Sw-motors.ru

Автомобильный журнал
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В разговорах мотоциклистов приходилось слышать такие слова: «прихват», «клин»

В разговорах мотоциклистов приходилось слышать такие слова: «прихват», «клин». Что это такое?

Оба определения связаны с последствиями перегрева двигателя. Чтобы лучше понять их смысл, давайте прежде поговорим о стадии, предшествующей их появлению. При перегреве двигателя, от каких бы причин он ни происходил, повышается температура деталей цилиндро — поршневой группы и уменьшаются зазоры между трущимися поверхностями (это, видимо, понятно каждому из школьного курса физики: тепловое расширение материалов). Из зазоров между трущимися поверхностями выдавливается смазка и постепенно жидкостное трение заменяется полусухим, а по мере дальнейшего нагрева—н сухим. С увеличением нагрева (и трения!) увеличивается трение (и нагрев!). Детали начинают работать без зазора. С поршня, как более мягкого, сдирается верхний слой алюминия, происходит его наволакивание на стенки цилиндра. Механические потери на трение становятся настолько большими, что двигатель заметно теряет мощность и сбавляет обороты. Этот момент и называется «прихватом». Если водитель это почувствовал—а процесс идет стремительно и развивается в считанные секунды, а то и доли секунд! .—он может принять меры; выключить зажигание и полностью открыть дроссель, чтобы мощным потоком свежей топливной смеси охладить поршень. Если в момент прихвата выключить сцепление, двигатель заглохнет. В этом случае надо остановиться, дать двигателю остыть и, плавно нажимая на пусковую педаль, несколько раз провернуть коленчатый вал. Если это удастся, можно пустить двигатель и продолжить поездку, внимательно прислушиваясь к его работе. Если прихват был несильным, через какое-то время его последствия бесследно исчезают. Но так бывает редко. Лучше при первой возможности снять цилиндр и головку и удалить с зеркала цилиндра наволакивание алюминия, проверить и восстановить при необходимости легкость перемещения поршневых колец в канавках. Если же водитель был невнимателен или неопытен и прозевал развитие событий, то дело не ограничивается прихватом. Чрезмерно расширившийся поршень заклинивает в цилиндре так сильно, что провернуть коленчатый вал не удается даже после полного остывания двигателя. Когда же цилиндр будет снят (а это в такой ситуации приходится делать там, где случилось), на его зеркале и юбке поршня можно будет увидеть грубые задиры, продольные риски; сдвинутые слои металла, как правило, блокируют поршневые кольца, лишают их подвижности. И если такой двигатель даже удается потом пустить, предварительно «расходив» кольца, он работает шумно, не развивает мощности, сильно дымит из-за потери компрессии. Полностью восстановить его характеристики можно только после замены поршня, а чаще всего—после расточки цилиндра. А теперь вернемся к тому с чего начали: от чего же может чрезмерно повыситься температура двигателя? Прежде всего это может произойти из-за нарушения подачи топлива, чрезмерного обеднения смеси. К обеднению может привести и повреждение правого сальника коленчатого вала или прокладки под цилиндром. Способствует перегреву и неправильная установка опережения зажигания. Однако на практике чаще всего приходится наблюдать перегрев, возникающий из-за длительного безостановочного движения на низших передачах, из-за загрязнения ребер цилиндра или эксплуатации мотоцикла на предельных режимах.

Слышал, что есть такие способы ремонта цилиндров, как притирка и хонингование. В чем они заключаются?

Скорость движения поршня и его давление на стенки цилиндра—величины переменные как по знаку, так и по абсолютным значениям. Следовательно, цилиндр но высоте и по диаметру изнашивается неравномерно. В средней части износ больше, чем в крайних точках, в плоскости качания шатуна износ больше, чем в диаметрально противоположной. При ремонте цилиндра восстановить его первоначальную форму можно притиркой. Притир — это инструмент. Его несложно изготовить самостоятельно. Втулку делают из чугуна, остальные детали из стали. Втулка имеет один сквозной разрез или четыре несквозных. Это позволяет ей плотно прилегать к цилиндру. Зажатый в патроне сверлильного или токарного станка притир вводят в цилиндр и вращают не быстрее 50. 80 об/мин. На поверхность притира наносится паста, состоящая из мелкого абразивного порошка в смеси с маслом. До последнего времени такой порошок получали по-разному. Толкли стекло в ступе, терли друг о друга абразивные бруски и т. п. Сейчас в продаже появилась специальная паста «КТ» из порошка карбида титана. Она выпускается наборами, в которые входит несколько тюбиков. В каждом тюбике—паста своей зернистости. Для наших целей пригодны пасты зернистостью 150. 170, для окончательной обработки — 250. 400. Цилиндр во время притирки следует держать в руках. По мере того, как трение притира о стенки цилиндра будет ослабевать, его гайку надо подтягивать до восстановления тугого вращения. Окончательную доводку цилиндра производят с пастой ГОИ. Притир и цилиндр перед этим тщательно промывают в керосине.

Для получения зеркальной поверхности цилиндра после его расточки на токарном станке применяют и другой способ: хонингование. Как операция притирки, так и эта получила название от инструмента—хона. Хон—деревянная болванка с центральным отверстием и четырьмя вертикальными пазами для абразивных брусков; бруски постоянно прижаты к зеркалу цилиндра пружинами. Для хона используют бруски той же зернистости, что и пасты для притирки. Хон должен вращаться с частотой 200. 220 об/мин при 60. 100 возвратно-поступательных ходах вверх-вниз за то же время. Обрабатываемую поверхность нужно обильно смачивать керосином. Как и во время притирки цилиндр нельзя жестко закреплять, его следует держать в руках и периодически переворачивать. На рис. 7 показан вариант притира для цилиндра мотоцикла «Иж-Планета», на рис. 8—для цилиндра минского моттоцикла. Понятно, что по такому принципу можно сделать притир и для любого другого двигателя. На рис. 9 показан хон для цилиндра мотоцикла минского производства.

Рис. 7. Притир для цилиндра двигателя «Иж-Планета»: 1—корпус

Притира; 2разрезная втулка; 3—гайка

Рис. 8. Притир для цилиндра двигателя мотоцикла ММВЗ: 1— корпус притира; 2—разрезная втулка; 3—гайка

Рис. 9. Хон для цилиндра двигателя ММВЗ

Дата добавления: 2018-02-28 ; просмотров: 556 ; Мы поможем в написании вашей работы!

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Читать еще:  Что такое ультразвуковая промывка двигателя

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Устройство, принцип работы и регулировка клапанного механизма двигателя

Клапанный механизм является непосредственно исполнительным устройством ГРМ, который осуществляет своевременную подачу топливовоздушной смеси в цилиндры двигателя и дальнейший выпуск отработавших газов. Ключевыми элементами системы являются клапаны, которые также обеспечивают герметичность камеры сгорания. Они испытывают большие нагрузки, поэтому к их работе предъявляются особые требования.

  1. Устройство клапанного механизма
  2. Особенности работы
  3. Количество клапанов
  4. Устройство привода
  5. Стук при работе
  6. Регулировка зазора

Устройство клапанного механизма

Для работы обычного двигателя необходимо минимум два клапана на каждый цилиндр. Один впускной и один выпускной. Сам клапан состоит из стержня и тарелки (головка). Место соприкосновения тарелки с ГБЦ называю седлом. Впускные клапаны имеют больший диаметр тарелки, чем выпускные. Это обеспечивает лучшее наполнение камеры сгорания топливовоздушной смесью.

Устройство клапанного механизма

Весь клапанный механизм состоит из следующих основных элементов:

  • впускной и выпускной клапаны;
  • направляющие втулки (обеспечивают точное направление движения клапанов);
  • пружина (возвращает клапан в исходное положение);
  • седло клапана (место соприкосновения тарелки с корпусом);
  • сухари (два сухаря обеспечивают опорную поверхность для пружины и фиксируют всю конструкцию);
  • маслосъемные колпачки или маслоотражательные кольца (не дает маслу попасть в цилиндр);
  • толкатель (передает нажимное усилие от кулачка распредвала).

Кулачки на распределительном вале нажимают на клапаны. Их возврат в исходное положение обеспечивается за счет пружины. Пружина крепится на стержне с помощью сухарей и тарелки пружины. Для гашения резонансных колебаний на стержне могут устанавливаться не одна, а две пружины с разносторонней навивкой.

Читать еще:  Вибрация двигателя уаз патриот причины

Направляющие втулки клапанов

Направляющая втулка представляет собой деталь цилиндрической формы. Она снижает трение и обеспечивает ровный и правильный ход стержня. В работе эти детали также подвергаются нагрузкам и воздействию температуры. Поэтому для ее изготовления применяются износостойкие и жаростойкие сплавы. Втулки выпускного и впускного клапанов несколько отличаются друг от друга в связи с разницей в нагрузках.

Особенности работы

Клапаны постоянно подвержены воздействиям высокой температуры и давления. Это требует особого внимания к конструкции и материалам данных деталей. Особенно это касается выпускной группы, так как через них выходят горячие газы. Тарелка выпускного клапана в бензиновых двигателях может разогреваться до 800˚С – 900 ˚С, а в дизельных 500˚С – 700˚С. Нагрузка на тарелку впускного в несколько раз ниже, но и она достигает 300˚С, что также немало.

Именно поэтому в их производстве применяются жаропрочные сплавы металлов, содержащие легирующие присадки. Также выпускные клапаны часто имеют полый стержень с натриевым наполнителем. Это делается для лучшей терморегуляции и охлаждения тарелки. Натрий внутри стержня плавится, течет и забирает часть тепла с тарелки и переносит его на стержень. Так можно избежать перегрева детали.

Клапанный механизм двигателя

На седле в процессе работы может образоваться нагар. Чтобы избежать этого, применяют конструкции, которые вращают клапан. Седло представляет собой кольцо из высокопрочных стальных сплавов, которое напрессовывается непосредственно на головку цилиндров для более плотного контакта.

Также для правильной работы механизма должен соблюдаться регламентированный тепловой зазор. От высоких температур детали расширяются, что может привести к неправильной работе клапана. Зазор выставляется между кулачками распредвала и толкателями путем подбора специальных металлических шайб определенной толщины или самих толкателей (стаканов). Если в двигателе применяются гидрокомпенсаторы, то зазор регулируется автоматически.

Слишком большой тепловой зазор, будет препятствовать полному открытию клапана, а следовательно, цилиндры будут менее эффективно наполняться свежим зарядом. Маленький зазор (или его отсутствие) не позволит клапанам закрыться до конца, что приведет к их прогару и снижению компрессии в двигателе.

Количество клапанов

В классическом варианте четырехтактному двигателю для работы достаточно иметь по два клапана на каждый цилиндр. Но к современным моторам предъявляются все большие требования по мощности, расходу топлива и экологичности, поэтому для них этого уже становится недостаточно. Поскольку чем больше клапанов, тем более эффективно происходит наполнение цилиндра свежим зарядом. В разное время на двигателях пробовались следующие схемы:

  • трехклапанные (впуск – 2, выпуск – 1);
  • четырехклапанные (впуск – 2, выпуск – 2);
  • пятиклапанные (впуск – 3, выпуск – 2).

Лучшее наполнение цилиндров и их очистка обеспечиваются при использовании большего числа клапанов на один цилиндр. Но при этом усложняется конструкция двигателя.

На сегодняшний день наиболее популярными являются моторы с 4 клапанами на цилиндр. Первые такие двигатели появились еще в 1912 году на автомобиле Peugeot Gran Prix. Тогда широкого применения данное решение не получило, но начиная с 1970 года начали активно выпускаться серийные автомобили с таким количеством клапанов.

Устройство привода

За правильную и своевременную работу клапанного механизма отвечает распределительный вал и привод ГРМ. Конструкция и количество распредвалов для каждого типа двигателя выбирается индивидуально. Деталь представляет собой вал, на котором выполнены кулачки определенной формы. Проворачиваясь, они оказывают давление на толкатели, гидрокомпенсаторы или коромысла и открывают клапана. Тип схемы зависит от конкретного двигателя.

Газораспределительный механизм

Распредвал находится непосредственно в головке блока цилиндров. Привод к нему идет от коленчатого вала. Это может быть цепная, ременная или зубчатая передача. Наиболее надежной является цепная, но она требует дополнительных конструктивных решений. Например, успокоитель для гашения вибрации цепи и натяжитель. Скорость вращения распределительного вала в два раза ниже, чем скорость вращения коленчатого вала. Так обеспечивается согласование их работы.

От количества клапанов зависит количество распределительных валов. Существует две основных схемы:

  • SOHC (одновальная);
  • DOHC (двухвальная).

При наличии только двух клапанов достаточно одного распредвала. Вращаясь, он обеспечивает попеременное открытие впускного и выпускного клапанов. В наиболее распространенных четырехклапанных двигателях устанавливаются два распредвала. Один обеспечивает работу впускных, а другой выпускных клапанов. В двигателях с V-образных расположением цилиндров устанавливается четыре распредвала. По два на каждую сторону.

Кулачки распредвала не толкают стержень клапана напрямую. Существует несколько типов “посредников”:

  • роликовые рычаги (коромысло);
  • механические толкатели (стаканы);
  • гидравлические толкатели.

Роликовые рычаги имеют более предпочтительную конструкцию. На гидротолкатель давят так называемые коромысла, которые качаются на вставных осях. Чтобы снизить трение на рычаге предусмотрен ролик, который контактирует непосредственно с кулачком.

В другой схеме используются гидравлические толкатели (компенсаторы зазора), которые расположены непосредственно на стержне. Гидрокомпенсаторы автоматически регулируют тепловой зазор и обеспечивают мягкую и менее шумную работу механизма. Это небольшая деталь состоит из цилиндра с поршнем и пружиной, каналов для масла и обратного клапана. Для работы гидротолкателя используется масло, которое подается из системы смазки двигателя. Более подробно про гидрокомпенсаторы можно прочитать в отдельной статье на нашем сайте.

Снятие стакана клапана магнитом

Механические толкатели (стаканы) представляют собой втулку, закрытую с одной стороны. Они устанавливаются в корпус ГБЦ и непосредственно передают усилие на стержень клапана. Основные их недостатки заключаются в необходимости периодической регулировки зазоров и стуке при работе на непрогретом двигателе.

Стук при работе

Основной неисправностью клапанов (не считая прогара) считается появляющийся стук на холодном или горячем двигателе. Стук на холодном двигателе исчезает после набора температуры. Когда они разогреваются и расширяются, тепловой зазор закрывается. Также причиной может стать вязкость масла, которое не поступает в нужном объеме в гидрокомпенсаторы. Загрязнение масляных каналов компенсатора также может вызывать характерный стук.

На горячем двигателе клапана могут стучать из-за низкого давления масла в системе смазки, загрязнения масляного фильтра или неправильного теплового зазора. Также следует учитывать естественный износ деталей. Неисправности могут быть в самом клапанном механизме (износ пружины, направляющей втулки, гидротолкателей и т.д.).

Регулировка зазора

Регулировку проводят только на холодном двигателе. Текущий тепловой зазор определяется специальными металлическими плоскими щупами разной толщины. Для изменения зазора на коромыслах имеется специальный регулировочный винт, который проворачивается. В системах с толкателями или регулировочными шайбами регулировка происходит путем подбора деталей нужной толщины.

Регулировка клапанов для механизма с коромыслами

Рассмотрим пошаговый процесс регулировки клапанов для двигателей с толкателями (стаканами) или шайбами:

  1. Снимите клапанную крышку двигателя.
  2. Проверните коленчатый вал так, чтобы поршень 1-го цилиндра находился в ВМТ. Если это сложно сделать по меткам, то можно выкрутить свечу и вставить в колодец отвертку. Ее максимальное перемещение вверх покажет мертвую точку.
  3. С помощью набора плоских щупов измерьте зазор в приводе клапанов под теми кулачками, которые не нажимают на толкатели. Щуп должен иметь плотный, но не слишком свободный ход. Запишите номер клапана и величину зазора.
  4. Проверните коленчатый вал на один оборот (360°) так, чтобы поршень 4-го цилиндра находился в ВМТ. Измерьте зазор под оставшимися клапанами. Запишите данные.
  5. Проверьте, в каких клапанах зазор не попадает в допуск. Если такие имеются, то подберите толкатели нужной толщины, снимите распредвалы и установите новые стаканы. На этом процедура закончена.
Читать еще:  Шаговый двигатель em 257 характеристики

Проверку зазора рекомендуется проводить каждые 50-80 тысяч километров пробега. Данные о стандартных зазорах можно найти в руководстве по ремонту автомобиля.

Величина допускаемого зазора для впускных и выпускных клапанов иногда может отличаться.

Правильно настроенный и отрегулированный газораспределительный механизм обеспечит ровную и плавную работу ДВС. Также это положительно скажется на ресурсе мотора и комфорте водителя.

Принцип работы теплового двигателя

История создания

Первые упоминания о подобном устройстве связаны с римской империей. В то время тепловой двигатель не получил широкого распространения ввиду низкого развития техники.

В III веке до н.э. Архимедом была построена паровая пушка.


Рис. №1. Тепловой двигатель.

Леонардо да Винчи изобразил на своем рисунке цилиндр с поршнем, с находящейся в нём водой. На создание этого эскиза повлияла разработка Архимеда. По его замыслу работу цилиндра можно было описать так: при нагревании воды выделяющийся пар выталкивает поршень в цилиндре вверх. На этом принципе была основана работа паровой пушки. Пар от нагретой воды был способен придавать энергию движения снаряду, и он выстреливал.

В 1690 году Дени Папену удалось собрать цилиндр с двигающимся поршнем. Но нагревание воды и ее охлаждение приходилось осуществлять вручную. Именно поэтому такой вариант паровых машин не нашел применения.

В 1763 году Ползунову удалось изобрести паровой двигатель с двумя цилиндрами. Эта особенность обеспечивала непрерывную работу машины.

В 1766 году он изобрел паровой двигатель с мощностью в 32 л.с. Запустили двигатель после его смерти. Изобретение Ползунова работало в плавильных печах на протяжении 3 месяцев. После чего вышел из строя, а ввиду отсутствия мастеров по ремонту так и остался в неисправном состоянии.

Джеймсу Уатт в 1782 году получил патент на усовершенствованный изобретенный задолго до него паровой насос – паровую машину с двойным действием.

Виды тепловых двигателей

  1. Внутреннего сгорания. Среди них выделяют 2-х и 4-х тактные;
  2. Внешнего сгорания.

Принцип работы теплового двигателя и его устройство

Устройство теплового двигателя представлено следующими элементами:

  • Свечи зажигания;
  • Цилиндр;
  • Поршни;
  • Кривошипная камера;
  • Впускной и выпускной клапаны.

Тепловые двигатели внутреннего сгорания подразделяются на 2-х и 4-х тактные.

Такт – это процессы, происходящие в двигателе за одно движение поршня.

Как работают двухтактные двигатели

Все процессы происходит в 2 этапа:

1 такт. Сжимание воздуха.

В этот период клапан выпуска и впуска находятся в закрытом состоянии.

Поршень, поднимаясь, закрывает поочередно клапан впуска и выпуска. Это приводит к тому, что смесь газов и топлива сжимается.

В герметичную кривошипную камеру в следствие создания разряженного воздуха под поршнем следует горючее из карбюратора, клапан впуска при этом открыт;

2 такт. Рабочий ход.

Как только поршень начинает приближаться к ВМТ, свеча зажигания подает искру в камеру. В результате чего происходит воспламенение смеси топлива и газов, что ведет к увеличению температуры и давления в полости цилиндра

Увеличившееся давление обуславливает опускание поршня до НМТ. Начинается сжимание поршнём смеси газов и воздуха в кривошипной камере. Это ведет к тому, что клапан впуска закрывается, тем самым препятствует попаданию горючего в коллектор и карбюратор.

Опускаясь до НМТ, поршень открывает клапан выпуска, происходит выход выхлопных газов.

Как работают 4-х тактные двигатели


Рисунок №2. Схематическое изображение работы ДВС.

Все процессы происходят в 4 этапа:

1 такт впуска.

Открывается впускной клапан в результате движения поршня к НМТ. Подача смеси горючего из карбюратора происходит как раз через этот клапан. Как только поршень достигает НМТ, впускной клапан переходит в закрытое состояние;

2 такт. Сжатие горючей смеси.

Поднимаясь до ВМТ происходит сжатие горючей смеси поршнем. Как только поршень начинает приближаться в верхней точке, начинается подача искры свечой зажигания. В результате чего происходит воспламенение смеси;

3 такт. Процессы расширения.

Вышеописанные моменты приводят к горению топливовоздушной смеси и высвобождению большого количества тепла. Увеличившееся давление давит на поршень, тем самым, заставляя его опускаться вниз. Клапаны здесь закрыты;

4 выпускной такт.

Коленвал продолжая своё движение, обеспечивает движение поршня к верхней мёртвой точке. По мере продвижения поршня наверх, происходит открытие клапана выпуска. Через него происходит удаление выхлопных газов. Как только поршень достигает верхней границы, впускной клапан закрывается.

Схема работы двигателя внешнего сгорания


Рис.3. Схема работы двигателя внешнего сгорания.

Принцип работы основан на чередовании нагревания и охлаждения воздуха в ограниченном пространстве и высвобождении энергии в результате изменения объема воздуха.

Это Интересно! Двигатель Стирлинга используется в холодильном оборудовании. Принцип его работы в этом случае обратный и заключается в раскручивании вала двигателем. Что приводит к охлаждению головки цилиндра.

Достоинства и недостатки теплового двигателя

К положительным характеристикам теплового двигателя можно отнести:

  • Простота работы, надежность. Соответственно низкая стоимость ремонтных работ;
  • Независимость от дополнительного источника энергии;
  • Высокоэффективный тип двигателя;
  • Выступает как источник электричества как для индивидуального применения, так и в более широких кругах;
  • Относительно небольшие размеры.

Помимо достоинств, имеется несколько существенных недостатков:

  • Тепловой двигатель обладает низким коэффициентом полезного действия;
  • Неблагоприятное воздействие на экологию;
  • Оказывает влияние на процесс глобального потепления;
  • Затраты большого количества кислорода с дальнейшим превращением его в углекислый газ.

Отличия теплового двигателя от инжекторного

  1. В тепловом двигателе происходит формирование смеси топлива и воздуха, а также контролируется ее расходование. Подача смеси осуществляется благодаря разному давлению атмосферного воздуха и коллектора впуска. В инжекторе смесь подается в камеру сгорания путем впрыскивания её форсунками;
  2. В тепловом двигателе смесь газов и топлива подается всегда в одинаковом количестве, в инжекторной системе количество смеси зависит от конкретных условий работы двигателя;
  3. Тепловые двигатели подвержены перепадам температурных условий;
  4. Ремонт теплового двигателя гораздо проще и дешевле инжектора.

Область применения

Двигатели внутреннего сгорания нашли широкое применение в транспортных установках и сельскохозяйственных машинах, а так же используются электростанциями, энергопоездами и для запуска генератора (как аварийного источника электроэнергии).

Тепловые 2-х тактные двигатели внутреннего сгорания применяются в технике малой мощности

Двигатель внутреннего сгорания устанавливается в:

  • Роторные двигатели;
  • Реактивные и турбореактивные двигатели;
  • Газотурбинные установки.

Это Интересно! Самые большие тепловые двигатели устанавливают на водных суднах. Мощность таких моторов составляет более 108 тысяч лошадиных сил!

Тепловой двигатель получил широкое распространение в современных условиях от маломощной техники до тепловых электростанций. Существенным минусом его использования является неблагоприятное воздействие на окружающую среду. Для предотвращения этого необходимо совершенствовать устройство и работу таких двигателей, а также использовать технологии по энергосбережению.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector