устройство, предназначенное для преобразования напряжения электрической энергии переменного тока. Основной принцип работы трансформатора состоит в использовании явления электромагнитной индукции.

К основным частям, из которых состоит трансформатор, относятся магнитный сердечник (магнитопровод) и намотанные на нём обмотки.

Принцип действия трансформатора напряжения заключается в следующем. Одна из обмоток подключается к источнику электрического напряжения. Эту обмотку называют первичной, она служит источником энергии, трансформируемой устройством.

Ток переменного направления, протекающий по первичной обмотке, создаёт знакопеременный магнитный поток в трансформаторном магнитопроводе.

Под воздействием магнитного потока сердечника во вторичных обмотках (их может быть несколько) наводится электродвижущая сила (ЭДС) индукции. Наведённая ЭДС индукции вызывает во вторичных обмотках появление некоторого напряжения, а при подключении к ним нагрузки — вторичного тока.

Форма магнитного трансформаторного сердечника может быть различной, главное условие — магнитный поток должен образовывать замкнутые контуры (один или несколько).

Наибольшее распространение получили следующие формы трансформаторных магнитопроводов:

  • Ш – образные;
  • П – образные;
  • тороидальные (по аналогии с предыдущими типами сердечников их можно назвать О – образными).

В процессе трансформации электрической энергии, часть её теряется вследствие наличия потерь. Трансформаторные потери подразделяются на две категории — потери в меди и в стали. Данные определения требуют разъяснения.

Потери в меди.

Под этим термином подразумеваются омические потери при протекании токов в обмотках трансформаторов. Теряемая в обмотках энергия уходит на их нагрев.

Интересный факт. Нередко встречаются трансформаторы, обмотки которых выполнены из алюминиевых проводников. Теряемую в таких обмотках мощность логично было бы назвать «потери в алюминии», однако такой термин не употребляется. Словосочетание «потери в меди» вероятно можно отнести к профессиональному жаргону.

Потери в стали.

Данный вид теряемой мощности состоит из двух компонентов:

  • потери, возникающие вследствие образования в сердечнике вихревых токов;
  • мощность, затрачиваемая на перемагничивание.

Вихревые токи (токи Фуко) возникают в любом электропроводящем материале под воздействием переменного магнитного поля. Трансформаторный сердечник, являющийся проводником, не является исключением.

Для уменьшения влияния вихревых токов, магнитопроводы трансформаторов обычно изготавливают не цельными изделиями, а набираются из тонких пластин специальной электротехнической стали. Каждая пластина перед сборкой покрывается электроизоляционным лаком.

Такая технология позволяет избежать возникновения глобальных вихревых токов по всей толщине сердечника, что значительно снижает потери энергии и соответственно, нагрев магнитопровода.

ПРИМЕР ИСПОЛЬЗОВАНИЯ ТОКОВ ФУКО

Для того чтобы оценить масштабы энергии, которая может выделяться при протекании вихревых токов, полезно вспомнить принцип работы индукционных плавильных печей. В ёмкость печи, выполненную из огнеупорной керамики, помещают лом стали, чугуна или железную руду.

Плавильная ёмкость окружена мощной спиральной обмоткой, по которой пропускается ток высокой частоты. Содержимое ёмкости в данном случае играет роль магнитного сердечника.

Под воздействием возникающих вихревых токов происходит интенсивный разогрев и расплавление загруженного железосодержащего материала. Электроплавильное производство относится к одному из самых энергоёмких.

Потери на перемагничивание обусловлены следующими факторами:

1. Макроструктура магнитных материалов имеет зернистый характер. Образование структурных зёрен происходит на стадии застывания расплавленного металлического сплава вследствие возникновения множества очагов кристаллизации.

2. В результате образуются зёрна структуры, которые представляют собой монокристаллические образования — домены. Каждый домен магнитного материала имеет некоторое результирующее направление вектора магнитной индукции.

Применительно к процессу трансформации происходит следующее. Ток первичной обмотки создаёт в сердечнике магнитное поле, направление индукции которого меняется с частотой 50 герц (при подключении к обычной электросети).

С такой же частотой происходит переориентация векторов магнитной индукции доменов магнитопровода. Энергия, затрачиваемая на циклическое перемагничивание, выделяется в виде тепла, нагреваемого сердечник.

Энергию, затраченную на перемагничивание сердечника, называют также потерями на гистерезис. Величина этих потерь зависит от свойств материала трансформаторного сердечника, а если более конкретно, от вида их кривой намагничивания — петли гистерезиса.

Наименьшими потерями характеризуются магнитомягкие материалы — электротехническая сталь и пермаллой, которые и используются при изготовлении трансформаторных магнитопроводов.

ВИДЫ ТРАНСФОРМАТОРОВ И ИХ НАЗНАЧЕНИЕ

В зависимости от специфических функций, выполняемых трансформаторами, они подразделяются на несколько основных типов:

  • силовые, предназначенные для трансформации мощности;
  • измерительные, к которым относятся трансформаторы тока и напряжения;
  • разделительные, служащие для разделения электрических цепей.
Читать еще:  Давление форсунок дизельных двигателей ниссан

Силовые трансформаторы используются на электрических станциях, в распределительных сетях и в точках потребления электроэнергии. Основная их функция — трансформирование передаваемой электрической энергии с одной ступени напряжения в другую.

Мощные турбогенераторы электрических станций вырабатывают электроэнергию напряжением 20 кВ. Передача энергии на большие расстояния осуществляется по воздушным линиям (ЛЭП), имеющим напряжение сотни киловольт — 110, 220, 500 кВ.

Более высокое напряжение (750 и 1150 кВ) применяется реже ввиду дороговизны оборудования и ряда технических сложностей. Повышение напряжения транспортировки электроэнергии позволяет снизить её потери.

Потребляется же большая часть электричества с напряжением 0,4 кВ. Максимальное напряжение конечных электрических устройств составляет не более нескольких киловольт. К таким устройствам относятся высоковольтные приводные двигатели мощных производственных механизмов, тяговые двигатели электровозов, питающихся от контактных электрических сетей.

Таким образом, электрическая энергия на своём пути от её производства до поступления к конечному потребителю несколько раз изменяет уровень напряжения. Эту работу выполняют силовые трансформаторы, установленные на электрических станциях и подстанциях распределительных сетей.

Измерительные трансформаторы используются в цепях измерения, защиты и контроля. Устройства этого типа осуществляют преобразование первичных значений тока и напряжения в пропорциональные им вторичные величины, необходимые для работы измерительных приборов, устройств защиты и автоматики.

Преобразование токовых величин осуществляется трансформаторами тока, для контроля уровня напряжения служат трансформаторы напряжения. Измерительные трансформаторы относятся к средствам измерений и подлежат периодической метрологической поверке, так же как все измерительные приборы.

Разделительные трансформаторы используются в тех случаях, когда необходимо обеспечить гальваническую развязку между отдельными участками электросетей.

Необходимость такого разделения может диктоваться требованиями электробезопасности. Например, таким способом осуществляется питание некоторых видов медицинского оборудования. В данном случае используется одно из основных свойств, присущих трансформатору — отсутствие гальванической связи между его обмотками.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Статьи

Что такое трансформатор

Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока. Такое определение трансформатору дает ГОСТ 16110-82.

Трансформатор — это устройство, которое преобразует напряжения переменного тока и/или гальваническую развязку для различных нужд в областях электроэнергетики, электроники и радиотехники.

Конструктивно трансформатор состоит из одной, как в автотрансформаторах, или нескольких изолированных проволочных, либо ленточных обмоток (катушек), намотанных, обычно, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала, охватываемых при этом общим магнитным потоком.

Базовые принципы действия трансформатора

Работа трансформатора строится на двух базовых принципах:

  • Электромагнетизм — изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле;
  • Электромагнитная индукция — изменение магнитного потока, проходящего через обмотку, создаёт электродвижущую силу (ЭДС) в этой обмотке.

Практически все современные трансформаторы работают по одному и тому же принципу. На одну из обмоток, которую называют первичной обмоткой, подаётся напряжение от внешнего источника. переменный ток, протекающий по первичной обмотке, создаёт переменный магнитный поток в магнитопроводе. Под действием электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, включая первичную, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону относительно магнитного потока.

Некоторые трансформаторы, работающие на высоких или сверхвысоких частотах, не имеют магнитопровода.

Трансформаторы, как электромагнитныеустройства, имеют несколько режимов работы:

  • Режим холостого хода. Этот режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. При помощи холостого хода определяют КПД трансформатора, коэффициент трансформации, а также потери в сердечнике.
  • Нагрузочный режим. Данный режим характеризуется замкнутой на нагрузке вторичной цепью трансформатора. Этот режим — основной рабочий для трансформатора.
  • Режим короткого замыкания. Такой режим получается как результат замыкания вторичной цепи накоротко. С помощью этого режима определяют потери полезной мощности на нагрев проводов в цепи трансформатора. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Тип трансформатора определяется при помощи коэффициента трансформации, значение которого рассчитывается как отношение числа витков первичной обмотки к числу витков вторичной:

При k >1 трансформатор будет понижающим, а при k < 1 повышающим.

ООО «ТД «Автоматика» уже более 10 лет поставляет трансформаторы различных типов предприятиям электроэнергетики и промышленности. Наша компания имеет партнерские отношения с большинством производителей трансформаторов и может предложить своим клиентам данные изделия по привлекательным ценам. Мы поможем вам правильно подобрать трансформатор, в полном соответствии с требованиями технической и проектной документации. Каталог трансформаторов постоянно обновляется. Кроме данного сайта, у нас имеется тематический сайт по трансформаторному оборудованию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector