Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сервоприводы: подключение, управление, примеры работы

Сервоприводы: подключение, управление, примеры работы

Познакомимся поближе с сервоприводами. Рассмотрим их разновидности, предназначение, подсказки по подключению и управлению.

Что такое сервопривод?

Сервопривод — это мотор с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервомотором является любой тип механического привода, имеющий в составе датчик положения и плату управления.

Простыми словами, сервопривод — это механизм с электромотором, который может поворачиваться в заданный угол и удерживать текущее положение.

Элементы сервопривода

Рассмотрим составные части сервопривода.

Электромотор с редуктором

За преобразование электричества в механический поворот в сервоприводе отвечает электромотор. В асинхронных сервоприводах установлен коллекторный мотор, а в синхронных — бесколлекторный.

Однако зачастую скорость вращения мотора слишком большая для практического использования, а крутящий момент — наоборот слишком слабый. Для решения двух проблем используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.

Включая и выключая электромотор, вращается выходной вал — конечная шестерня редуктора, к которой можно прикрепить нечто, чем мы хотим управлять.

Позиционер

Для контроля положения вала, на сервоприводе установлен датчик обратной связи, например потенциометр или энкодер. Позиционер преобразует угол поворота вала обратно в электрический сигнал.

Плата управления

За всю обработку данных в сервоприводе отвечает плата управления, которая сравнивает внешнее значения с микроконтроллера со показателем датчика обратной связи, и по результату соответственно включает или выключает мотор.

Выходной вал

Вал — это часть редуктора, которая выведена за пределы корпуса мотора и непосредственно приводиться в движение при подаче управляющих сигналов на сервопривод. В комплектации сервомоторов идут качельки разных формфакторов, которые одеваются на вал сервопривода для дальнейшей коммуникации с вашими задумками. Не рекомендуем прилагать к валу нагрузки, которые больше крутящего момента сервопривода. Это может привести к разрушению редуктора.

Выходной шлейф

Для работы сервопривода его необходимо подключить к источнику питания и к управляющей плате. Для коммуникации от сервопривода выходит шлейф из трёх проводов:

Если сервопривод питается напряжением от 5 вольт и потребляет ток менее 500 мА, то есть возможность обойтись без внешнего источника питания и подключить провод питания сервомотора непосредственно к питанию микроконтроллера.

Управление сервоприводом

Алгоритм работы

Интерфейс управления

Чтобы указать сервоприводу желаемое состояние, по сигнальному проводу необходимо посылать управляющий сигнал — импульсы постоянной частоты и переменной ширины.

То, какое положение должен занять сервопривод, зависит от длины импульсов. Когда сигнал от микроконтроллера поступает в управляющую схему сервопривода, имеющийся в нём генератор импульсов производит свой импульс, длительность которого определяется через датчик обратной связи. Далее схема сравнивает длительность двух импульсов:

Для управления хобби-сервоприводами подают импульсы с частотой 50 Гц, т.е. период равен 20 мс:

Обратите внимание, что на вашем конкретном устройстве заводские настройки могут оказаться отличными от стандартных. Некоторые сервоприводы используют ширину импульса 760 мкс. Среднее положение при этом соответствует 760 мкс, аналогично тому, как в обычных сервоприводах среднему положению соответствует 1520 мкс.

Это всего лишь общепринятые длины. Даже в рамках одной и той же модели сервопривода может существовать погрешность, допускаемая при производстве, которая приводит к тому, что рабочий диапазон длин импульсов отличается. Для точной работы каждый конкретный сервопривод должен быть откалиброван: путём экспериментов необходимо подобрать корректный диапазон, характерный именно для него.

Часто способ управления сервоприводами называют PWM (Pulse Width Modulation) или PPM (Pulse Position Modulation). Это не так, и использование этих способов может даже повредить привод. Корректный термин — PDM (Pulse Duration Modulation) в котором важна длина импульсов, а не частота.

Характеристики сервопривода

Рассмотрим основные характеристики сервоприводов.

Крутящий момент

Момент силы или крутящий момент показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.

Скорость поворота

Скорость сервопривода — это время, которое требуется выходному валу повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё можно вычислить скорость в оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют именно интервал времени за 60°.

Форм-фактор

Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов.

Форм-факторВесРазмеры
Микро8-25 г22×15×25 мм
Стандартный40-80 г40×20×37 мм
Большой50-90 г49×25×40 мм

Внутренний интерфейс

Сервоприводы бывают аналоговые и цифровые. Так в чём же их отличия, достоинства и недостатки?

Внешне они ничем не отличаются: электромоторы, редукторы, потенциометры у них одинаковые, различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.

Оба типа сервопривода принимают одинаковые управляющие импульсы. После этого аналоговый сервопривод принимает решение, надо ли изменять положение, и в случае необходимости посылает сигнал на мотор. Происходит это обычно с частотой 50 Гц. Таким образом получаем 20 мс — минимальное время реакции. В это время любое внешнее воздействие способно изменить положение сервопривода. Но это не единственная проблема. В состоянии покоя на электромотор не подаётся напряжение, в случае небольшого отклонения от равновесия на электромотор подаётся короткий сигнал малой мощности. Чем больше отклонение, тем мощнее сигнал. Таким образом, при малых отклонениях сервопривод не сможет быстро вращать мотор или развивать большой момент. Образуются «мёртвые зоны» по времени и расстоянию.

Эти проблемы можно решать за счёт увеличения частоты приёма, обработки сигнала и управления электромотором. Цифровые сервприводы используют специальный процессор, который получает управляющие импульсы, обрабатывает их и посылает сигналы на мотор с частотой 200 Гц и более. Получается, что цифровой сервопривод способен быстрее реагировать на внешние воздействия, быстрее развивать необходимые скорость и крутящий момент, а значит, лучше удерживать заданную позицию, что хорошо. Конечно, при этом он потребляет больше электроэнергии. Также цифровые сервоприводы сложнее в производстве, а потому стоят заметно дороже. Собственно, эти два недостатка — все минусы, которые есть у цифровых сервоприводов. В техническом плане они безоговорочно побеждают аналоговые сервоприводы.

Материалы шестерней

Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические. Все они широко используются, выбор зависит от конкретной задачи и от того, какие характеристики требуются в установке.

Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни — лучший выбор.

Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостатой — дороговизна.

Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана — фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. К сожалению, они обойдутся вам достаточно дорого.

Коллекторные и бесколлекторные моторы

Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.

Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.

Сервоприводы с бесколлекторным мотором появились сравнительно недавно. Преимущества те же что и у остальных бесколлекторных моторов: нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.

Сервопривод постоянного вращения

Сервоприводы обычно имеют ограниченный угол вращения 180 градусов, их так и называют «сервопривод 180°».

Но существуют сервоприводы с неограниченным углом поворота оси. Это сервоприводы постоянного вращения или «сервоприводы 360°».

Сервопривод постоянного вращения можно управлять с помощью библиотек Servo или Servo2 . Отличие заключается в том, что функция Servo.write(angle) задаёт не угол, а скорость вращения привода:

Функция ArduinoСервопривод 180°Сервопривод 360°
Servo.write(0)Крайне левое положениеПолный ход в одном направлении
Servo.write(90)Середнее положениеОстановка сервопривода
Servo.write(180)Крайне правое положениеПолный ход в обратном направлении

Для иллюстрации работы с сервами постоянного вращения мы собрали двух мобильных ботов — на Arduino Uno и Iskra JS. Инструкции по сборке и примеры скетчей смотрите в статье собираем ИК-бота.

Примеры работы с Arduino

Схема подключения

Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:

Для подключения к Arduino будет удобно воспользоваться платой-расширителем портов, такой как Troyka Shield. Хотя с несколькими дополнительными проводами можно подключить серву и через breadboard или непосредственно к контактам Arduino.

Можно генерировать управляющие импульсы самостоятельно, но это настолько распространённая задача, что для её упрощения существует стандартная библиотека Servo .

Ограничение по питанию

Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.

Рассмотрим на примере подключения 12V сервопривода:

Ограничение по количеству подключаемых сервоприводов

На большинстве плат Arduino библиотека Servo поддерживает управление не более 12 сервоприводами, на Arduino Mega это число вырастает до значения 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite() на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite() на 11 и 12 контактах.

Пример использования библиотеки Servo

По аналогии подключим 2 сервопривода

Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц.

Альтернативная библиотека Servo2

Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками / передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.

Все методы библиотеки Servo2 совпадают с методами Servo.

Пример использования библиотеки Servo

Примеры работы с Espruino

Примеры работы с Raspberry Pi

Вывод

Сервоприводы бывают разные, одни получше — другие подешевле, одни надёжнее — другие точнее. И перед тем, как купить сервопривод, стоит иметь в виду, что он может не обладать лучшими характеристиками, главное, чтобы подходил для вашего проекта. Удачи в ваших начинаниях!

Что выбрать. Серводвигатель или шаговый двигатель

Для того , что бы понять, нужен нам серводвигатель или шаговый, рассмотрим характеристики , а так же достоинства и недостатки обоих.

Рассмотрим преимущества шаговых двигателей пред серводвигателями:

  • Низкая стоимость
  • Фланцевые крепления стандарта NEMO
  • Варианты исполнения с невысоким крутящим моментом
  • Возможность использовать простые, недорогостоящие кабели

Используют незамкнутый контур системы управления (open loop), что позволяет легко интегрировать их в мехатроннные системы

В большинстве случаев применение шагового или серво двигателя продиктовано закономерностями. Например , шаговые двигатели в основном рассчитаны для использования когда необходимо выполнить два требования: высокий крутящий момент на ускорении и/или торможении или пиковый крутящий момент при старте.

В отличии от этого, серводвигатель , как правило, применяются в случае необходимости поддержания конкретной скорости и вращающего момента , удержания момента , и при необходимости полного контроля движением.

В общем, если система требует высокой пропускной способности, высокой скорости и точности коррекции нарушения, с или без жесткой координации между осями, серводвигатели являются лучшим вариантом. Если же задание перемещения (точка-точка) не требует высокой точности поддержания скорости и момента шаговые двигатели являются лучшим вариантом.

Ниже представлена характеристика скорости-момента для серводвигателей и шаговых двигателей одинаковой производительности. Как мы можем видеть, шаговые двигатели выдает больший крутящий момент на низких скоростях, однако серводвигатель поддерживает заданый момент на всем диапазоне скоростей .

Еще одним преимуществом шаговых двигателей можно назвать их простоту в проектировании и эксплуатации, так как они не имею сложных схем и алгоритмов управления обратной связью.

Приводы шаговых двигателей.

Новые методы проектирования улучшили производительность усилителей для шаговых двигателей за счет: встроенной обратной связи, в конце -шаг демпфирования (снижение время установления сигнала при максимальной точности), плавный пуск (для уменьшения рывка при включении питания), анти -резонансных режимов (для оптимизации крутящего момента, стабильности и уменьшения шума — звуковое или иное), ток холостого хода снижен (МКС — снижает нагрев двигателя при остановке) и легко контролировать Режимы работы «полный шаг», «полшага», и «микрошаговый».

Сервосистема на базе серводвигателя

Серводвигатели имеют ряд преимуществ перед шаговыми двигателями. Они могут генерировать высокий крутящий момент во всем диапазоне заявленных скоростей, так же они работают с более высоким диапазоном напряжения. Реакция на изменение момента у них так же гораздо выше. Имеют небольшие габаритные размеры.

Привода (усилители) для серводвигателей.

Настоящей проблемой для разработчиков и наладчиков сервосистем являлась настройка коэффициентов регулирования положения /скорости, соотношение инерции масс, определение параметров двигателя и др. К счастью, большинство современных сервоприводов обладают функциями автонастройки и обеспечивают легкий и быстрый ввод в эксплуатацию. В добавок к этому, имеется комплексное программное обеспечение для настройки и ввода параметров в сервопривод, которое в большинстве случаев распространенно бесплатно и его можно запросто скачать в сети.

Сравнение момента и скорости.

Хотя серводвигатели и предназначены для работы на высоких скоростях , при правильной настройке, они могут отрабатывать режимы до 1 об/мин имея при этом очень хорошие показатели. Что же касается шаговых двигателей, то при применении их в системах со скоростями не превышающих 1000 об/мин было бы наиболее экономически оправданным. Однако, при скоростях свыше 1000об/мин у шаговых двигателей крутящий момент начинает падать.

На низких скоростях >15 об/мин или в режиме удержания момента при нулевой скорости , шаговые двигатели, особенно с большим ротором, могут создать больший крутящий момент , чем серводвигатели того же типоразмера. В отличие от них прямые серводвигатели DDR с высокими разрешающими способностями энкодера имеют ряд преимуществ по точности при работе на скоростях около 1000 об/мин при этом не требуя дополнительных механических устройств таких как редуктор.

Сервопривод — схема, характеристики, назначение

Сервопривод – механизм, позволяющий устанавливать и фиксировать рабочий орган оборудования в заданных положениях, перемещать его в соответствии с заданной программой. Перемещение не единственная задача устройств, они могут поддерживать необходимый момент на валу при нулевой скорости вращения вала. Это используется для удержания исполнительного механизма в одном положении под нагрузкой.

Сервоприводы устанавливают на станках с ЧПУ, грузоподъемных механизмах, промышленных роботах. Сфера применения сервопривода не ограничивается производством. Механизмы применяют в бытовой технике, системах отопления и кондиционирования, автотранспорте.

Конструкция

Конструкция сервоприводов может существенно различаться в зависимости от назначения. Однако, вне зависимости от области применения устройства содержат следующие узлы:

  • Передаточный механизм.
  • Электродвигатель.
  • Датчики положения и скорости вращения вала.
  • Частотный преобразователь.
  • Контроллер.

Передаточный механизм служит для изменения скорости и момента на валу, к нему непосредственно подключается рабочий инструмент или исполнительное устройство. В ряде случаев передаточные механизмы обходятся дешевле безредукторного регулирования.

Электродвигатель – силовой элемент привода. Энергия вращения вала преобразуется в перемещение исполнительных устройств или инструментов.

Датчики служат для передачи на схему управления сигнала о положении вала или исполнительного механизма, частоты его вращения, момента.

Частотный преобразователь применяется для изменения частоты вращения, момента на валу двигателя путем изменения частоты тока или напряжения питания электродвигателя.

Контроллер предназначен для задания режимов работы привода, обработки сигналов с датчиков обратной связи, управления положением исполнительного механизма. Этот элемент нередко объединен с преобразователем частоты. Существуют специализированные ПЧ с интегрированными контроллерами для управления серводвигателями.

Принцип работы сервоприводов

Работает устройство следующим образом. Контроллер программируется на определенный режим работы и выдает сигнал на преобразователь частоты. Устройство подает на электродвигатель напряжение необходимой частоты и величины. Силовой агрегат перемещает исполнительный механизм с заданной скоростью и моментом, соответствующим нагрузке. По достижении заданного положения рабочего органа, подается соответствующий сигнал с датчиков положения на контроллер, который останавливает двигатель.

Принцип действия сервопривода идентичен автоматическому регулятору с отрицательной обратной связью. Задается опорный сигнал, называемый нулевым, с которым сравнивается сигнал с датчика положения. При равенстве их величин, сервопривод останавливается, при отклонениях в отрицательную или положительную сторону, на двигатель подается напряжение пока рабочий инструмент или исполнительное устройство не займет требуемого положения.

Виды сервоприводов

Сервоприводы различают по типу применяемого двигателя, передаточного механизма, назначению и техническим параметрам.

В качестве силовых агрегатов в устройствах используют:

  • Двигатели постоянного тока.
  • Асинхронные электрические моторы.
  • Синхронные двигатели с обмотками статора или на постоянных магнитах.

Дополненная классификация двигателей сервоприводов представлена на рисунке:

К двигателям для современных сервоприводов предъявляют следующие требования:

  • Высокая точность отработки управляющего сигнала. Электрические машины должны обладать низкой инерцией, иметь неизменные механические характеристики во всем диапазоне регулирования скорости.
  • Обеспечивать неравномерность частоты вращения. Часть технологического оборудования регулируется по нелинейным законам, двигатель должен обеспечить их реализацию с минимальными ошибками.
  • Иметь достаточную перегрузочную способность. Двигатель не должен перегреваться, выходить из строя при превышении нагрузки на валу.
  • Обеспечивать высокую динамику. Скорость реакции силового агрегата сервопривода должна быть достаточной для нормального функционирования оборудования.
  • Управляться как можно более простыми алгоритмами. Цена контроллера и ПО составляет значительную часть стоимости сервопривода. Упрощение управления без ущерба характеристикам позволяет снизить стоимость электроники.

В первых сервоприводах применялись электродвигатели постоянного тока с аналоговыми тахогенераторами, тиристорными или транзисторными преобразователями напряжения. Широкое использование таких электрических машин связано с относительно простым управлением. Скорость вращения напрямую зависит от величины напряжения, подаваемого на якорь, жесткость механических характеристик сохраняется во всем диапазоне угловой частоты ротора.

К недостаткам сервоприводов относятся: необходимость установки выпрямителя с преобразователем напряжения, высокая цена двигателей, наличие коллекторного узла, снижающего надежность схемы.

С появлением преобразователей частоты стало возможным применение в сервоприводах асинхронных двигателей. ПЧ с микроконтроллером позволяет реализовать практически любые законы регулирования с обратной связью по относительному и абсолютному положению ротора, моменту и скорости вращения.

Главное преимущество сервоприводов с асинхронными двигателями – относительно низкая цена. При значительных мощностях такие устройства намного дешевле сервоприводов с электродвигателями постоянного тока.

Следующий тип силовых агрегатов – синхронные двигатели. С появлением современных материалов для постоянных магнитов, которые не теряют свойств при нагреве и ударах, наибольшее распространение для сервоприводов получили синхронные электродвигатели на постоянных магнитах или СДПМ.

Главное достоинство таких электрических машин – маленькие размеры. Так, двигатель той же мощности синхронного типа с роторными обмотками имеет габариты в 2 раза превышающие размеры СДПМ.

Кроме того, такие электродвигатели:

  • Обладают высоким к.п.д. во всем диапазоне скоростей вращения.
  • Имеют возможность поддерживать заданный момент на валу независимо от нагрузки.
  • Отличаются относительно простой конструкцией.
  • Обладают невысокой инерцией.

В СДМП отсутствуют потери на возбуждение. Сфера применения электрических машин – сервоприводы малой и средней мощности, в том числе с очень высокими требованиями к стабильности скорости вращения.

Сфера применения сервоприводов

Оборудование применяется в различных автоматических устройствах и установках. Сервоприводы устанавливают:

  • В промышленных роботах и манипуляторах.
  • В грузоподъемном и упаковочном оборудовании.
  • В автоматизированных станках.
  • В особо точных исполнительных механизмах систем автоматического регулирования технологических параметров.
  • В автоматических автомобильных трансмиссиях.

Сервоприводы позволяют повысить точность и производительность промышленного оборудования, автоматизировать производственные процессы, исключить влияние человеческого фактора.

Функции современных сервоприводов

Большинство сервоприводов поставляют в виде готовых систем сервоусилитель-датчик- двигатель. Крупные производители, например Mitsubishi Electric, Schneider Electric предлагают сервисы выбора совместимых элементов.

Современные сервоприводы обеспечивают не только точное полеориентированное управление. Устройства:

  • Могут встраиваться в АСУТП любой сложности, а также поддерживают автономное управление. Оборудование обеспечивает связь по унифицированным цифровым, аналоговым сигналам, безпотенциальным контактам, интерфейсам CANopen, PROFIBUS DP, RS 485, DeviceNet, EtherCAT, Modbus TCP, Ethernet Powerlink и другим.
  • Легко осваиваются пользователями. Настройка устройств не представляет сложности, управление имеет интуитивно понятный интерфейс. Сервоприводы уже укомплектованы заводским ПО, имеет функции автоматического распознавания внешнего оборудования. При необходимости можно скачать нужные программы или обновить их с сервера производителя.
  • Можно масштабировать и модернизировать. Ряд сервоприводов промышленного назначения имеет отрытую архитектуру. Оборудование легко адаптируется путем установки дополнительных элементов: датчиков, модулей и других.
  • Имеют защиту от ненормальных режимов работы. Сервоприводы обеспечивают отключение при превышении допустимого значения тока, колебаний или отключения напряжения в сети, перегрузок при динамическом торможении. Оборудование также имеет защиту от перегрева электродвигателя, ошибок датчика, превышения допустимого рассогласования. Для поиска причины возникновения ненормального режима сервоприводы автоматически записывают время и дату аварии, код предположительной причины.

Современные сервосистемы отличаются разнообразием. Выпускают устройства для несложного оборудования с алгоритмом управления по 1оси, до сложных роботов с многоосевым управлением.

Как выбрать сервопривод

Сервоприводы выбирают по техническим характеристикам, экономического и технического эффекта. Выбор делают после тщательного анализа технологических требований, расчетов эффективности и надежности.

Один из главных параметров устройств – точность позиционирования. Она не должна превышать предельную погрешность положения исполнительных механизмов или перемещения рабочего инструмента. Точность определяется количеством импульсов с датчиков на 1 оборот вала. Чем их больше, тем точнее обеспечивается положение вала.

При выборе необходимо обратить внимание на диапазон регулирования скорости и момента на валу. Параметры подбирают по требованиям оборудования. Например, сервопривод автоматизированных станков должен обеспечивать требуемую скорость обработки для того или иного материала. Момент вала на валу выбирают по характеру и величине нагрузки. Для исключения перегрузок лучше прибрести сервопривод привод с небольшим запасом мощности двигателя.

Кроме точности позиционирования, диапазона изменения момента и скорости, также учитывают:

  • Тип поддерживаемых интерфейсов обмена данными. Протоколы должны соответствовать информационным интерфейсам автоматизированной системы. Сервоприводы поддерживают самые распространенные протоколы обмена информацией. В модульных устройствах можно устанавливать дополнительные блоки связи.
  • Скорость отклика. Один из самых главных параметров , характеризующих время между выработкой сигнала управления и его полной отработкой. Скорость отклика также должна отвечать требованиям оборудования или механизма.
  • Исполнение. Класс защиты от влаги пыли, тип охлаждения выбирают исходя из предполагаемых условий эксплуатации.
  • Электрические параметры. Номинальное напряжение, потребляемый ток, выбирают по возможностям и виду электросети.
  • Дополнительным функциям. Современные сервоприводы выполняют функции отключения при авариях, предупреждений при ненормальных режимов работы, ведения журнала и многие другие.

От привода зависит работоспособность технологических установок, оборудования, станков. Производители промышленной приводной техники оказывают услуги выбора сервоприводов с учетом всех требований. Рекомендуется воспользоваться этим предложением.

Современные сервоприводы обеспечивают управление по законам любой сложности с точностью перемещения до сотых долей микрон. Оснащение устройствами промышленного оборудования дает очень весомый экономический эффект. Сервоприводы также позволяют существенно расширить возможности и увеличить точность станков, дозаторов, манипуляторов, а также автоматизировать работу устройств.

Сервопривод или шаговый двигатель? Как работают и что выбирать

В станках с числовым программным управлением (фрезерные, токарные, карусельные станки, машины плазменной резки и т.д.) для перемещения исполнительных элементов (суппортов, кареток и т.д.) используется шаговый привод или сервопривод. В этой статье немного объясним о их работе, принципиальных различиях и когда какой уместно применять.

Шаговый привод

Представляет собой шаговый электродвигатель с блоком управления. При подаче электрического импульса ротор двигателя совершает угловое перемещение на строго определенную величину. Современные шаговые электродвигатели обеспечивают до 400 шагов на один оборот. Это позволяет позиционировать инструмент (резец, плазменный резак) с точностью до десятых миллиметра.

Как достоинства шаговых приводов следует отметить:

  • высокая точность в сочетании с более простой конструкцией;
  • доступная цена, вытекающая из простоты исполнения.

Главный недостаток шагового привода – проблема пропуска шага. Это происходит по ряду причин:

  • нагрузка на валу превышает допустимое;
  • неправильно задаными параметрами реза в управляющей программе – слишком резкое ускорение или торможение, без учета веса портала;
  • скорость вращения ротора попадает в зону резонанса со станком.

Пропуск шага может приводить к некорректному позиционирования резака, и соответственно отклонению реза от заданной программы.

Сервопривод (Сервомотор)

Принципиальное отличие — наличие датчика обратной связи. Сервопривод обмениваеться данными с управляющей программой в реальном времени. Отклонение от заданных координат моментально регистрируеться, и контроллер станка автоматически компенсирует погрешность.

Наличие этого дополнительно элемента (датчика) позволяет:

  • достигнуть максимальной точности позиционирования и качество продукции. С учетом механического люфта, износа деталей, теплового расширения (что важно в станках большой мощности, в том числе и машинах плазменной резки );
  • обеспечить максимально высокую скорость обработки, с автоматическим учетом инерционности движущихся узлов;
  • снизить затраты на электроэнергию, в сервоприводе они пропорциональны сопротивлению перемещения, а в шаговом приводе номинал напряжения постоянный.

Шаговый привод vs сервопривод

Из приведенного выше можно понять сильные и слабые стороны этих приводов. Мы постараемся дать рекомендации, в каких случаях целесообразнее применять тот или иной вариант.

  1. Бюджет . Если он критичен, выбор однозначно в пользу шагового привода. Но стоит учесть будущую оплату труда оператора чпу. Работа с шаговыми двигателями подразумевает более высокий уровень умений и квалификации.
  2. Мощность станка . Чем больше мощность, тем крупнее перемещаемые узлы и детали, и тем более мощные требуются шаговые двигатели. А это более высокие инерционные нагрузки, и меньше нагрузки в резонансных зонах. Это может повлиять на точность обработки. Кроме того, при увеличении скорости у шагового электродвигателя резко уменьшается момент, а у сервоприводов он постоянен. Если говорить о станках плазменной резки с ЧПУ , то здесь эти эти факторы не столь критичны. Это более существенно для токарных станков, где движутся не только исполнительные механизмы (суппорта), но и сама заготовка.
  3. Сложность обслуживания . Здесь шаговые привода смотрятся симпатичнее. Сервопривод имеет десятки параметров, требующих настройки, а значит и более высокой квалификации персонала (программистов, электронщиков, наладчиков). Надежные поставщики обычно берут сервис этих узлов на себя. Об этом стоит задуматься если вы приобретаете станок зарубежом, или когда будет сложно обеспечить доступ третьих лиц.
  4. Производительность . По данному критерию сервопривода существенно превосходят шаговые. Особенно если речь идет о производстве габаритных деталей. При небольших перемещаемых и обрабатываемых массах эта разница несущественна (например, если это небольшой 3Д принтер, то разница будет крайне несущественна)
  5. Шум . Шаговые привода работают громче и может ощущаться вибрация. Это может приносить неудобства для небольших предприятий. В ряде случаев могут возникнуть проблемы с надзорными органами по допустимому уровню шума.
голоса
Рейтинг статьи
Читать еще:  Что такое цепной двигатель тойота
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector