Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое термодинамика двигателя

Что такое термодинамика двигателя

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. Тогда количество теплоты (энергии) необходимое для изменения температуры некоторого тела массой m можно рассчитать по формуле:

При этом в этой формуле абсолютно не важно в каких единицах подставлена температура, так как нам важно не ее абсолютное значение, а изменение. Единица измерения удельной теплоемкости вещества: Дж/(кг∙К).

  • Если t2 >t1, то Q > 0 – тело нагревается (получает тепло).
  • Если t2 0 и отдает холодильнику количество теплоты Q2 3 воздуха (т.е. просто плотность водяных паров; из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

где: р – парциальное давление водяного пара, М – молярная масса, R – универсальная газовая постоянная, Т – абсолютная температура. Единица измерения абсолютной влажности в СИ [ρ] = 1 кг/м 3 , хотя обычно используют 1 г/м 3 .

Относительной влажностью φ называется отношение абсолютной влажности ρ к тому количеству водяного пара ρ, которое необходимо для насыщения 1 м 3 воздуха при данной температуре:

Относительную влажность можно также определить как отношение давления водяного пара р к давлению насыщенного пара р при данной температуре:

Испарение может происходить не только с поверхности, но и в объеме жидкости. В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (то есть давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением. Таким образом, кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению.

В частности, при нормальном атмосферном давлении вода кипит при температуре 100°С. Это значит, что при такой температуре давление насыщенных паров воды равно 1 атм. Важно знать, что температура кипения жидкости зависит от давления. В герметически закрытом сосуде жидкость кипеть не может, т.к. при каждом значении температуры устанавливается равновесие между жидкостью и ее насыщенным паром.

Поверхностное натяжение

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может скачком переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

Вследствие плотной упаковки молекул сжимаемость жидкостей, то есть изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (то есть увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔAвнеш, пропорциональную изменению ΔS площади поверхности.

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия Ep поверхности жидкости пропорциональна ее площади:

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости на единицу при постоянной температуре. В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2 ) или в ньютонах на метр (1 Н/м = 1 Дж/м 2 ).

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии (любое тело всегда стремится скатиться с горы, а не забраться на нее). Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку. Сила поверхностного натяжения, действующая на участок границы жидкости длиной L вычисляется по формуле:

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются. При этом высота столба жидкости в капилляре:

где: r – радиус капиляра (т.е. тонкой трубки). При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Техническая термодинамика: основные понятия. Что изучает техническая термодинамика

Исследование взаимосвязи между энергией и энтропией — это то, что изучает техническая термодинамика. Она заключает в себе целый набор теорий, которые сопоставляют макроскопические свойства, поддающиеся измерению (температуру, давление и объем) с энергией и ее возможностью выполнения работы.

Введение

Понятия тепла и температуры являются наиболее фундаментальными для технической термодинамики. Ее можно назвать наукой обо всех явлениях, которые зависят от температуры и ее изменений. В статистической физике, частью которой она сейчас является, это одна из великих теорий, на которых основано нынешнее понимание материи. Термодинамическая система определяется как количество вещества фиксированной массы и идентичности. Все внешнее по отношению к ней является окружением, от которого она отделена границами. Применение технической термодинамики включает такие конструкции, как:

  • кондиционеры и холодильники;
  • турбонагнетатели и нагнетатели в автомобильных двигателях;
  • паровые турбины на электростанциях;
  • реактивные двигатели в самолетах.

Вам будет интересно: Мразь – это ругательство или оружие? И то, и другое!

Тепло и температура

У каждого человека есть интуитивное знание понятия температуры. Тело горячее или холодное, в зависимости от того, является ли его температура более или менее высокой. Но точное определение сложнее. В классической технической термодинамике было дано определение абсолютной температуры тела. Оно привело к созданию кельвинского масштаба. Минимальная температура для всех тел — ноль Кельвина (-273,15°С). Это абсолютный ноль, концепция которого впервые появилась в 1702 году благодаря французскому физику Гийому Амонтону.

Вам будет интересно: Что такое учебное пособие: определение термина, краткое содержание

Тепло труднее определить. Техническая термодинамика истолковывает его как беспорядочную передачу энергии из системы во внешнюю среду. Оно соответствует кинетической энергии молекул, движущихся и подвергающихся случайным ударам (броуновское движение). Передаваемая энергия называется беспорядочной на микроскопическом уровне, в отличие от упорядоченной, выполненной через работу на макроскопическом уровне.

Состояние вещества

Состояние материи — это описание типа физической структуры, которую проявляет субстанция. Оно обладает свойствами, описывающими, как материал поддерживает свою структуру. Есть пять состояний материи:

  • газ;
  • жидкость;
  • твердое тело;
  • плазма;
  • сверхтекучее (самое редкое).

Многие вещества могут переходить между газовой, жидкой и твердой фазами. Плазма — это особое состояние вещества, такое как молния.

Тепловая емкость

Теплоемкость (С) представляет собой соотношение изменения теплоты (ΔQ, где греческий символ Дельта обозначает количество) к изменению температуры (ΔT):

Она показывает легкость, с которой вещество нагревается. Хороший термальный проводник имеет низкий показатель емкости. Сильный теплоизолятор обладает высокой теплоемкостью.

Терминология

Каждая наука имеет свой уникальный словарь. К основным понятиям технической термодинамики относятся:

  • Теплообмен — взаимный обмен температур между двумя веществами.
  • Микроскопический подход — изучение поведения каждого атома и молекулы (квантовая механика).
  • Макроскопический подход — наблюдение за общим поведением множества частиц.
  • Термодинамическая система — количество вещества или область в пространстве, выбранная для исследования.
  • Окружение — все внешние системы.
  • Кондукция — тепло передается через нагретое твердое тело.
  • Конвекция — нагретые частицы возвращают тепло другому веществу.
  • Излучение — нагрев передается через электромагнитные волны, например, от солнца.
  • Энтропия — в термодинамике является физической величиной, используемой для характеристики изотермического процесса.

    Подробнее о науке

    Трактовка термодинамики как отдельной дисциплины физики не совсем верна. Она затрагивает практически все области. Без способности системы использовать внутреннюю энергию для выполнения работы физикам было бы нечего изучать. Также существуют несколько очень полезных сфер термодинамики:

  • Теплотехника. Изучает две возможности передачи энергии: работу и тепло. Связана с оценкой переноса энергии в рабочем веществе машины.
  • Криофизика (криогеника) — наука низких температур. Исследует физические свойства веществ в условиях, испытываемых даже в самом холодном регионе Земли. Примером этого является изучение сверхтекучих веществ.
  • Гидродинамика — изучение физических свойств жидкостей.
  • Физика высоких давлений. Исследует физические свойства веществ в системах чрезвычайно высоких давлений, связанных с динамикой жидкости.
  • Метеорология — научное изучение атмосферы, которое фокусируется на погодных процессах и прогнозировании.
  • Физика плазмы — исследование вещества в плазменном состоянии.

    Нулевой закон

    Предмет и метод технической термодинамики — это экспериментальные наблюдения, записанные в виде законов. Нулевой закон термодинамики утверждает: когда два тела имеют равенство температуры с третьим, они в свою очередь имеют равенство температуры друг с другом. Например: один блок меди вводится в контакт с термометром до такого состояния, пока не будет установлено равенство температуры. Затем удаляется. Второй блок меди приводится в контакт с таким же термометром. Если при этом не происходит изменения уровня ртути, то можно сказать, что оба блока находятся в тепловом равновесии с термометром.

    Первый закон

    Этот закон гласит: поскольку система претерпевает изменение состояния, энергия может пересекать границу либо как тепло, либо как работа. Каждая из них может быть положительной или отрицательной. Чистое изменение энергии системы всегда равно чистой энергии, которая пересекает границу системы. Последняя может быть внутренней, кинетической или потенциальной.

    Второй закон

    Он используется для определения направления, в котором может происходить конкретный тепловой процесс. Этот закон термодинамики утверждает: невозможно создать устройство, которое работает в цикле и не производит никакого эффекта, кроме передачи тепла от тела с низкой температурой к более горячему телу. Его иногда называют законом энтропии, поскольку он вводит это важное свойство. Энтропия может рассматриваться как мера того, насколько система близка к равновесию или беспорядку.

    Тепловой процесс

    Система подвергается термодинамическому процессу, когда в ней происходит какое-то энергетическое изменение, обычно связанное с трансформацией давления, объема, температуры. Существует несколько специфических типов, обладающих особыми свойствами:

    • адиабатический — без теплообмена в системе;
    • изохорный — без изменения объема;
    • изобарный — без изменения давления;
    • изотермический — без изменения температуры.

    Обратимость

    Обратимым считается процесс, который, после того как состоялся, может быть отменен. Он не оставляет никаких изменений ни в системе, ни в окружающей среде. Чтобы быть обратимой, система должна находиться в равновесии. Существуют такие факторы, которые делают процесс необратимым. Например, трение и безудержное расширение.

    Применение

    Многие аспекты жизнедеятельности современного человечества построены на основах теплотехники. К ним относятся:

  • Все транспортные средства (автомобили, мотоциклы, тележки, корабли, самолеты и др.) работают на основании второго закона термодинамики и цикла Карно. Они могут использовать бензиновый или дизельный двигатель, но закон остается прежним.
  • Воздушные и газовые компрессоры, воздуходувки, вентиляторы работают на различном термодинамический цикле.
  • Теплообмен используется в испарителях, конденсаторах, радиаторах, охладителях, подогревателях.
  • Холодильники, морозильники, промышленные системы рефрижерации, все типы систем кондиционирования воздуха и тепловые насосы работают благодаря второму закону.

    Техническая термодинамика включает также изучение различных типов электростанций: тепловые, атомные, гидроэлектростанции, на основе возобновляемых источников энергии (таких как солнечная, ветровая, геотермальная), приливов, волн и других.

    Первый закон термодинамики. Как рассказать просто о сложном?

    Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях.

    1. Определение первого закона термодинамики

    Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях. Собственно, именно с анализа принципов первых тепловых машин, паровых двигателей и их эффективности и зародилась термодинамика. Можно сказать, что этот раздел физики начинается с небольшой, но очень важно работы молодого французского физика Николя Сади Карно.

    Самым важным законом, лежащим в основе термодинамики является первый закон или первое начало термодинамики. Чтобы понять суть этого закона, для начала, вспомним что называется внутренней энергией. ВНУТРЕННЯЯ ЭНЕРГИЯ тела — это энергия движения и взаимодействия частиц, из которых оно состоит. Нам хорошо известно, что внутреннюю энергию тела можно изменить, изменив температуру тела. А изменять температуру тела можно двумя способами:

    1. совершая работу (либо само тело совершает работу, либо над телом совершают работу внешние силы);
    2. осуществляя теплообмен — передачу внутренней энергии от одного тела к другому без совершения работы.

    Нам, также известно, что работа, совершаемая газом, обозначается Аг, а количество переданной или полученной внутренней энергии при теплообмене называется количеством теплоты и обозначается Q. Внутреннюю энергию газа или любого тела принято обозначать буквой U, а её изменение, как и изменение любой физической величины, обозначается с дополнительным знаком Δ, то есть ΔU.

    Сформулируем ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ для газа. Но, прежде всего, отметим, что когда газ получает некоторое количество теплоты от какого-либо тела, то его внутренняя энергия увеличивается, а когда газ совершает некоторую работу, то его внутренняя энергия уменьшается. Именно поэтому первый закон термодинамики имеет вид:

    Так как работа газа и работа внешних сил над газом равны по модулю и противоположны по знаку, то первый закон термодинамики можно записать в виде:

    Понять суть этого закона довольно просто, ведь изменить внутреннюю энергию газа можно двумя способами: либо заставить его совершить работу или совершить над ним работу, либо передать ему некоторое количество теплоты или отвести от него некоторое количество теплоты.

    2. Первый закон термодинамики в процессах

    Применительно к изопроцессам первый закон термодинамики может быть записан несколько иначе, учитывая особенности этих процессов. Рассмотрим три основных изопроцесса и покажем, как будет выглядеть формула первого закона термодинамики в каждом из них.

    1. Изотермический процесс — это процесс, происходящий при постоянной температуре. С учётом того, что количество газа также неизменно, становится ясно, что так как внутренняя энергия зависит от температуры и количества газа, то в этом процессе она не изменяется, то есть U = const, а значит ΔU = 0, тогда первый закон термодинамики будет иметь вид: Q = Aг.
    2. Изохорный процесс — это процесс, происходящий при постоянном объёме. То есть в этом процессе газ не расширяется и не сжимается, а значит не совершается работа ни газом, ни над газом, тогда Аг = 0 и первый закон термодинамики приобретает вид: ΔU = Q.
    3. Изобарный процесс — это процесс, при котором давление газа неизменно, но и температура, и объём изменяются, поэтому первый закон термодинамики имеет самый общий вид: ΔU = QАг.
    4. Адиабатный процесс — это процесс, при котором теплообмен газа с окружающей средой отсутствует (либо газ находится в теплоизолированном сосуде, либо процесс его расширения или сжатия происходит очень быстро). То есть в таком процессе газ не получает и не отдаёт количества теплоты и Q = 0. Тогда первый закон термодинамики будет иметь вид: ΔU = —Аг.

    3. Применение

    Первое начало термодинамики (первый закон) имеет огромное значение в этой науке. Вообще понятие внутренней энергии вывело теоретическую физику 19 века на принципиально новый уровень. Появились такие понятия как термодинамическая система, термодинамическое равновесие, энтропия, энтальпия. Кроме того, появилась возможность количественного определения внутренней энергии и её изменения, что в итоге привело учёных к пониманию самой природы теплоты, как формы энергии.

    Ну, а если говорить о применении первого закона термодинамики в каких-либо задачах, то для этого необходимо знать два важных факта. Во-первых, внутренняя энергия идеального одноатомного газа равна: а во-вторых, работа газа численно равна площади фигуры под графиком данного процесса, изображённого в координатах pV. Учитывая это, можно вычислять изменение внутренней энергии, полученное или отданное газом количество теплоты и работу, совершённую газом или над газом в любом процессе. Можно также определять коэффициент полезного действия двигателя, зная какие процессы в нём происходят.

    История термодинамики

    Если в XVIII в. в физике (за исключением механики) господствовал эксперимент, так что физику определяли как науку «о всем том, что через опыты познать можно», то в XIX в. картина начинает меняться. Экспериментальная физика продолжает господствовать над теоретической, и редактор ведущего физического журнала «Annalen der Physik» Поггендорф, будучи сам экспериментатором, тщательно заботится о том, чтобы на страницы журнала не попала «метафизика». Но уже волновая оптика Юнга и Френеля представляла собой, кроме совокупности изящных и остроумных опытов, стройную теоретическую систему, позволившую Гамильтону предсказать тонкое, трудно наблюдаемое явление конической рефракции. Элект ростатика и магнитостатика в руках Гаусса и Грина развивались по образцу ньютоновской теории тяготения, и ее основные результаты и поныне входят в курсы теоретической физики. Электродинамика Ампера позволяла надеяться, что аналогичная математическая теория будет разработана и для электромагнетизма. Но великие открытия Фарадея спутали все карты, и, хотя поиски обобщающего закона не прекращались, в электродинамике до Максвелла господствовал идейный разброд.

    Труднее всего поддавались теоретической обработке тепловые явления. Здесь еще шло накопление эмпирических фактов, разрабатывались методы определения тепловых характеристик: коэффициентов расширения, теплопроводности, удельных теплоемкостей. Эти измерения нужны были и для бурно развивающейся теплотехники. «Его величество пар» работал на фабриках и заводах, на железных дорогах, на морских и речных путях. Паровая машина была основным и единственным двигателем бурно развивающейся капиталистической индустрии.

    Правительство капиталистической Франции сочло необходимым субсидировать исследования Анри Виктора Реньо (1310— 1878), предпринятые «с целью определить числовые данные, важные в теории паровой машины». «Большие средства, представленные в распоряжение Реньо,— писал А. Г. Столетов,— позволили ему не стесняться ни помещением, ни размерами аппаратов. Целые фабрики с научной целью воздвиглись сперва в College de France, потом на Севрском фарфоровом заводе (которого Реньо был директором)». Методы тепловых измерений, предложенные Реньо, переносились в научные и учебные лаборатории высших учебных заведений, и еще в XX в. почти все физические практикумы университетов по теплоте были поставлены «по Реньо».

    Исследования Реньо начали публиковаться в конце 30-х годов XIX в. В 1847 г. вышел первый том его «Сообщений об опытах предприятий по распоряжению министров общественных работ». Лаборатория Реньо вместе с его последними трудами была уничтожена немцами при взятии Парижа в 1870 г.

    Реньо был ярким представителем экспериментального направления в физике XIX в. А. Г. Столетов совершенно точно характеризовал его: «Реньо не проводил новых идей в науке, если не считать того скептицизма, с которым он относился к слишком ранним обобщениям фактов и обличал неточность положений, до тех пор принимавшихся за непреложные законы. Новые идеи, как например механическая теория теплоты, проникли в науку помимо Реньо, можно сказать, вопреки ему: он не вдруг в них уверовал. Он считал себя работником, собирателем материалов, измерителем, и в этом смысле он не имеет себе подобного».

    Эта очень важная характеристика, данная Столетовым, может быть приложена не к одному Реньо, а ко многим, даже подавляющему большинству физиков первой половины XIX в. Таким был, например, уже упоминавшийся Иоганн Христиан Поггендорф, внесший определенный вклад в развитие электрических измерений. Таким был и Генрих Густав Магнус (1802—1870), открывший известный «эффект Магнуса». Физики этой школы, как справедливо указывал Столетов, настороженно и недоверчиво относились к новым теоретическим обобщениям, и рождение термодинамики было трудным.

    В общей обстановке эмпиризма лишь два исследования теоретического характера, выполненные в первой четверти столетия, стоят особняком. Первое исследование носило математический характер и оказало существенное влияние на развитие математической физики. Оно было выполнено французским математиком Жан Батистом Жозефом Фурье (1768—1830). Его работа «Аналитическая теория тепла» содержала математическую теорию теплопроводности, которой Фурье занимался начиная с 1807 г. Фурье вывел дифференциальное уравнение теплопроводности и разработал методы его интегрирования при заданных краевых условиях для некоторых частных случаев. В своей математической теории Фурье применил разложение функций в тригонометрический ряд (ряд Фурье). Возникшая в математике дискуссия по этому по-, воду оказалась плодотворной, и в математическую физику прочно вошли ряды и интеграл Фурье.

    Фурье рассматривал теплоту как некоторую жидкость (теплород). Большего ему не требовалось, и его теория казалась одним из достижений теории теплорода. Эту же теорию разделял и другой замечательный ученый, военный инженер Сади Карно (1796—1832). Сади Никола Леонард Карно был старшим сыном знаменитого «организатора победы» французской революции Лазаря Карно. Сади родился 1 июня 1796 г. В 1812 г. он поступил в Политехническую школу и окончил ее военным инженером в 1816 г. Наполеон к этому времени был разгромлен и сослан на остров Святой Елены. Отец Сади был осужден, и военная карьера самого Карно была сомнительной. Спустя три года после окончания школы он сдал экзамен и с чином поручика перешел в главный штаб, занимаясь главным образом наукой, музыкой и спортом. В 1824 г. был издан его главный труд «Размышления о движущей силе огня». Через четыре года Карно вышел в отставку в чине капитана. Умер он 24 августа 1832 г. от холеры.

    «Размышления о движущей силе огня и о машинах, способных развивать эту силу» начинаются с характеристик огромной движущей силы тепла. «Развивать эту силу и приспособлять ее для наших нужд — такова цель тепловых машин»,— пишет Карно. Он характеризует быстрое развитие тепловых машин и предсказывает им большое будущее: «Если когда-нибудь,— говорит Карно, — улучшения тепловой машины пойдут настолько далеко, что сделают дешевой ее установку и использование, то она соединит в себе все желательные качества и будет играть в промышленности роль, всю величину которой трудно предвидеть, ибо она не только заменит имеющиеся теперь в употреблении двигатели удобным и мощным двигателем, который можно повсюду перенести и поставить, но и даст тем производствам, к которым будет применена, быстрое развитие и может даже создать новые производства». Предвидение Карно блестяще оправдалось. Двигатели внутреннего сгорания и паровые турбины получили широкое развитие, создали новые производства: авиационное и автомобильное. Новые двигатели второй половины XX в. — ракеты — создали сверхскоростной воздушный транспорт и вывели человечество в космос.

    «Движущая сила тепла» в наши дни играет огромную роль. Но во времена Карно она только начинала свой путь как малоэкономичная паровая машина. Хотя со времен Северн и Ньюкомена прошло более столетия и паровая машина прочно утвердилась в промышленности, сущность ее работы оставалась неясной, «явление получения движения из тепла не было рассмотрено с достаточно общей точки зрения», как отмечал Карно.

    Карно видит ненормальность случайных эмпирических усовершенствований паровых машинной хочет дать теоретические основы теплотехники. В этом огромное историческое значение работы Карно, выходящее далеко за рамки специального исследования. Характерно, что он в своем труде не ограничивается существующими паровыми машинами, а говорит о тепловом двигателе вообще. «Чтобы рассмотреть принцип получения движения из тепла во всей его полноте,— пишет Карно,— надо его изучить независимо от какого либо механизма, какого либо определенного агента; надо провести рассуждения, приложимые не только к паровым машинам, но и ко всем мыслимым тепловым машинам, каково бы ни было вещество, пущенное в дел и каким бы образом ни производи лось воздействие» (подчеркнуто мною.— П. К.).

    Так, отправляясь от конкретной задачи, подсказанной практикой, Карно формулирует абстрактный, общий метод ее решения — термодинамический метод.

    Сочинение Карно явилось началом термо динамики. Карно ввел в термодинамику метод циклов. Цикл Карно описывается сегодня во всех учебниках физики. В них он сопровождается диаграммой процесса и расчетами для идеального газа, которых нет у Карно. Диаграмма и расчеты были даны в 1834 г. Клапейроном, который повторил работу Карно.

    Бенуа Поль Эмиль Клапейрон (1799— 1864), французский академик и инженер, был в 1820—1830 гг. профессором Петербургского института инженеров путей сообщения. В 1834 г. он дал общеупотребительную форму трактовки цикла Карно и объединенное уравнение газового состояния. Ему же принадлежит вывод зависимости точки плавления от температуры (уравнение Клапейрона — Клаузиуса) .

    Карно в своем исследовании придерживается еще теории теплорода. Он рассматривает работу тепловой машины как результат перепада теплорода с высшего уровня на низшие. «Возникновение движущей силы,— пишет Карно,— обязано в паровых машинах не действительной трате теплорода, а его переходу от горячего тела к холодному…»

    Общий вывод Карно формулирует следующим образом: «Движущая сила тепла не зависит от агентов, взятых для ее развития], ее количество исключительно определяется температурами тел, между которыми, в конечном счете, происходит перенос теплорода».

    В наше время этот вывод Карно формулируется иначе: коэффициент полезного действия идеальной тепловой машины не зависит от рабочего вещества, а зависит лишь от температуры нагревателя и холодильника.

    Вывод этот вошел в термодинамику в качестве фундаментального принципа, а сама работа Карно, изложенная Клапейроном и напечатанная в 1843 г. на немецком языке в «Анналах» Поггендорфа, послужила исходным пунктом для исследований В. Томсона и Р. Клаузиуса, приведших к открытию второго начала термодинамики.

    Хотя Карно в своей работе опирался на неверную теорию теплорода, его глубокий ум скоро почувствовал недостатки этой тео рии. Карно сделал следующее примечание к своей работе: «Основные положения, на которые опирается теория тепла, требуют внимательного исследования. Некоторые данные опыта представляются необъяснимыми при современном состоянии теории». В своем дневнике, выдержки из которого были опубликованы его братом после смерти Карно, он пишет: «Тепло не что иное, как движущая сила или, вернее, движение, изменившее свой вид; это движение частиц тел; повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила.

    Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, т. е. вызывает то один род движения, то другой, но никогда не исчезает».

    Если заменить слова «движущая сила» словом «энергия», то мы получим законченную формулировку закона сохранения энергии. В последней формуле Карно дает значение механического эквивалента тепла. Оно равно 370 кГм на 1 ккал, т. е. имеет правильный порядок величины.

    Таким образом, уже к 30-м годам XIX в. настало время для возвращения к идеям Ломоносова относительно теплоты. К сожалению, имя Ломоносова к тому времени на Западе было основательно забыто, и основоположники механической теории тепла создавали ее заново.

    Статья на тему История термодинамики

    голоса
    Рейтинг статьи
    Читать еще:  Что такое производство авиационных двигателей
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector