Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тигельный пресс — история, виды, применение

Тигельный пресс — история, виды, применение

Одним из старейших видов печатного оборудования с очень хорошей историей является тигельный пресс. Первые образы данного аппарата появились около пятисот лет назад, однако из-за его надежной конструкции и высокой производительности, он используется и по сей день.

Принципом работы данного аппарата является создание колоссального давления между матрицами, позволяющего формировать самые разнообразные виды формы и рельефа. Тигельные прессы позволяют использовать для работы широкий спектр материалов, от бумаги и картона, до пластика и кожи.

В силу простоты своей конструкции он отличается низким потреблением энергии и не прихотлив в техническом обслуживании, что позволяет существенно экономить денежные средства.

Если Вам требуются услуги печати – готовы Вам оказать помощь. Список производимой продукции можно посмотреть здесь

История создания

Создателем тигельного пресса стал Йоганн Гуттенберг, впервые воплотивший в 1440 году идею создания печатных материалов. Это был прорыв в печатного дела, позволивший выпускать книги широким тиражом, что существенно удешевило процесс печатания и позволило запустить массовое производство печатных изданий.

Ранее основным принципом книгопечатания было изготовление трафаретов из дерева, что считалось высокой технологией того времени. Либо же кники просто переписывались вручную.

После изобретения офсетной печати применение тигельной технологии не остановилось, однако сфера их применения изменилась.

На сегодняшний день такие процессы как тиснение, перфорация, вырубка и высечка, вышли на первый план в результате чего тигельные прессы в наше время почти не применяются, однако процесс продолжает существовать хоть и в более мелких масштабах.

«Американка»

В России тигельные аппараты было принято называть «американками», так как производство данного вида машин было налажено в Америке в конце XIX века.

Принципом работы аппарата являлось то, что одна из двух металлических пластин, называемая «тигель», служила для прижатия материала к форме, что дало название «тигельный» всему процессу. Вторая же металлическая пластина называлась «талер», она была неподвижна и служила для удержания печатной формы.

В процессе работы указанные пластины смыкались под высоким давлением в результате чего рисунок переносился с формы на рабочий материал, а именно бумагу, картон, кожу и т.д.

Появление таких материалов как линолеум и шпон расширило сферу применения тигельных прессов и в настоящее время они применяются для создания рисунков и форм в основном на этих материалах, однако в книгопечатании этот процесс себя изжил, так как появились более современные и технологичные процессы.

Технические преимущества

Процесс эксплуатации тигельных прессов не сложен. Оператору не требуется для работы специального образования и навыки работы с ним можно выработать в максимально короткие сроки.

Машины могут управляться дистанционно с помощью пульта. Современные машины оснащены приборами и датчиками активной безопасности, которые блокируют работу аппарата при попадании на рабочую поверхность посторонних предметов.

Комплектация современных машин может быть разнообразной, в нее могут входить:

  • цифровые счетчики;
  • цифровые таймеры задержки плиты;
  • кнопки регулировки скорости движения плиты и устройства активной безопасности;
  • рычаги выключения и включения аппарата;
  • датчики аварийной остановки; электромагнитные муфты;
  • различные системы смазки.

Также аппараты могут комплектоваться различным оборудованием для выполнения специфических операций.

ООО «Термофлекс-Юг» осуществляет полный цикл производства этикетки. Мы не являемся дилером. Подробнее о нас.

Факторы, влияющие на скорость работы

  • Форма рабочего материала
  • Плотность рабочего материала
  • Качество штампа
  • Глубина печати
  • Длина ножей
  • Скорость работы аппарата
  • Рабочее давление
  • Квалификации оператора

Исходя из указанных условий, аппарат может производить от 15 до 30 циклов за 60 секунд.

Виды тигельных аппаратов

  • Простой тигельный пресс
  • Пресс с позолотным оборудованием
  • Пресс имеющий усиленную конструкцию

Задачами тигельных прессов простой конструкции являются: теснение, перфорирование, бигование рабочего материала. Имеется возможность по осуществлению одновременно сразу нескольких процессов.

Позолотная муфта вносит в работы пресса дополнительный функционал и позволяет делать теснение с помощью фольги.

Пресс имеющий усиленную конструкцию применяется для работы с более твердыми материалами, такими как: дерево и твердый пластик и т.д. Так же позволяет снизить создаваемую в процессе работы вибрацию.

Подведение итогов

Тигельные прессы — это машины, которые на протяжении длительного времени служат человечеству для производства печатных материалов различных форм и размеров, являются надежными и простыми в обращении, однако не стоит забывать о том, что у каждой машины есть свой срок службы и ресурс. Применение данных аппаратов на предельных мощностях в совокупности с некачественным обслуживанием приведет к их быстрому выходу из строя, однако при грамотном подходе к работе и качественном обслуживании обеспечит долгую и продуктивную их работу.

ОСТАЛИСЬ ВОПРОСЫ — СВЯЖИТЕСЬ С НАМИ УДОБНЫМ ДЛЯ ВАС СПОСОБОМ

  • Закажите обратный звонок
  • Обратитесь к специалистам по бесплатному телефону 8 800 700 98 19
  • Нет времени позвонить по телефону? Отправьте заявку на расчет стоимости заказа — наши специалисты свяжутся с Вами в течении 2 рабочих часов и сообщат цену вашего проекта .

Адреса оперативных складов и представительств Вы можете посмотреть в разделе Контакты.

Что такое тигельный двигатель

Рис. 2. Общий вид графитового тигля

С целью оптимизации состава тигельных масс по углеродистому наполнителю исследовали зависимость свойств тиглей от типа графита: скрытокристаллический ГЛС-3, кристаллический ГЛ-1 и П, механоактивированный ГЛС-3А (с частичной заменой его пылевидным кварцем). В качестве связующих материалов опробовали каменноугольный пек.

Читать еще:  Что такое турбо дизельный двигатель

Изготовленные образцы, а также тигли составов 1–9 (табл. 2) обжигали и определяли зависимость их механических свойств от температуры обжига (рис. 3–9).

На рисунке 3, а (составы № 1–3, табл. 2) приведена прочность тиглей на сжатие для тигельных масс с 30% каменноугольного пека. Установлено, что прочность тиглей на кристаллическом и аморфном графите при температуре обжига до 600оС практически одинакова. Обжиг тиглей при 800оС приводит к снижению прочности тиглей на ГЛС-3 в связи с окислением графита и легкоплавких примесей; графит ГЛ-1, имея меньшую зольность и более крупный размер частиц, обеспечивает тиглям максимальную прочность. Обжиг при 1000оС вызывает массовое окисление (выгорание) углерода из графита всех исследуемых марок, и прочность тиглей резко снижается.

Электросопротивление опытных тиглей (рис. 3, б) резко снижается для всех марок графита с увеличением температуры обжига. Оптимальным режимом обжига можно считать интервал от 600 до 800оС.

Плотность (расчетная) тиглей снижается с ростом температуры обжига, и потеря массы тиглей при 600–800оС составляет не более 5–7% для ГЛ-1 (П) и 10% для ГЛС-3 (рис. 4, а).

Рис. 3. Зависимость прочности (а) и электросопротивления (б)

графитовых тиглей на каменноугольном пеке от температуры обжига

Анализ кривых зависимости твердости от температуры обжига (рис. 4,б) показал, что при 600–800оС происходит увеличение прочности тиглей. В результате коксования связующего обеспечивается повышение твердости до 20–25 кг/мм2. Следовательно, тигельные массы на каменноугольном пеке после обжига при температурах 600–800оС в результате частичной графитизации пека и окисления углерода в графите имеют оптимальные для низкотемпературной плавки параметры: прочность на сжатие – 10–17 МПа; удельное электросопротивление – (0,5–5,0)∙10-3Ом∙м; плотность – 0,8–1,0 г/см3; твердость – 20–25 кг/мм2. Однако по абсолютной величине более высокие значения технических показателей свойств имеют тигли на графите ГЛ-1, так как частицы его крупнее, чем у П и ГЛС-3, зольность при этом в среднем на 5–15% ниже по сравнению с графитом ГЛС-3.

Рис. 4. Зависимость плотности (а) и твердости (б) графитовых тиглей

на каменноугольном пеке от температуры обжига

Проведенные исследования свойств графитов позволяют предположить возможность улучшения технических характеристик тиглей при использовании в составе массы механоактивированного графита ГЛС-3А.

Таким образом, в ходе работы разработаны тигельные массы на каменноугольном пеке, которые после обжига при температурах 600–800оС имеют оптимальные для низкотемпературной плавки параметры: прочность на сжатие – 10–17 МПа; удельное электросопротивление – (0,5–5,0)∙10-3Ом∙м; плотность – 0,8–1,0 г/см3; твердость – 20–25 кг/мм2; термостойкость – 6–9 циклов.

Рецензенты:

Москвичев В.В., д.т.н., профессор, директор СКТБ «Наука» КНЦ СО РАН, г. Красноярск.

Тимофеев В.Н., д.т.н., профессор, директор ООО «НПЦ Магнитной гидродинамики», г. Красноярск.

Тигельная печь и ее особенности

Такие приборы имеют отношение к группе электротермического оснащения, центральным назначением которого представляется разогрев или плавление всевозможных металлов и сплавов. По причине формирования гальванического поля возле возделываемого вещества в середине печи исполняется его прогревание, за счет перехода электричества в тепловую энергию, при помощи влияния индуктивного тока.

Тигельная печка весьма востребована во множестве областей производства и обрабатывания веществ. С поддержкой данного приспособления создают выдержку и плавку первоклассной стали, чугуна, цветных металлов и вдобавок драгоценных металлов. Вследствие использования плавильных печей получается вероятным формировать образец сплава, обладающего безошибочной химической структурой, увеличенной степенью однородности и чистоты. Кроме этого, тигельную печь нередко используют в совокупности с иными разновидностями плавильных аппаратов с целью свершения необходимого хим. состава возделываемого материала. Время от времени подобные установки могут эксплуатироваться в свойстве миксеров-капельников, с целью поддержания расплавленного сплава в жидком виде на протяжении продолжительного периода.

Тигельная печь – это

Приспособление являются электрическим устройством, предназначенным для расплавки либо переплавки шихты. Основной элемент, где и происходит процесс нагрева материала называется тиглем, который в большинстве случаев выполнен из графитовой смеси. Существует много разновидностей модификаций индукционных тигельных печей, каждая из которых имеет отличные характеристики и высокую производительность.

Принцип действия индукционной тигельной печи

Это устройство включает в себя 3 основных элемента:

  1. Рабочий объем в виде тигля;
  2. Электрический индуктор;
  3. Блок управления электропитанием.

Практически всегда форма тигля имеет цилиндрическую структуру, материал из которого он изготавливается обязан быть огнеупорным. Тело тигля обязательно должно размещаться в индукторе, который подключается через специальные электрические вводы к источнику питания. Перед включением агрегата полость тигля наполняется обрабатываемым материалом, после чего разогрев шихты происходит благодаря поглощению сырьем электрической энергии.

По принципу работы тигельную печень можно сравнить с большим трансформатором, так как, по сути, индуктор является первичной его обмоткой, а сам обрабатываемый металл служит вторичный, который, помимо этого, еще и выполняет функцию нагрузочного действия. В итоге получается, что электрический ток, который поступает на индуктор переходя к шихте превращается в электромагнитное поле, которое после прохода через расплавленный металл снова перетекает в электричество и при столкновении с первичным током преобразовывается в термическую энергию.

Степень мощности и количество выделяемого тепла от вихревых токов зависят от частотности переменных магнитных полей. Это означает, что для обеспечения продуктивной работы устройства электрическая сеть, питающая индуктор, должна обладать высокой частотностью. Так как в стандартном сетевом потоке на 220 или 380 Вольт имеется лишь 50-60 Гц применяются специальные преобразователи, генерирующее требуемую частоту в пределах 400-500 Гц.

Читать еще:  Автономный контроллер шаговым двигателем схема

Индукционная тигельная электропечь

Существует много разновидностей данных устройств, но индукционная тигельная печь – это самое технологически выгодное оборудование, востребованное большинством металлургических предприятий. Такие печи основаны на принципе воздействия электромагнитного поля непосредственно на расплавляемый металл, которые возникают вследствие индукции тока большой частоты.

За счет такого принципа работы достигается максимальная равномерность распределения тепловой энергии по всему пространству обрабатываемого материала, что полностью исключает перегревание металла на протяжении всего процесса плавки. В дополнение, это способствует получению максимально однородной структуры.

Тигельная электропечь для плавки алюминия и меди

Как уже понятно из названия, данные механизмы имеют спецификацию для плавления меди, черного металла, чугуна, алюминия. В зависимости от габаритов в нее может помещаться 5-5000 кг металла. Плавление металла в этих устройствах происходит за счет электромагнитного поля, которое доводит материал до однородного состава, создавая высокое качество сырья для дальнейшей отливки из него разных деталей.

На протяжении всего процесса работы устройства нет необходимости использовать нагревательные элементы, так как разогрев происходит непосредственно внутри обрабатываемого материала, за счет прохождения сквозь его частицы переменного тока, преобразованного электромагнитным полем.

Футеровка тигельной индукционной печи

В конструкцию футеровки тигельной печи входят: под, отливной нос, крышка, воротник и тигель. В зависимости от качества и огнеупорности материалов для создания футеровки определяется ее срок службы. То есть, чем лучше материал, тем больше плавок можно произвести в тигельной печи. Тигель является основным элементом любой футеровки внутри рабочей камеры печки. Его изготавливают с помощью оббивки буферной части либо производя кладку из огнеупорных кирпичей. Основными материалами для футеровки являются:

  • Кварцит Si02;
  • Магнезит Мg0;
  • Шпинель Мg0 + Al-20З;
  • Корунд Al-20З;
  • Муллит 3Al-20З х 2Si02
  • Муллит корунд Al-20З;
  • Шамотный кирпич;
  • Цирконий Zr2 х Si02;
  • Шамотный графит;
  • Чистый графит.

Футеровка из кварцита является наиболее распространенной и называется кислой футеровкой тигельных печей. В такой камере можно плавить сталь, чугун, углеродистые металлы. Существуют определенные ограничения, при которых в кислой футеровке нельзя плавить фосфор, кремний, высоколегированную сталь и металл с большим содержанием углерода. Такие ограничения связаны с выделением оксида кальция при сгорании примесей, которые под воздействием высокой температуры очень быстро абсорбируются. Вдобавок, нельзя при использовании кислой футеровки плавить жаропрочную сталь, так как порог ее расплавления практически равен температуре, при которой начнет плавиться кварцит.

Чтобы максимально продлить срок эксплуатации футеровки для тигельной печи необходимо подбирать ее в соответствии с типом шихты, которая в ней будет расплавляться. Чтобы устройство эксплуатировалось максимально рационально, футеровка должна соответствовать определенным требованиям:

  • Способствовать наилучшему качеству получаемого материала;
  • Иметь максимальное количество циклов для плавки;
  • Быть максимально безопасной для оператора, управляющего тигельной печью;
  • Не иметь обстоятельств, провоцирующих прерывания процесса плавки;
  • Обладать разумной ценой и иметь максимально низкий расходный потенциал;
  • Осуществлять выбросы вредных отходов в окружающую среду на допустимом уровне.

С помощью футеровки достигается максимальная огнеупорность самого тигеля, чтобы не провоцировать физические и химические взаимодействия между шихтой и стенками рабочей камеры. Помимо этого, материалы из которых изготавливается футеровка должны на 100% защищать элементы индуктора и понижать термическое напряжение вокруг тигля.

Положительные стороны тигельной электрической печи

На самом деле, недостатков в работе тигельной печи практически нет, а к преимуществам можно отнести следующие моменты:

  • Полная изоляция обрабатываемого материала от других видов веществ, что исключает попадание в него инородных тел и примесей;
  • Однородность полученной массы за счет равномерного распределения температуры прогрева электромагнитным полем;
  • Количество выделяемого угарного газа летучих элементов очень мало;
  • За счет специального оборудования можно легко регулировать температурный режим;
  • Высокий уровень производительности;
  • Относительно небольшие размеры устройства, минимизирующие занимаемую им площадь;
  • Комфорт при работе с тигельной печью благодаря невысокому уровню шума, маленькому тепловыделению и отсутствию задымления помещения.

Эксплуатация тигельной печи

Такая разновидность термического оборудования очень популярна в рабочих процессах ремонтный и литейных цехов, выпускающих маленькое и среднее количество отливки либо ремонтного литья. Что касается условий эксплуатации тигельных печей, то они обусловленные соблюдением техники безопасности наравне с работой электротехнического оборудования к тому же классу. Ни одно из таких устройств не допускается к эксплуатации без наличия специальных датчиков, которые контролируют толщину стенок тигля и в случае аварийной ситуации автоматически отключают питание, а также издают сигнализирующий звук. Для обеспечения необходимой мощности электроэнергии индукционные печи имеют отдельно стоящие узлы системы, которые состоят из трансформатора и генератора для повышения частоты (эти элементы также должны быть хорошо защищены для недопущения поражения током человека).

Что касается управления печью, то здесь нет ничего особо сложного и при минимальных навыках работы с данным оборудованием человек сможет справиться с процессом плавки металла. Более того, работа устройства может быть полностью автоматизирована, включая погрузку и выгрузку обрабатываемого материала.

Наиболее распространенные области применения тигельных печей, следующие:

  • Металлургическая сфера и все что связано с термической обработкой металлов и руды;
  • Тестирующие лаборатории и исследовательские центры;
  • Некоторые области химической промышленности.

Графитовый тигель – это

Тонкостенный огнеупорный сосуд, из жаропрочного материала, в котором можно долгое время сохранять расплавленный металл, плавить шихту, нагревать ее с помощью воздействия высокой температуры либо создания термической активности внутри обрабатываемого материала. В большинстве случаев графитовый тигель изготавливают в виде конуса для того, чтобы на металлургических заводах было проще делать отливку различных деталей. Для того, чтобы графит был более функциональным, в его состав добавляют цирконий, платину, кварц либо базальт.

Читать еще:  3zr двигатель расход топлива

Показателем производительности и надежности термического оборудования является именно графитовый тигель, так как он единственный элемент, который подвергается постоянной нагрузке. Помимо этого, очень сильное влияние на КПД самого устройства оказывает толщина стенки тигля. Чем тоньше стенки, тем выше теплопередача и меньше энергозатраты, что может обеспечить графитовый тигель. Такой вид материала имеет массу преимуществ, среди которых присутствует минимальная степень расширения при нагреве, устойчивость к деформации даже при воздействии сверхвысоких температур порядка 1700 градусов.

Тигельное производство ферросплавов

Сплавы, содержащие трудновосстановимые элементы – хром, титан, вольфрам, никель – первоначально получали только тигельным способом.

Сплавы, содержащие трудновосстановимые элементы – хром, титан, вольфрам, никель – первоначально получали только тигельным способом. Согласно «Энциклопедии промышленных знаний» (1901 г.), «выплавка феррохрома из руды производится очень просто». Для этого вручную, с помощью лопаты, готовили смесь руды, 12-15 % древесного угля, 6-7 % истёртой в порошок смолы, около 5 % битого стекла и 10-12 % кварцевого песка. Полученную массу помещали в графитовые или глиняные тигли, оставляя место для тонкого слоя мелкобитого стекла и более грубых кусков древесного угля. После этого тигель закрывался крышкой, которую плотно примазывали к краям глиной, оставляя в ней лишь небольшое отверстие для выхода газов.

Печь для нагрева тиглей ранней конструкции и тигли для выплавки качественной стали начала XIX в.

Затем тигли помещались в регенеративную печь, как правило, конструкции Сименса (прообраз мартеновской печи), либо специально сконструированную для производства ферросплавов, например, конструкции Борхерса. Выплавленный таким образом феррохром получался в виде слитка («штыка») по форме соответствующего внутреннему профилю тигля. Аналогичным образом получали ферровольфрам.

Печь конструкции Сименса с теплообменниками-регенераторами

Крупномасштабное производство феррохрома и хромистой стали было организовано в Германии: в Ганновере Бирманом в 1873 г. и на заводе Хальцера в1875 г. Бруштлейном. В 1886 г. Гадфильд опубликовал подробные исследования о свойствах и способах производства железо-хромо-углеродистых сплавов.

Регенративная печь для выплавки феррохрома в тиглях конструкции Борхерса

Существовали более сложные схемы получения металлов, руды которых содержали большое количество примесей, либо содержание которых в рудах было низким. В таких случаях сначала тем или иным способом получали промежуточный продукт с достаточно высоким содержанием производимого металла, а затем уже в тигле производили рафинирование полученного полупродукта. Таким образом производили, например, никель – различными способами, зависящими от типа используемой руды, получали черновой никель, который затем переплавляли в тиглях.

Применялись и другие способы получения, как ферросплавов, так и чистых металлов. Например, в 1854 г. удалось получить чистый металлический хром электролизом водных растворов хлорида хрома, аналогичным способом получали высокочистый никель. Однако в основном это было лабораторное либо мелкомасштабное производство – экономически целесообразно было производить ферросплавы в тиглях.

Главными проблемами тигельного производства были высокие затраты и низкая производительность. Поэтому уже в 1880-х гг. марганец- и кремнийсодержащие ферросплавы, которые применялись, в первую очередь, для раскисления стали, производили практически исключительно в доменных печах.

В начале XX в. тигельный способ производства применялся для получения мало- и безуглеродистых ферросплавов, прежде всего – малоуглеродистого ферромарганца. Силикотермический метод получения малоуглеродистого ферромарганца запатентовали в 1893 г. Уильям-Фауст Грин и Уильям Генри Уэль. Однако из-за высокой цены малоуглеродистого ферромарганца спрос на него был чрезвычайно мал, и потому силикотермический метод производства малоуглеродистого ферромарганца долгое время не находил промышленного применения. Он был востребован лишь после Первой Мировой войны.

В первой половинеXX в. для производства малоуглеродистого ферромарганца (и других безуглеродистых ферросплавов) использовались алюминотермический и силикотермический методы.

Алюминотермический метод применяется, главным образом, для получения металлического марганца. В подогретый магнезитовый тигель загружали хорошо перемешенную смесь порошкообразных оксидов марганца и металлического алюминия Процесс инициировали с помощью специальной зажигательной смеси в отдельном участке тигля. При повышении температуры оксиды марганца начинали реагировать с алюминием. За счет теплоты этой экзотермической реакции активно нагревались соседние участки в тигле, и там точно так же происходило восстановление марганца. Тепловой эффект горения алюминия столь велик, что в очень короткое время все содержимое тигля нагревалось до высокой температуры без подвода тепла извне, что обеспечивало практически полное восстановление оксидов марганца. В учебнике «Теория и практика выплавки ферросплавов в электропечах» (1934 г.) отмечалось: «метод этот не требует сколько-нибудь заметных капитальных затрат: оборудование состоит из одного лишь тигля, не нагреваемого ни током, ни газом, ни другим источником тепла».

Для получения малоуглеродистого ферромарганца в промышленном масштабе пользовались классическими силикотермическими методами Джина и Беккерта. По способу Джина процесс получения малоуглеродистого ферромарганца осуществлялся в две стадии: сначала получение силикомарганца, содержащего незначительное количество углерода, затем рафинировка силикомарганца от кремния марганцовой рудой. По способу Беккерта оксиды марганца восстанавливались богатым ферросилицием. Сложный метод Джина, при котором сначала кремний восстанавливали, чтобы получить силикомарганец с содержанием около 30 % кремния, а затем окисляли и переводили в шлак, имел целью достижение минимально возможного содержания в сплаве углерода.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector