Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мендосинский мотор — устройство и принцип работы, особенности использования

Мендосинский мотор — устройство и принцип работы, особенности использования

Мендосинский мотор (мендосинский бесколлекторный магнитно-левитационный солнечный мотор) назван в честь округа Мендосино, что на побережье штата Калифорния, США. Здесь живет изобретатель Ларри Спринг, который 4 июля 1994 года изобрел данный мотор. Эта модель долгое время стояла на подоконнике магазинчика Ларри, и через некоторое время она стала настоящей достопримечательностью округа, ведь ротор вращался и вращался, будучи подвешен буквально в воздухе.

Мотор Спринга, как и любой другой мотор, состоит из ротора и статора. Однако мендосинский мотор — это не совсем обычный мотор. Статор мендосинского мотора — это подставка с постоянным магнитом и с магнитной опорой, а ротор — диэлектрический каркас с набором солнечных батарей, установленных поверх катушек, намотанных на левитирующий над магнитными подставками ротор.

Фотоны солнечного света активируют солнечные батареи, которые в свою очередь рождают электрический ток. Ток проходит через катушки, намотанные на ротор, и возникающие магнитные поля катушек, взаимодействуя с магнитным полем постоянного магнита (статора), приводят ротор во вращение.

Выражаясь более точно, сила Ампера со стороны магнитного поля постоянного магнита — выталкивает проводники катушек, по которым течет ток. А поскольку катушки получают питание по очереди, то и выталкиваются они по очереди.

Таким образом, мендосинский мотор можно классифицировать как бесколлекторный магнитно-левитационный солнечный мотор малой мощности — разновидность бесколлекторного электродвигателя с магнитным статором и с обмотками возбуждения ротора, питаемыми энергией солнца.

Маленькая модель преобразует всего пару ватт мощности, и для промышленных целей этого, конечно, не достаточно, но в качестве наглядного макета — вполне пойдет.

Ротор, насаженный на металлический вал, имеет квадратное сечение, благодаря чему с четырех сторон ротора уютно размещены солнечные батареи. Ротор располагается горизонтально, а на концах вала установлены постоянные кольцевые магниты. Именно благодаря этим магнитам по бокам ротор и левитирует, сводя трение практически к нулю.

Магниты на концах вала ротора зависают над магнитными подставками, удерживая ротор в подвешенном состоянии. Магнит, расположенный непосредственно под ротором, необходим для создания магнитного поля статора, от которого мог бы отталкиваться ротор для вращения.

Когда на одну из сторон ротора падает солнечный свет, одна из солнечных батарей, установленных на роторе, генерирует электрический ток, который направляется в обмотку ротора, расположенную около магнита статора. Ток, устремляющийся в обмотку, создает магнитное поле соответствующего полюса ротора, и ротор отталкивается этой обмоткой от постоянного магнита статора.

Таким образом ротор вращается — каждая обмотка поочередно получает питание и отталкивается: следующий солнечный элемент попадает под свет, генерируется ток, возбуждается обмотка, — ротор вращается дальше. Пока на ротор падает достаточно солнечного света, мотор будет вращаться. Это своего рода аналог коммутатора коллекторного двигателя, только «световой».

Что касается подвески ротора, то она выполнена на постоянных магнитах для того, чтобы свести трение к минимуму, ведь мощность мотора крайне мала, чтобы преодолевать сколь-нибудь значительное трение, поэтому трение оставлено лишь о воздух. Но с одной из сторон ось ротора все же подпирается стенкой для придания ротору дополнительной устойчивости, для создания условия устойчивого равновесия.

В таком состоянии мотор может работать месяцами и годами, при условии что на него падает хотя бы немного света.

Так делают мендосинские моторы разные любители. В оригинальной же модели Ларри Спринга ось с двух сторон подпиралась стеклами за заостренные пятки.

Принцип работы, преимущества и недостатки атмосферного двигателя

В современном автомобилестроении применяются различные виды двигателей внутреннего сгорания (ДВС). При наличии такого ассортимента силовых агрегатов, отличающихся между собой конструктивно (по количеству цилиндров, способу формирования рабочей смеси, принципу охлаждения, типу используемого топлива и прочим параметрам) неискушённому автомобилисту сложно не растеряться, выбирая транспортное средство. Эволюция ДВС, приводящих автомобиль в движение, благодаря инновациям в области автомобилестроения обеспечила возможность разгона современных авто до большой скорости при компактных габаритах агрегата.

Особенности атмосферного двигателя.

Сегодня спектр моторов включает самые разнообразные модели, адаптированные под нужды любого потребителя. Даже далёкие от понимания «внутреннего мира» автомобиля люди знают о разделении силовых агрегатов на дизельные, бензиновые и газовые. Но классификация на этом не заканчивается, и не всегда автолюбители, глубже просвещённые в вопросах строения механизмов и систем машины, столкнувшись с понятием атмосферного двигателя, понимают, о чём в действительности речь. Поясним, что значит атмосферный двигатель, по какому принципу он работает и какие имеет плюсы и минусы.

В отличие от ДВС с наддувом, где используются устройства принудительного нагнетания воздушных масс для создания топливовоздушной смеси (компрессор, турбина, интеркулер), «атмосферник» впускает воздух за счёт пониженного давления в инжекторе или карбюраторе. То есть, воздушный поток из атмосферы забирается естественным образом, о чём собственно и говорит название. Это самый обыкновенный мотор, сконструированный более столетия назад и устанавливаемый на первые автомобили, сошедшие с конвейера. Атмосферный двигатель не утратил актуальности и сегодня, став уже классикой, им комплектуют машины не один десяток лет известные гиганты автомобилестроения.

Принцип работы атмосферного двигателя

Любой двигатель внутреннего сгорания функционирует благодаря воспламенению топлива в цилиндрах, что обеспечивается кислородом. Процесс сгорания смеси, созданной в необходимых пропорциях карбюратором или инжектором, генерирует энергию, которая приводит в движение механизмы мотора автомобиля. В случае с бензиновым мотором топливовоздушная смесь являет собой пропорцию бензина и кислорода в соотношении 1:14. Чтобы разобраться подробнее, что такое атмосферный двигатель в авто, и понять, как именно он выполняет свои функции, рассмотрим процесс подачи воздуха поэтапно. Для начала определим применяющиеся устройства подачи топливной смеси:

  1. Карбюратор. Устройство являет собой простую конструкцию, обеспечивающую процесс смешивания топлива с воздухом механически, при этом регулировка подачи предполагает тщательную настройку. Состоит карбюратор из поплавковой и воздушной камер, соединённых между собой трубкой распылителя. Посредством бензонасоса в поплавковую камеру подаётся топливо, игольчатый фильтр и поплавок обеспечивают подачу горючего. В смесительной камере имеется диффузор, распылитель и дроссельная заслонка. Движение поршней обуславливает разрежение, благодаря которому происходит всасывание воздуха и бензина, обеспечивающее функционирование мотора. Смесь поступает независимо от режима работы двигателя, в результате чего наблюдаются сильный расход горючего, а также высокий уровень выхлопа.
  2. Инжектор (форсунка). Система управления подачи топлива в данном случае более усовершенствована. Управление процессом выполняется электронной системой (микроконтроллером), которая контролирует расчёт порций топлива посредством анализа показаний с датчиков автомобиля. Подача горючего не зависит от режима работы мотора, как в случае с карбюратором, и выполняется автоматически с помощью форсунок, они в свою очередь имеют разные варианты подключения: одноточечный (моновпрыск), многоточечный (распределённый) и прямой (непосредственный впрыск). Стабильность давления обеспечивается специальным клапаном, который сбрасывает излишки топлива. Таким образом, горючее поступает в чётко дозированных объёмах, чем обусловлены экономия, уменьшенный уровень выхлопов и высокая производительность двигателя. Эти факторы способствовали большой популярности моторов, снабжённых инжекторами, и сегодня практически вытеснили с рынка карбюраторные.

Принцип работы атмосферного двигателя:

  • всасывание воздушного потока из атмосферы движущимися поршнями;
  • создание топливовоздушной смеси методом смешивания кислорода с топливом;
  • подача смеси в камеру сгорания;
  • выделение энергии за счёт воспламенения;
  • давление на поршень;
  • передача вращения на коленчатый вал.

Таким образом, транспорт приводится в движение, непрерывность которого обеспечивается стабильным давлением в цилиндрах и регулярной подачей горючего. Давление воздуха, передаваемого на двигатель, равно одной атмосфере. Под определением атмосферных моторов понимают и бензиновые, и дизельные модели, в которых при воспламенении смеси в камере сгорания присутствует атмосферное давление. Несмотря на особенности конструкций и разницу типа используемого горючего, в основу функционирования агрегатов заложен одинаковый принцип действия. Специальные устройства для нагнетания воздушных потоков отсутствуют при любом варианте атмосферного ДВС.

Читать еще:  Двигатель v50 как заводится

Преимущества и недостатки атмосферного двигателя

Современные авто комплектуются разными агрегатами, и с появлением моделей, оснащённых турбонаддувом, которые отличаются от обычного «атмосферника» высокой мощностью при малом расходе горючего и небольших объёмах, многие автопроизводители отдают предпочтение именно им. Создание экологически чистых моделей сейчас в тренде, но здесь есть свои подводные камни. Усложнение конструкции приводит к недолговечности и сложности проведения ремонтных работ, тогда как главное, чем отличается атмосферный двигатель, это надёжность. По этой причине остались и приверженцы классики. К тому же за столько лет эволюции ДВС классические варианты моторов были значительно усовершенствованы.

Конструктивные отличия мотора, оснащённого турбиной в наличии турбокомпрессора или механического компрессора, нагнетающего потоки воздуха под высоким давлением (от 1,5 до 3 атмосфер). Так, турбодвигатели способны сжигать больше горючего, выдавая большую мощность и демонстрируя лучшую динамику, чем атмосферные двигатели того же объёма. При этом после 100 – 150 тысяч км. пробега радость от высокой производительности может померкнуть вследствие необходимости ремонта, который выполнить собственноручно едва ли удастся. «Атмосферник» же, отличающийся простотой конструкции, можно починить самостоятельно, не затрачивая на процедуру много денежных средств. Проще ДВС атмосферного типа и в эксплуатации. Сразу после остановки движения глушить мотор не рекомендуется, он должен поработать немного на холостом ходу с целью стабилизации давления.

Плюсы атмосферных ДВС

«Атмосферники» имеют ряд преимуществ, благодаря которым их до сих пор выбирают большинство автомобилистов:

  • высокая степень надёжности, долговечность;
  • простота конструкции, обеспечивающая лёгкость в обслуживании и небольшие затраты, а также возможность устранить неисправность своими руками;
  • низкий расход моторного масла и большой срок службы масляного фильтра (в случае с турбированным двигателем масла расходуется примерно вдвое больше);
  • неприхотливость к качеству топлива: двигатель способен отлично справляться с низкокачественным горючим, чем грешат многие автозаправки.

Минусы «атмосферников»

Двигатель атмосферного типа не лишён и недостатков, среди которых:

  • большой вес конструкции;
  • низкая мощность сравнительно с мотором того же объёма, снабжённым турбиной;
  • значения крутящего момента и разгон ниже, чем у агрегата с наддувом;
  • неспособность достичь номинальной мощности при движении автомобиля по горному рельефу, где можно наблюдать разреженный воздух.

Питание посредством естественного забора воздушного потока не даёт оптимизировать пропорции горючего и кислорода на всех режимах функционирования. То есть, на низких оборотах наблюдается неспособность забирать нужный объём кислорода, а на высоких создаётся препятствие подачи потока воздуха пропускным сечением и воздушным фильтром. Минусы не делают атмосферные двигатели менее рациональными в использовании, чем агрегаты с наддувом, поэтому они не теряют своей популярности, несмотря на выход в свет новинок в области автомобилестроения.

Примеры транспортных средств с мощными атмосферными двигателями

Постоянное совершенствование характеристик автомобилей от известных лидеров автопроизводства обеспечивает востребованность экземпляров с «атмосферниками» на авторынке. Среди мощных моделей, на которых установлены движки атмосферного типа, можно выделить следующие:

  • Ferrari GTC4Lusso (одна из версий авто снабжена атмосферным6,3-литровым мотором V12 на 690 л. с. и 697 Нм крутящего момента);
  • Porsche 918 Spyder с сильным атмосферным движком 608 л. с. V8;
  • Porsche 911 GT3 RS c 4-литровым атмосфернымдвигателем 520 л. с.;
  • Mercedes C63 FMG Edition 507 с движком в 507 л. с.;
  • Chevrolet Corvette C7 Stingray («атмосферник» V8 объёмом2 литра).

Среди представителей авто с мощным атмосферным силовым агрегатом множество моделей, список которых можно продолжать. Известные бренды Феррари, Ламборджини, Порше, Мерседес, Ауди, Шевроле, БМВ и другие устанавливают на многие свои машины атмосферные движки. Модели могут быть представлены в разных вариациях и иметь как бензиновый мотор, так и дизель.

Атмосферный двигатель работает предсказуемо, что для многих автомобилистов является несомненным преимуществом. Решить для себя, какой из вариантов подойдёт больше, стоит исходя из собственных предпочтений. Если в приоритете надёжность, лёгкость в эксплуатации и обслуживании, лучше остановить свой взгляд на моторе атмосферного типа, но если на первом месте показатели динамики, то выбор очевиден. Кстати, усилиями умельцев, практикующих тюнинг, на атмосферные двигатели также устанавливаются турбины. Сделать это непросто и требует специальных навыков, но на практике вполне применимо. Поскольку устройство не лепится к мотору наобум, предполагаются расчёты скорости и объёма поступающего воздуха. Самостоятельно такие работы лучше не выполнять, потому что успешно справиться с задачей смогут только виртуозы своего дела.

Виды автомобильного освещения

Автомобильное освещение очень важно для обеспечения безопасности и комфортности поездок по дороге. Существует два основных вида автомобильного освещения – внутренне и внешнее, каждое из которых играет огромную роль для водителя. Об истории автомобильного освещения вы можете узнать в этой статье, а в данном материале мы расскажем вам все о таких типах автомобильного света, их особенности, важность и многое другое.

Виды автомобильного освещения

На сегодняшнее время автомобильное освещение можно поделить на два таких основных типа:

  • Внешнее. Соответственно, речь идет о световом оборудовании, которое расположено с внешней стороны транспортного средства, то есть это передняя и задняя оптики.
  • Внутреннее. Это такое освещение, которое находится в салоне автомобиля и служит для комфортности поездок и многое другое.

Есть мнение, что внутреннее освещение не играет большой роли, что только внешнее – самое главное. Однако, это не совсем точно, поскольку каждое оборудование предназначено для особой цели, которая не может не иметь значения.

Особенности и виды главного автомобильного освещения

К главному автомобильному освещению относят свет ближнего режима и свет дальнего режима. Это такие режимы света, которые находятся на передней оптике транспортного средства и служат для использования при непогоде и в темное время суток.

Ближний режим света – служит для обеспечения освещения дорожного плотна в ночь и при непогоде. В среднем, луч ближнего режима простирается перед автомобилем на расстояние от 60 до 80 метров, обеспечивая мощное освещение и безопасность для водителя на дороге.

Дальний режим света – служит для обеспечения освещения в темное время суток, используется исключительно на загородных трассах при отсутствии другого транспорта – встречки. Такое освещение перед автомобилем может простираться от 130 до 150 метров. Следовательно, зачастую используется, как отмечалось, когда нет встречки, поскольку такие лучи могут ослеплять водителей встречного транспорта, что снижает безопасность на дороге.

Лампы для ближнего и дальнего режимов света

Сразу стоит отметить, что автомобильная головная оптика может быть двух видов: двойная (разделенный ближний и дальний луч света, следовательно, используют 2 лампочки) и одинарная (ближний и дальний свет сдельные, для этого используется или одна лампа с работой в двойном режиме или же билинза).

Для двойной оптики используют такие типы автомобильных ламп:

  • Галогеновые лампы с одной нитью накала.
  • Ксеноновые лампы для одного и другого режимов света.
  • Возможно использование светодиодной лампы для одного из режимов света – зачастую ближнего.

Для одинарной оптики используются следующие типы ламп:

  • Галогеновые лампы с двумя нитями накала – одной короткой, а другой длинной. При работе короткой нити – обеспечивается выдача ближнего режима света, а при работе длинной – дальнего режима света.
  • Ксеноновые лампы, которые устанавливают в билинзу. Это такое оборудование, которое является прожекторным устройством. В конструкции биксеноновой линзы есть специальный механизм – шторка с магнитом. При поднятой шторке – обеспечивается ближний режим света, поскольку отрезается часть луча, а при опущенной –дальний режим света.
Читать еще:  Что такое фнс в двигателе

Вне зависимости от типа оптики автомобиля, то ли одинарная, то ли двойная рекомендуется использовать ксеноновые лампы, поскольку он обеспечивают:

  • Лучшее освещение дорожного полотна – захватывая обочину, однако не ослепляя водителей встречного транспорта.
  • Длительно служат в течении 3-х или 4-х лет.
  • Обеспечивают белый свет, максимально приближенный к дневному типу.
  • Потребляют минимальное количество энергии автомобиля.
  • Характеризуются высокой надежностью, прочностью и устойчивостью к вибрационному воздействию автомобиля.

Многие транспортные средства, на сегодня, комплектуются штатным ксеноновым оборудованием, хотя немалая часть еще выпускается и с галогеновыми лампами. Галогеновую оптику автомобиля, благодаря универсальному ксенону – можно при желании переоборудовать.

Дополнительное внешнее освещение автомобилей

Дополнительное освещение автомобиля играет огромную роль, а поэтому про такое оборудование ни в коем случае нельзя забывать.

Заднее внешнее дополнительное освещение

Заднее внешнее дополнительное освещение автомобилей – это задние габаритные огни, задние указатели поворотов, задние стоп-сигнальные огни, огни движения задним ходом, подсветка номерного знака. Все представленные огни дополнительного внешнего освещения автомобилей располагаются на правой и левой фаре сзади и спереди.

Габаритные огни – они бывают передние и задние. Такие фонари служат для обозначения габаритной ширины автомобиля и используются в ночное время. Они обеспечивают заметность транспортного средства и его размеров в темноте. Таким образом, гарантируется безопасность для водителя на дороге.

Указатели поворотов – это такие огни, которые располагаются впереди и сзади транспортного средства. Они используются и в дневное, и в ночное время суток, указывая другим участникам дорожного движения на ваши намерения произвести поворот.

Стоп-сигнальные огни – это фонари, которые располагаются только на задней оптике транспортного средства. Они необходимы для того, чтобы предупредить участников дорожного движения, движущихся позади вас об остановке. Также, такие приборы, вместе с габаритами используются для сигнала аварийной остановки.

Огни движения задним ходом – это такое световое оборудование, которое необходимо для подсветки водителю в темное время суток, чтобы гарантировать безопасную парковку. Также, такие огни служат и для обозначения ваших действия для других водителей.

Подсветка номерного знака – это специальные лампочки небольшой яркости, которые включаются в ночное время суток и обеспечивают хорошую видимость надписи на вашем номерном знаке транспортного средства.

Следовательно, каждое из представленных типов дополнительного оборудования играет очень важную роль в обеспечении безопасности для водителя на дороге, а поэтому пренебрегать такими фонарями не рекомендуется.

Лампы, которые используют для дополнительного внешнего освещения

Дополнительное световое оборудование автомобилей оборудуют такими лампами:

  • Лампы накаливания.
  • Светодиоды.
  • Иногда ксенон, что каcается фонарей движения задним ходом.

Штатно, автомобили укомплектованы, в основном, лампами накаливания, но при желании они заменяются на светодиоды, которые обладают длительным сроком эксплуатации, высокой яркостью, надежностью.

Независимое внешнее освещение автомобилей

Дневные ходовые огни (ДХО) – это светотехнические приборы, которые устанавливают спереди транспортного средства ниже головной оптики. Они служат для выразительности автомобиля в светлое время суток, обеспечивая водителю большую безопасность. Такие приборы стали обязательными, после введения закона ЕЭК ООН № 87. Без исключения их необходимо включать днем, дабы сделать автомобиль более заметным в такое время суток для других участников дорожного движения. Отметим, что речь идет о самостоятельных ДХО, а не включении ближнего режима света для этой цели. Отдельные модули дневных огней – это светодиодные приборы повышенной яркости и длительности работы.

Противотуманные фары (ПТФ) – это специальные приборы, которые устанавливают спереди и сзади (не обязательно) транспортного средства. Они служат для повышения видимости дорожного плотна в плохие метеорологические условия. Такие фонари используются в туман, дождь, снег. Лучи света ПТФ (зачастую желтые) пробивают туман, не кристаллизируется от капель влаги, а поэтому гарантируют безопасность для водителя на дороге при непогоде. Противотуманные фары не являются обязательным световым оборудованием транспортного средства, но для повышения безопасности и видимости дорожного полотна при непогоде – рекомендуется их устанавливать, если они не предусмотрены штатно. Зачастую, в противотуманные фары устанавливают галогеновые лампы с желтым светом, реже – ксенон.

На заметку водителю! Внешнее световое оборудование, то ли главное, дополнительное или независимое – очень важно. Именно от его качества будет зависеть безопасность на дороге для вас и окружающих!

Внутреннее автомобильное освещение

Внутреннее освещение транспортного средства также играет немалую роль для водителя. Благодаря ему, вы можете производить комфортные поездки на дороге ночью. Внутреннее освещение автомобиля, включает подсветку таких элементов:

Бортовая панель – это важная часть автомобиля, следовательно, и подсветка играет огромную роль. Если вы не будете видеть спидометр в ночь, то не сможете контролировать скорость транспортного средства, что сказывается на снижении безопасности на дороге.

Бардачок – подсветка такого элемента конструкции транспортного средства необходима. В бардачке водитель хранит важные вещи, которые могут понадобиться в любое время суток, следовательно, подсветка здесь весьма необходима.

Салон автомобиля – это место, где водитель проводит очень много времени, а поэтому подсветка также очень важна. Освещение салона транспортного средства очень актуально и для пассажиров.

Багажник – подсветка такой части конструкции транспортного средства очень важна, поскольку в багажнике хранится или же перевозится множество вещей. Чтобы ночью было легко разобраться, устанавливается подсветка.

Лампы для чтения в салоне – необходимая подсветка для пассажиров или же водителя (если предстоит длительный путь и приходится останавливаться на отдых ночью в машине). Такое освещение расположено на заднем сиденье и предназначено для чтения или же других занятий в темное время суток.

Лампы, которые используются для внутреннего освещения

Для внутреннего освещения транспортного средства используются следующие световые приборы: лампы накаливания, светодиодные лампы. Большинство автомобилей с завода комплектуются лампами накаливания, используемыми в качестве внутреннего освещения транспортного средства. Однако, они обеспечивают тусклый и не всегда эффективный свет, следовательно, требуют замены. Для этого и используются яркие, белоснежные и насыщенные светодиодные лампы.

Важность автомобильного освещения

Автомобильное освещение – это очень важная часть каждого транспортного средства.

Свет машины обеспечивает:
  • Высокую безопасность для водителя и окружающих
  • Комфортность поездок.

Несомненно, очень важным является именно внешнее освещение транспортного средства, которое позволяет производить безопасные поездки в ночь и при непогоде. Однако, внутреннее освещение тоже необходимо, поскольку оно влияет на комфортность произведения этих же самых поездок. Следовательно, мы рекомендуем следить за качеством как внешнего, так и внутреннего света вашего транспортного средства.

Что такое световой год?

Астрономия, как и любая наука, имеет свою терминологию, которая кажется странной и непонятной для человека мало с ней знакомого. Что такое элонгация? А перигей? Пульсары и квазары — это одно и то же или нет? Один из вопросов, который очень часто задают заинтересовавшиеся астрономией люди, звучит так: что такое световой год?

В этом термине вроде оба слова понятны, а вместе создают путаницу. «Световой год» — это мера чего? Времени? Тогда неплохо бы узнать, сколько длится световой год? Другими словами, световой год это сколько наших обычных земных лет? С другой стороны, многие замечали, что термин этот применяется, когда речь идет о расстояниях до космических объектов. Например, «до центра Галактики — 30000 световых лет», или «до Сириуса — 8,6 световых лет». Встает вопрос, как можно расстояние измерять временем?

Попробуем ответить максимально просто.

Световой год — это мера расстояния

Первое, что нужно четко уяснить, — световой год это не мера времени, а мера расстояния в астрономии, такая же как метр или километр, миля или аршин в обычной жизни. Чтобы понять это, вспомните, как можно измерить расстояние, если нельзя это сделать напрямую, с помощью линейки или землемерного циркуля?

Читать еще:  Что такое водяное охлаждение двигателя

Как известно, расстояние, пройденное телом, равно скорости движения тела, умноженное на время движения (или s = v × t).

Теперь представьте, что вы пошли в магазин, до которого ровно три километра. И вы пошли со скоростью ровно 3 км/ч. Вопрос: за какое время вы дойдете до магазина? Очевидно, ровно за час! Поэтому можно сказать, что расстояние до магазина равно 3 км, а можно сказать, что оно равно 1 «человеческий час».

Но в «человеческих часах» расстояние никто не измеряет, потому что все мы ходим с разной скоростью. И даже один человек ходит по-разному: опаздывая на троллейбус, он почти бежит, а в парке неторопливо прогуливается. Значит, и время t, чтобы преодолеть расстояние до магазина, всегда будет разным.

Но что, если скорость движущегося тела будет всегда постоянна? Вне зависимости, куда, в каком направлении оно идет и при каких обстоятельствах проводятся измерения? Тогда, конечно, расстояние можно было бы измерять при помощи времени его перемещения, ведь в таком случае v в формуле постоянно и s зависит только от t.

Подождите, скажете вы, а разве есть такой объект, который движется всегда — всегда! — с постоянной скоростью?

Скорость света

Такой объект есть, и это свет! Как известно, скорость света в вакууме постоянна и равна 299 тысяч 792 километра и 458 метров в секунду или, округляя, 300000 км/с.

То есть за 1 секунду луч света проходит 300000 километров! Неплохо, правда? Если научиться каким-то образом измерять точное время, за которое свет преодолевает расстояние до объекта, то мы узнаем и расстояние до него!

Как это сделать? Ну, например, мы можем взять мощный лазер и посветить им в сторону Луны. Лазерный луч долетит до Луны, часть света отразится от ее поверхности и полетит в обратном направлении. В момент, когда он вернется на Землю и попадет в наши глаза, мы увидим на Луне световой зайчик. Если мы точно измерим промежуток времени между включением лазера и появлением на поверхности Луны зайчика, и умножим это время на скорость света, то мы узнаем расстояние, которое прошел лазер до Луны и обратно. Разделим это расстояние пополам и узнаем расстояние до Луны!

Лазерный луч, создающий в небе искусственную звезду для оценки состояния атмосферы. Скорость света этого луча постоянна! Но в атмосфере она несколько меньше, чем в вакууме. Фото: ESO

Примерно так астрономы в XX веке измерили многие расстояния в Солнечной системе. Например, они провели радиолокацию Венеры — послали в сторону планеты радиосигнал и дождались его возвращения назад. Радиоволны движутся со скоростью света, время возвращения ученые измерили очень тщательно и затем по формуле s = v × t посчитали расстояние между Землей и планетой Венера. Теперь мы знаем его с точностью в несколько метров.

Еще раз: почему вообще расстояние можно измерять при помощи света? Потому что скорость света в вакууме постоянна! (Тут надо бы добавить, в инерциальных системах отсчета, но не будем пока усложнять.) В отличие от скорости людей, автомобилей и ракет.

Чему равен 1 световой год?

Теперь вернемся к тому, с чего начали. Дадим определение: световой год — это расстояние, которое свет (двигаясь всегда — всегда! — с постоянной скоростью 300000 км/с) проходит ровно за один год!

Получается какое-то очень большое число, не правда ли? Если за секунду свет преодолевает 300 тысяч километров, то за минуту в 60 раз больше — 18 миллионов километров. Значит, за час он пройдет 1 миллиард 80 миллионов километров! (Вот мы и узнали, чему равен «световой час»! А заодно подсчитали скорость света в км/ч!)

1 световой год в километрах

Теперь, чтобы подсчитать, сколько километров в световом году, нам надо узнать, сколько в году часов. В сутках 24 часа, а в году 365,25 суток (каждый четвертый год — високосный). Следовательно, в году 24 × 365,25 = 8766 часов. (На самом деле чуть меньше, 8760 часов. Просто мы взяли грубое число суток в году.)

Итак, чтобы найти, чему равен 1 световой год в километрах, нам надо скорость света в км/ч умножить на количество часов в году. Получается 9461 миллиард километров. Итак, 1 световой год равен 9,46 триллионов километров!

Какое-то сумасшедшее число!

Если бы магазин находился на таком расстоянии от вашего дома, то, двигаясь с привычной скоростью 3 км/ч, вы шли бы до него 360 миллионов лет… Долго получается, не правда ли?

Лучше поехать на машине. Двигаясь со скоростью 100 км/ч, автомобиль преодолеет расстояние в световой год за 10 миллионов 800 тысяч лет. Тоже не вариант. Значит, нужен самолет! Обычный пассажирский самолет пролетит световой год «всего лишь» за 1 миллион лет.

Может быть, поможет ракета? Космонавты летают вокруг Земли со скоростью около 8 км/с или 28800 км/ч. Даже с такой скоростью им потребуется 37500 лет, чтобы добраться до магазина.

Сколько световых лет от Солнца до Земли?

Теперь давайте решим обратную задачу — посчитаем расстояние от Солнца до Земли в световых годах. Для этого расстояние от Солнца до Земли в километрах разделим на длину светового года. Среднее расстояние до Солнца (она же астрономическая единица) равно 150 миллиона км, световой год равен 9,46 триллиона км. Делим первой на второе, получаем 0,000016.

Итак, расстояние от Солнца до Земли равно 0,000016 световых лет. Или… 8 световых минут.

Сколько световых лет от Земли до Луны?

Луна находится гораздо ближе Солнца, среднее расстояние до нашего спутника 384000 км или чуть больше световой секунды. Сколько это в световых годах? Делим 384 тысячи км на длину светового года в км (все те же 9,46 триллиона км) и получаем число 0,000000041 световых лет. (Я мог ошибиться, пересчитайте, если не верите.)

Ясно, что расстояние до Луны измерять в световых годах глупо. Но тогда встает вопрос:

Зачем нужны световые годы?

Ответ прост: чтобы измерять расстояния за пределами Солнечной системы!

  • Ближайшая звезда к Солнцу, Про́ксима Центавра находится на расстоянии 4,2 световых года. То есть свету нужно путешествовать 4,2 года, чтобы преодолеть расстояние от Солнца до Проксимы.
  • Большинство звезд, которые мы видим на небе ясной ночью, находятся от нас на расстоянии в десятки и сотни световых лет!
  • Звезда Денеб в Летнем треугольнике находится от нас на расстоянии 2500 световых лет.
  • До центра нашей галактики (она называется Млечный Путь) — 30000 световых лет.
  • Диаметр Млечного Пути — 100000 световых лет.
  • До ближайшей крупной спиральной галактики, Туманности Андромеды — 2,5 миллиона световых лет.
  • От Земли до центра крупного скопления галактик в созвездии Девы — 65 миллионов световых лет.
  • До ближайших квазаров — 3 миллиарда световых лет.
  • Наконец, до края наблюдаемой Вселенной — почти 14 миллиардов световых лет.

Попробуйте-ка пересчитать эти расстояния на километры! Не хочется? Вот и астрономы не хотят считать.

PS. Что и говорить, на машине такие пространства не объедешь…

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector