Sw-motors.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

НАСА в конце лета испытает передовой термоядерный ракетный двигатель

НАСА в конце лета испытает передовой термоядерный ракетный двигатель

В конце лета НАСА испытает термоядерный двигатель для полета на Марс. Уникальная и очень простая по устройству силовая установка сможет доставить астронавтов на Марс всего за 30 дней.

В прошлом месяце на симпозиуме НАСА ученый Джон Слау (John Slough) и его команда из Вашингтонского университета представили свою концепцию пилотируемой миссии на Марс, основанной на использовании термоядерной тяги. Согласно их расчетам и данным компьютерного моделирования, для полета к Марсу на разработанном ими термоядерном двигателе понадобится всего от 30 до 90 дней.

Это очень мало и в некотором плане одним махом решает многие проблемы такого полета, например резко снижает опасность лучевой болезни, ухудшения здоровья в связи с длительной невесомостью, а также устраняет «головную боль» конструкторов, которые сейчас думают, как уместить на небольших кораблях трехлетний запас воды и провианта.

Но возможно ли при современных технологиях достичь Марса за такое короткое время? Эксперименты Слау показывают, что да, возможно. В настоящий момент идет активная подготовка эксперимента, в ходе которого в лаборатории будет опробована новая технология термоядерной ракетной тяги.


Оригинальный термоядерный двигатель будет испытан в конце лета. Его базовые технологии уже работают, возможно именно такая силовая установка доставит первых астронавтов на Марс

Ученые во главе с Джоном Слау разработали особый вид ракетного двигателя. В нем специфический вид плазмы сжимается до сверхвысоких давлений магнитным полем, после чего зажигается реакция синтеза. Данная технология уже успешно испытана в лаборатории – осталось только испытать полноценный прототип двигателя, который может выдавать тягу.

Принцип работы двигателя Слау в целом прост. Для питания ракеты, команда разработала систему, в которой мощное магнитное поле сжимает тонкие металлические кольца, размещенные вокруг плазмы. Эти кольца сжимаются вокруг дейтериевого плазмоида и вызывают реакцию синтеза. Она длится лишь несколько микросекунд, но при этом высвобождается достаточно энергии, чтобы быстро нагреть и ионизировать металл колец. Затем ионизированный металл с высокой скоростью выбрасывается из магнитного сопла ракеты. Этот процесс повторяется каждую минуту или около того, что создает реактивную тягу, двигающую корабль вперед.

На недавнем симпозиуме НАСА, разработчики демонстрировали разрушившееся алюминиевое кольцо, заявляя, что оно отработало свое внутри нового термоядерного двигателя. В реальном космическом двигателе, а не лабораторном прототипе, будет использоваться кольцо из металлического лития. В лаборатории его не используют из-за высокой активности — для испытаний на стенде достаточно и алюминия.

В настоящее время идет активная подготовка к масштабному испытанию нового двигателя. Для космической техники он имеет довольно простую конструкцию: массивные магниты, к которым подведены силовые кабели от конденсаторов, и камера сгорания, откуда магнитное поле выбрасывает рабочее тело, в данном случае ионизированный металл. Установка в течении микросекунд генерирует ток до 1 млн. ампер.

Двигатель Слау хорош тем, что выдает большую тягу, минимум радиоактивного загрязнения и при этом очень прост по конструкции. Конечно, ему требуется топливо, причем недешевый литий, а также источник электроэнергии. Но в сравнении с нынешними химическими ракетами, новая силовая установка выглядит очень перспективно.

Что такое термоядерный двигатель

Команда американских ученых использует особенную установку для испытания ядерного оружия, чтобы разработать термоядерный ракетный двигатель, который сделает Солнечную систему «задним двором» человечества.

Огромный аппарат под названием Decade Module Two (DM2) в течение 10 лет использовался Агентством по сокращению военной угрозы (DTRA) для исследований в области воздействия ядерных взрывов. В 2009 году военные исследования были закончены и DM2 передали Университету Алабамы.

Теперь специалисты из Университета Алабамы в Хантствилле, НАСА, Boeing используют бывшую военную установку для сборки устройства Charger-1 Pulsed Power Generator. Когда 50-тонный Charger-1 соберут, это будет одна из самых крупных и мощных импульсных энергетических систем в мире.

Гигантская зажигалка

Термоядерный синтез – это слияние атомных ядер, которое освобождает большое количество энергии. Американские ученые планируют использовать термоядерный синтез с участием атомов тяжелого водорода, дейтерия, и изотопов лития. Энергию, необходимую для сжатия атомов, т.е. зажигания термоядерной реакции, планируется высвобождать с помощью мощного импульсного устройства, которое по действию чем-то похоже на удар молнии.

Зажечь термоядерную реакцию в установке Charger-1 должен мощнейший электрический импульс, энергию для которого накапливают конденсаторы. В настоящее время идет монтаж проводов из лития-6 и дейтерида лития, проводящих импульс и превращающихся в плазму, которая будет сжиматься Z-пинч эффектом.


Работа Z-пинч эффекта

Пинч-эффект — это сжатие плазмы в результате взаимодействия тока разряда с магнитным полем. Если ток протекает вдоль оси цилиндрического плазменного столба, то его называют Z-пинчем. Z-пинч можно наблюдать, например, при ударе молнии в трубчатый громоотвод. Данный эффект используется для стабилизации плазмы в термоядерных реакторах, и в НАСА на него возлагают большие надежды.

Разряд установки Charger-1 может производить плазму, которая сжимается собственным магнитным полем и при размере в палец может заключать в себе 20% от всей энергии, которую потребляет человечество в текущий момент времени. Разумеется, главная цель разработчиков термоядерного ракетного двигателя – получить на выходе больше энергии, чем было потрачено на инициацию термоядерного синтеза. Хотя, надо сказать, команда Charger 1 не надеется, что им удастся этого достичь, но в любом случае огромная установка даст большое количество ценной научной информации, которая пригодится для разработки первого прототипа термоядерного ракетного двигателя. Бывший военный модуль DM2 в 500-наносекундном электрическом импульсе выдает до 1 тераватта мощности — около 6% от потребления электроэнергии в мире.

Двигатель

Проблема космических кораблей на химическом горючем известна: нужно сжечь тысячи тонн топлива, чтобы транспортировать всего десятки тонн полезного груза. С такими ракетами серьезно говорить об освоении Солнечной системы не приходится.


Слева направо показана эволюция научной программы по созданию Z-пинч
двигателя: через 9 лет вместо одного нынешнего накопительного модуля DM2
будет испытываться полноценное кольцо из 8 модулей.
Еще через 2 года будут испытываться одновременно 2 кольца

Термоядерная силовая установка – совсем другое дело. Термоядерной ракете вместо тысяч нужно всего несколько тонн топлива. Более того, с помощью ядерного ракетного двигателя, например, на Марс можно было бы долететь не за 6 месяцев, а за 6 недель. Все это одним махом решает проблему длительного пребывания в напичканном опасностями космосе, а также уменьшает сложность систем жизнеобеспечения и защиты космического корабля.


Кандидат технических наук специалист в области аэрокосмической техники
Росс Кортез, участвующий в проекте Charger-1, описывает термоядерный ракетный двигатель очень просто

Читать еще:  Что смастерить из двигателя

Кандидат технических наук специалист в области аэрокосмической техники Росс Кортез, участвующий в проекте Charger-1, описывает термоядерный ракетный двигатель очень просто: «Представьте, что в задней части ракеты взрывается заряд, эквивалентный 1 тонне тротила. Именно такой двигатель мы и делаем».

Двигатель корабля на Z-пинче работает просто

Двигатель корабля на Z-пинче работает просто: в параболическую камеру сгорания подаются два компонента топлива и мощный электрический импульс из конденсаторов превращает их в плазму. Магнитное поле большой силы сжимает плазму и зажигает реакцию термоядерного синтеза. В результате образуется расширяющаяся в камере сгорания плазма, которая имеет массу всего 0,02 кг, но ее начальная кинетическая энергия достигает 1 ГДж.

Плазма, раздувающаяся как своеобразный воздушный шарик, в итоге сжимается Z-пинч эффектом, выбрасывается из магнитного сопла и создает реактивную тягу.

Основная функция Z-пинч эффекта – это защищать двигатель от разрушения и направлять очень большие токи (в мегамперы) через плотную плазму в течение очень короткого времени – около 10-6 секунды.

На выходе получается реактивная тяга в 3812 ньютон-секунд за импульс при частоте 10 импульсов в секунду и удельном импульсе 19436 секунд.

В НАСА рассчитывают на то, что количество энергии, выделяющейся при реакции синтеза, будет в 3 раза больше количества энергии, необходимого для зажигания. Это означает, что за 100 наносекунд до начала следующего импульса конденсаторам необходимо «сбросить» в камеру сгорания 333 МДж энергии. Это весьма сложная проблема — даже учитывая высокую эффективность конденсаторов (80%), необходимо будет решить задачу создания накопителей, которые смогут очень быстро заряжаться и разряжаться.

В качестве топлива Z-пинч двигателя планируется использовать дейтерий и литий-6, которые производят полезные побочные продукты (например, тритий), повышающие выход энергии. Охлаждать двигатель будет жидкость фтор-литий-бериллий (FLiBe), которая к тому же способна поглощать гамма-лучи и нейтроны. Параболическое магнитное сопло будет состоять из 8 колец сверхпроводящих магнитных катушек на основе иттрия. Они создают внутри сопла начальное магнитное поле и направляют в конденсаторы электрический ток, индуцированный в процессе расширения плазмы. Позже эта энергия будет использована для следующего импульса.

Термоядерная ракета

Проект Z-пинч корабля, разработанный в 2010 году, предполагает, что это будет аппарат длиной 125 м (в два раза длиннее МКС), поэтому собирать его придется на орбите.


Проект Z-пинч корабля, разработанный в 2010 году, предполагает,
что это будет аппарат длиной 125 м (в два раза длиннее МКС), поэтому собирать его придется на орбит

Несущей конструкцией корабля будет центральная ферма с радиаторами, отводящими тепло от двигателей. На одном конце фермы будет расположен двигатель, а на другом — обитаемый отсек и спускаемый аппарат или друга полезная нагрузка.

Сопло двигателя будет иметь диаметр 13,6 м, его планируется изготовить из углеродного композита – в любом случае сопло радиации не боится, а от плазмы сопло защищает магнитное поле. Сложнее с конденсаторами, которые необходимо защитить от гамма-излучения и нейтронов. Их придется закрыть достаточно тяжелой радиационной защитой, которая одновременно будет защищать и экипаж, к тому же удаленный от активной зоны на безопасное расстояние с помощью длинной фермы.

Максимальная тяга Z-пинч корабля сравнима с традиционными ракетами, но перегрузка при ускорении такого крупного корабля будет совсем небольшой – менее 1 g, что обеспечит комфорт при многодневном разгоне и торможении.

При массе полезной нагрузки в 150 тонн, общая масса корабля составит почти 600 тыс. тонн. Это, ненамного больше МКС весом 400 тонн, однако возможности у Z-пинч корабля будут совсем другие: за 1,5 суток максимальной тяги двигателя Z-пинч корабль достигнет Марса через 90 дней. Если полная тяга продлится 8,7 суток, то до Марса можно будет добраться всего за 30 дней! При этом корабль за вдвое меньшее время полета доставит на 35-55% больше полезного груза, чем сравнимая химическая ракета.

В целом, США по силам собрать корабль с сухим весом около 390 тонн. Это сравнимо с МКС, а учитывая, что в США активно ведется разработка мощнейшей ракеты-носителя SLS, способной выводить на низкую околоземную орбиту до 130 тонн груза, сборка Z-пинч корабля — задача вполне решаемая.

Решить проблемы

В любом случае, до сборки пока далеко. Еще предстоит решить ряд сложных технических задач по созданию Z-пинч двигателя. С помощью установки Charger 1, ученые должны оценить безопасность и пригодность для использования в качестве топлива лития-6, эффективность работы МГД-генераторов, надежность магнитного сопла, антирадиационной защиты и т.д. Все это ученые планируют сделать в течение ближайших 11 лет. Надо отметить, что в НАСА параллельно работает множество программ по обеспечению полетов вглубь Солнечной системы: решаются проблемы сохранения здоровья экипажа межпланетного корабля, отрабатываются системы посадки, оборудование для работы на поверхности планет и астероидов и т.д. Таким образом, подготовка к освоению нашей звездной системы уже идет полным ходом.

Термоядерный ракетный двигатель

Термоядерный ракетный двигатель (ТЯРД) — перспективный ракетный двигатель для космических полётов, в котором для создания тяги предполагается использовать истечение продуктов управляемой термоядерной реакции или рабочего тела, нагретого за счёт энергии термоядерной реакции.

Содержание

  • 1 Принцип работы и устройство ТЯРД
    • 1.1 ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы
    • 1.2 ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор)
  • 2 Типы реакций и термоядерное топливо
    • 2.1 Реакция дейтерий + тритий (Топливо D-T)
    • 2.2 Реакция дейтерий + гелий-3
    • 2.3 Другие виды реакций
  • 3 История, современное состояние и перспективы разработок ТЯРД
  • 4 См. также
  • 5 Ссылки

Принцип работы и устройство ТЯРД [ править ]

В настоящее время предложены 2 варианта конструкции ТЯРД :

ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы [ править ]

В первом случае принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. В настоящее время наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors ), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). По современным оценкам, длина реакционной «камеры» составит от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо — предварительно нагретая плазма из смеси топливных компонентов — подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.

Читать еще:  Датчик показывающий температуру двигателя приора

Следует отметить возможность многорежимности ТЯРД. Путем впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел (например больших планет) где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 тыс. сек до 4 млн. сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 сек. (Всего-то!)

ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор) [ править ]

Двигатель второго типа — инерционный импульсный термоядерный двигатель. В реакторе такого двигателя управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней (топливных «таблеток»), содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Такой ЛТЯРД предлагался, в частности, для межзвёздного автоматического зонда в проекте «Дедал». Его основой и был реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся топливная таблетка с термоядерным топливом (например, дейтерий и тритий) — сложная конструкции сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные — порядка сотен тераватт — лазеры, наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на топливную таблетку. При этом на поверхности топливной таблетки создается зона с температурой более 100 млн. градусов при давлении в миллионы атмосфер — условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограммов в тротиловом эквиваленте. Частота таких взрывов в камере в проекте «Дедал» — порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10 км/с при помощи электромагнитной пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. В настоящее время уже теоретически и практически доказано, что лазерный метод обжатия/разогрева топливных таблеток есть тупиковым путь — в том числе практически невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза рассматривается вариант с ионно-пучковым обжатием/нагревом топливных таблеток, как более эффективный, компактный и с гораздо большим физическим ресурсом.

И тем не менее, есть мнение, что инерционно-импульсный ТЯРД получится слишком громоздким из-за очень больших циркулирующих в нём мощностей, при худшем, чем у ТЯРД с магнитным удержанием, удельном импульсе и тяге, что вызвано импульсно-периодическим режимом его действия. Идеологически к ТЯРД на инерционно-импульсном принципе примыкают взрыволеты на термоядерных зарядах типа проекта «Орион».

Типы реакций и термоядерное топливо [ править ]

ТЯРД может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. В частности, на настоящее время принципиально осуществимы следующие типы реакций:

Реакция дейтерий + тритий (Топливо D-T) [ править ]

2 H + 3 H = 4 He + n при энергетическом выходе 17,6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её — весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть выходной энергии реакции и, как следствие, резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада — около 12 лет. То есть долговременное хранение трития невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащий литий: последний, облучаясь нейтронным потоком, превращается в тритий, что в известной степени замыкает топливный цикл, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T-реактора фактически служат дейтерий и литий.

Реакция дейтерий + гелий-3 [ править ]

2 H + 3 He = 4 He + p. при энергетическом выходе 18,3 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, редок и чрезвычайно дорогой изотопом. В промышленных масштабах на настоящее время не производится. Кроме того, что энергетический выход этой реакции выше, чем у D-T-реакции, она имеет следующие дополнительные преимущества:

  • Сниженный нейтронный поток (реакцию можно отнести к «безнейтронным»),
  • Меньшая масса радиационной защиты,
  • Меньшая масса магнитных катушек реактора.

При реакции D- 3 He в форме нейтронов выделяется всего около 5% мощности (против 80% для D-T). Около 20% выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D-3He намного более перспективна для применения в реакторе ТЯРД.

Другие виды реакций [ править ]

Реакция между ядрами дейтерия (D-D, монотопливо) D + D —> 3 He + n при энергетическом выходе 3,3 МэВ, и

D + D —> T + p+ при энергетическом выходе 4 МэВ. Нейтронный выход в этой реакции весьма значителен.

Возможны и некоторые другие типы реакций:

p + 6 Li → 4 He (1.7 MeV) + 3 He (2.3 MeV) 3 He + 6 Li → 2 4 He + p + 16.9 MeV p + 11 B → 3 4 He + 8.7 MeV

Нейтронный выход в указанных выше реакциях отсутствует.

Выбор топлива зависит от многих факторов — его доступность и дешевизна, энергетический выход, лёгкость достижения потребных для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч. Наиболее перспективны для осуществления ТЯРД т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и не может быть использован для создания тяги. Кроме того, нейтронная радиация порождает наведенную радиоактивность в конструкции реактора и корабля, создавая еще одну опасность для экипажа. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода. В настоящее время предложена ещё одна концепция ТЯРД — с использованием малых количеств антиматерии в качестве катализатора термоядерной реакции.

История, современное состояние и перспективы разработок ТЯРД [ править ]

Идея создания ТЯРД появилась практически сразу после осуществления первых термоядерных реакций (испытаний термоядерных зарядов). Одной из первых публикаций по теме разработки ТЯРД явилась изданная в 1958 году статья Дж. Росса. В настоящее время ведутся теоретические разработки таких видов двигателей (в частности, на основе лазерного термоядерного синтеза) и в целом — широкие практические исследования в области управляемого термоядерного синтеза. Существуют твёрдые теоретические и инженерные предпосылки для осуществления такого типа двигателя в обозримом будущем. Исходя из расчетных характеристик ТЯРД, такие двигатели смогут обеспечить создание скоростного и эффективного межпланетного транспорта для освоения Солнечной системы. Однако реальные образцы ТЯРД на настоящий момент (2015) ещё не созданы.

Читать еще:  103 двигатель как выставить грм

Водородные двигатели

  • Откуда появились водородные ДВС
  • Устройство и особенности работы
  • Разновидности водородных моторов
  • Моторы на основе водородных элементов
  • Водородные ДВС
  • Плюсы и минусы водородных двигателей

У обычного ДВС есть масса недостатков, поэтому специалисты уже давно ведут поиски достойной альтернативы ему. Появление электродвигателей в свое время было гигантским шагом вперед, но техника постоянно развивается, и в 1997 году появились еще и водородные двигатели. С их помощью удастся решить проблемы, связанные с ценами на топливо и экологической безопасностью.

Откуда появились водородные ДВС

В 70-х в мире разразился энергетический кризис, что подвигло ученых заняться поиском альтернативы бензину. Одним из первых на водороде стал ездить внедорожник Тойота, но в конце 90-х он так и не пошел в серию. Исследования в этой области продолжались. Кроме Тойота успехов добились Хендай и Хонда.

Но энергетический кризис закончился, а вместе с ним пропал и интерес к моторам, работающим на альтернативном топливе. Сейчас проблема снова стала актуальной, экологи опять заставляют обратить на нее внимание. Проводить практические эксперименты с водородом подталкивает повышение цен на топливо. Активнее всего к созданию двигателей на водороде подходят BMW, Honda и Ford. В 2016 году был выпущен первый поезд, двигатель которого работает на H2.

Устройство и особенности работы

Проблема бензиновых двигателей заключается в том, что топливо горит долго и занимает пространство КС несколько ранее, чем поршень принимает нижнее положение. Принцип работы водородного двигателя таков: быстрая реакция H2 сдвигает время впрыска ближе ко времени возвращения поршня к крайнему нижнему положению. При этом давление в структуре подачи топлива повышается незначительно.

Водородный мотор может образовать внутреннюю систему питания, когда смесь образуется без участия воздуха. Проще говоря, после очередного такта сжатия в КС образуется пар, затем он следует через радиатор, где, конденсируясь, опять становится водой. Но устройство может быть реализовано только на автомобиле с электролизером, который выделяет водород из воды, чтобы тот снова смог взаимодействовать с кислородом. Сейчас добиться этого почти невозможно, ведь для стабилизации работы моторов применяется техническое масло, а, испаряясь, оно становится составной частью выхлопа. Поэтому бесперебойный запуск мотора невозможен без воздуха.

Разновидности водородных моторов

При рассмотрении особенностей работы моторов на H2 обязательно учитывают, что агрегаты бывают 2-х видов:

  • моторы с водородными элементами;
  • водородные ДВС.

Моторы на основе водородных элементов

Устройство работает на базе свинцового аккумулятора, вот только КПД топливного элемента тут значительно выше и порой превышает 45%. Система питания такова: в корпусе топливного элемента находится мембрана, проводящая лишь протоны. Ею разделяются анодные и катодные камеры. Анодная камера заполняется водородом, а в катодная — кислородом. Все элементы покрыты катализаторами из платины.

Под воздействием катализатора протоны соединяются с электродами, проходя через мембрану к катоду. Возникает реакция, способствующая появлению воды. Анодные электроны переходят в электроцепь, подключенную к мотору. В результате получается электроток, питающий силовой агрегат.

Водородное топливо сейчас применяется на машинах марки Нива. Энергоустановки для них были созданы уральскими инженерами. Заряда вполне хватает на 200 км. Также подобные двигатели стоят и на Лада 111 — там используется агрегат Антел-2, мощности которого хватает уже на 350 км. Так как в установках используются драгоценные металлы, стоят они достаточно дорого. Это сказывается и на конечной цене автомобилей.

Водородные ДВС

Эти силовые агрегаты сильно напоминают распространенные сейчас двигатели, работающие на газе, поэтому совершить переход с пропана на водород достаточно легко. Потребуется провести небольшие перенастройки двигателя. КПД таких «движков» немного ниже, если сравнивать с ДВС на водородных элементах. Но этот недостаток компенсируется тем, что для выработки нужного количества энергии потребуется меньше водорода.

Использование водорода в обычном ДВС невозможно по ряду причин:

  1. Степень сжатия слишком высока. H2 вступит в реакцию с моторным маслом.
  2. Выпускной коллектор раскаляется. Даже незначительная утечка может привести к воспламенению.

Именно поэтому для разработки конструкций на основе H2 используют только роторные моторы. Здесь риск возгорания сводится к минимуму из-за расстояния между коллекторами.

Замечательный пример — BMW 750hL. Жидкий водород находится в баке, и его вполне хватает на 300 км. Технология такова, что когда водород заканчивается, автоматика переключает автомобиль на бензин.

Плюсы и минусы водородных двигателей

К преимуществам можно отнести следующее:

  1. Экологическая чистота. Если водородные «движки» будут использоваться повсеместно, экология сможет вздохнуть свободнее. Парниковый эффект точно будет заметно уменьшен. Сотрудники компании Тойота доказали, что выхлопы автомобилей с водородными моторами безопасны для здоровья.
  2. Доступность. Фактор дефицита точно будет отсутствовать, так как водород можно получить даже из сточной воды.
  3. Возможность применения в разных типах моторов. Водородное топливо может использоваться как в ДВС, так и в моторах, вырабатывающих электрический ток.

К достоинствам водородных силовых агрегатов также относят:

  • Небольшой уровень шума.
  • Увеличенную мощность.
  • Значительный запас хода.
  • Небольшой расход топлива.
  • Простоту обслуживания.

А теперь о недостатках водородных двигателей:

  1. Сложность получения водорода в чистом виде. Для его извлечения необходимо затратить много энергии. Сейчас такое производство нерентабельно.
  2. Дефицит АЗС. Если сравнивать с АЗС, в которых продается обычное топливо, оснащение станций для заправки машин водородным топливом будет стоить очень дорого. Из-за этого на строительство водородных АЗС никто не решается.
  3. Необходимость модернизации ДВС. Чтобы применять Н2 как основное топливо, придется внести некоторые изменения в конструкцию ДВС. Без изменений мощность мотора может упасть на 25%. Кроме того, механизм не будет служить долго.

Автомобили на водороде сегодня называют «машинами будущего», которые не станут наносить вред окружающей среде. И пусть пока такие авто дороговаты и встречаются редко, со временем их цена обязательно упадет, а популярность вырастет.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector