Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электропоезда постоянного тока | Двигатели с последовательным возбуждением

Электропоезда постоянного тока | Двигатели с последовательным возбуждением

Описание электропоездов и электровозов, расписание поездов, фотографии

Перечислим их основные преимущества. Обмотку якоря и возбуждения можно соединять разными способами: последовательно или параллельно. Кроме того, существуют двигатели, на которых обмотки возбуждения получают питание от постороннего источника (независимое возбуждение), применяют также электрические машины со смешанным возбуждением. На электропоездах до сих пор устанавливают двигатели последовательного, т.е. сериесного возбуждения.

Во-первых, указанный двигатель имеет лучшую конструкцию. Основная часть напряжения сети прикладывается к вращающейся обмотке якоря, на обмотку возбуждения приходится всего 5- 6 % (у двигателя с параллельным возбуждением напряжение на якоре равно напряжению на обмотке возбуждения). Кроме того, обмотки возбуждения находятся после якорей, т.е. под меньшим потенциалом. Поэтому снижается вероятность пробоя катушек, и при одинаковой механической и электрической прочности их можно изготовить с меньшими габаритами, с более дешевой изоляцией, чем для двигателя параллельным возбуждением. Электрическая машина получается дешевле и компактнее.

Во-вторых, сериесный двигатель при больших нагрузках и одном и том же токе развивает больший вращающий момент, чем двигатель с параллельным возбуждением, что важно при частых троганиях поезда. Подобный двигатель регулирует свою мощность в зависимости от нагрузки: при увеличении нагрузки уменьшается скорость и возрастает вращающий момент, при снижении нагрузки скорость растет, вращающий момент снижается. Это благоприятно и для самого двигателя, так как его можно

сделать менее мощным, и для системы энергоснабжения: чем равномернее нагрузка, тем меньше амплитуды нагрузок на тяговых подстанциях и падение напряжения в контактной сети.

Заметим, что при очень малых нагрузках сериесный двигатель вращается с недопустимо большой скоростью из-за малого магнитного потока. Такой режим недопустим из-за опасности механического разрушения. Хорошо известно, что, например, при срыве муфты двигатель, оказавшийся без нагрузки, идет вразнос.

Исследования показывают, что неизбежные колебания напряжения контактной сети менее негативно сказываются на сериесном двигателе, чем на двигателе параллельного возбуждения (шунтовом). Так, при скачке напряжения сети бросок тока у сериесного двигателя, имеющего мягкую характеристику, будет значительно меньше, чем у шунтового двигателя с жесткой характеристикой. Это наглядно подтверждают соответствующие графики в учебной литературе.

, Разница в свойствах материалов и допуски на обработку при изготовлении тяговых двигателей приводят к некоторым несовпадениям их рабочих характеристик. Поэтому при одной и той же скорости поезда, но разной толщине бандажей двигатели будут иметь разную скорость (частоту вращения), что приводит к их различному нагружению. Двигатели, развивающие большую скорость вращения и установленные на колесных парах с толстыми бандажами, будут более нагружены, чем менее быстроходные двигатели, связанные с колесными парами с тонкими бандажами. Это различие стараются устранить в депо при формировании колесно-моторных блоков: более быстроходные совмещают с колесными парами с меньшим диаметром бандажей и наоборот. На практике такое выравнивание ценно не только в режиме тяги, но и особенно, в режиме электрического торможения.

Инверторный двигатель в стиральной машине: описание, фото, видео

Инверторный электродвигатель, является электрическим механизмом, все чаще встречающимся в различных бытовых устройствах. Это объясняется тем что данные типы моторов стали более усовершенствованными перед обычными асинхронными и коллекторными электромоторами. Стиральные машины стали не исключением, так как применение такого типа электродвигателя дало ряд преимуществ по сравнению с другими.

  1. Инверторный мотор в стиральной машине, что это?
  2. Как работает инверторный двигатель
  3. Особенности стиральных машин с инверторными двигателями
  4. Стоит ли покупать инверторную стиральную машину с прямым приводом?

Инверторный мотор в стиральной машине, что это?

Что такое инвертоный двигатель в стиральной машине, можно понять, рассмотрев какие же электротехнические устройства применяются в современных агрегатах. Как известно, для вращения барабана стиральной машины необходимо преобразовать электрическую энергию, в механическую. С этой целью на большинстве старых моделей устанавливались асинхронные и коллекторные электродвигатели, связь которых с барабаном машинки осуществлялась посредством ременного привода.

Бесколлекторный или инверторный электродвигатель в стиральной машине — это инновационная технология, получившая свое развитие относительно недавно. Первыми электродвигателями с прямым приводом в стиральных агрегатах стали устанавливать корейские и японские производители бытовой техники. Концерн LG стал новатором в этой области. Сейчас эту технологию успешно развивают и применяют в своих устройствах компании Samsung, Bosch, Haier, Whirpool, AEG и многие другие.

Инверторный, как и асинхронный и коллекторный движок имеет статор и ротор, однако принцип его действия иной. Трехфазная схема управления таким двигателем позволяет подсоединить привод непосредственно к барабану на прямую. Это исключает применение таких дополнительных соединительных элементов, как ручейковые ремни, шкивы и ролики. В стиралке с инверторным двигателем барабан, подшипники с сальниками и ротор конструктивно находятся на одном валу и не имеют больше никаких трущихся или входящих в зацепление в процессе работы элементов.

Стиральные машины с инверторным двигателем так же могут применяться без прямого привода, что может говорить о наличии приводного ремня и расположения в нижней части агрегата, отличие их с коллекторным типом это отсутствие угольных щеток и принцип работы.

Как работает инверторный двигатель

Главной особенностью такого электромотора является способность трансформировать переменный ток в постоянный. Принцип работы инверторного двигателя основывается на явлении электромагнитной индукции, как и у многих других электромеханических устройств. Однако его отличительной особенностью является отсутствие угольных щеток и применение в качестве элемента конструкции частотного преобразователя (инвертора). Инвертор, после преобразования переменного тока в постоянный, способен снова генерировать переменный ток необходимой частоты, что позволяет точно регулировать частоту вращения ротора.

В отличие от управления коллекторным типом, схема управления инверторным устройством гораздо более сложна и требует от разработчиков больших усилий и капиталовложений, что в конечном счете приводит к удорожанию всей конструкции. Однако такие компании как Samsung оснащают таким движком множество моделей, комплектуя их высокотехнологичными блоками управления, что не приводит к существенному удорожанию в целом. Электронные блоки этой компании зачастую устанавливают на различные виды бытовой техники, включая стиральные машины, и многие другие производители.

Читать еще:  Что такое егр двигателя d4ea

Особенности стиральных машин с инверторными двигателями

Устройство коллекторного двигателя подразумевает установку токоподводящих угольных щеток, которые со временем изнашиваются и требуют замены. Приводной резиновый ремень, приводящий в движение барабан, также имеет ограниченный ресурс.

Стиральная машинка с инверторным мотором таких недостатков лишена. Подшипники установленные на валу ротора трущимися деталями назвать можно лишь условно. При нормальной работе сальника и правильной установке подшипников на валу, аппарат при работе практически бесшумен. При стирке можно слышать лишь шелест стирающегося белья, так как деталей, генерирующих лишние децибелы в таких агрегатах просто нет. Вращение ротора при этом происходит плавно и с высокой точностью на протяжении всего рабочего цикла стирки.

В качестве особенности инверторного мотора по сравнению с традиционными, можно рассматривать и возможность отжима на более высоких скоростях. На некоторых моделях устанавливаются предельные значения для данного цикла 1600-2000 об/мин, что позволяет доставать из машинки практически сухое белье, однако стоит помнить, что при этом и высок риск его повредить. В целом, специалистами отмечается более высокое качество стирки в машинах с прямым приводом за счет более точной регулировки оборотов барабана на каждом этапе стирки, от замачивания, до отжима.

В качестве основных преимуществ стиральных машин с инверторными двигателями специалисты отмечают:

  • низкий уровень шума (53-76 дБ, в зависимости от модели и режима стирки);
  • практически полное отсутствие необходимости технического обслуживания элементов двигателя;
  • увеличенный КПД, за счет отсутствия потерь на трение сопряженных элементов;
  • точность настройки режимов стирки;
  • компактность электродвигателя, позволяющая производить модели стиральных агрегатов с наименьшими габаритами;
  • более точную балансировку, за счет размещения барабана и ротора на одном валу;
  • остановку в случае перегруза белья.

В качестве недостатка машинок с инверторным мотором является более высокая стоимость по сравнению с обычными видами. С ложность и дороговизна ремонта, однако об этом скорее можно было говорить лет 10 назад. Сейчас технология производства подобной техники развита довольно хорошо, а стоимость моделей с коллекторными и инверторными электромоторами практически сравнялась.

На стоимость агрегатов в большей степени влияет принадлежность к премиум или эконом классу. Премиум агрегаты оснащаются многофункциональными дисплеями, имеют большее количество различных функций и дополнительных опций. Их бюджетные версии содержат в себе более скромную электронную начинку и характеристики, но зачастую они практически не отличаются. Производители в большей степени заняты совершенствованием электросхем как для управления коллекторными, так и инверторными двигателями, в то время как надежность доведена до самого высокого уровня. Надежность обоих типов электромоторов в современных машинках довольно высока, однако предпочтительней все же прямой привод, по той лишь причине, что количество взаимодействующих деталей в движке при работе намного меньше.

Стоит ли покупать инверторную стиральную машину с прямым приводом?

Модели с прямым приводом несомненно являются технологическим шагом вперед, по сравнению с агрегатами оснащенными традиционными видами электромоторов. Стиральные машины Samsung, оснащенные инвертором с технологией пузырьковой стирки Eco Bubble можно назвать одним из лидеров в данном сегменте бытовой техники. Только тот факт, что компания дает десятилетнюю гарантию на свои моторы говорит в пользу их покупки и эксплуатации. Если вопрос существенной экономии воды и электроэнергии остается для подобной техники спорным, то надежность и бесшумность новых моделей оснащенных прямым приводом являются их несомненным и неоспоримым преимуществом.

Принцип работы разных видов двигателей постоянного тока

Зарождение идеи о работе двигателя постоянного тока (ДПТ) появилось в начале XIX века. Известные физики Алессандро Вольта, М. Фарадей и П. Барлоу внесли в историю своё видение этого процесса. Изобретателем электромотора по праву принято считать Б. С. Якоби, ведь именно ему удалось изготовить устройство с вращающимся якорем, которое можно было применить на практике. Хотя первый двигатель был маломощным, но следующий уже приводил в движение лодку.

Устройство ДПТ

Основными частями электрической машины постоянного тока являются магниты и обмотка. К вспомогательным частям относятся корпус, сердечник, вал, коллектор, щёточный механизм. Все эти детали имеют своё назначение.

Сердечники подвижной и неподвижной частей изготавливаются не из целостной конструкции, а из листов электротехнической стали. Эта особенность строения даёт возможность практически устранить вихревые токи.

Прямой обязанностью коллектора является преобразование переменного тока, который вырабатывается в обмотке якоря, в постоянный. Коллектор — узел, характерный именно для машин постоянного тока. Но он одновременно и самый уязвимый, так как почти половина всех электромоторов выходит из строя в процессе работы именно по причине его поломки. Отсутствие коллектора в строении асинхронной или синхронной машины улучшает её надёжность. Это преимущество сохраняется как для трехфазных, так и для однофазных машин переменного тока.

Управление двигателем постоянного тока подразумевает изменение скорости его вращения, ведь основной его задачей является приведение в ход рабочих механизмов. Скорость вращения можно изменять тремя методами:

  • изменением напряжения, которое подводится;
  • изменением сопротивления в цепи якоря;
  • изменением магнитного потока в цепи возбуждения.

Классификация моторов ПТ

Различия между видами электромоторов заключаются в типе магнитов и способе возбуждения. Магниты могут быть как постоянными, так и электромагнитами. Преимущества постоянного магнита (в отличие от электромагнита):

  • компактность;
  • не требует источника энергии для работы.

Недостатками являются невозможность регулировки силы магнитного потока и размагничивание с течением времени.

Вид возбуждения ДПТ зависит от места присоединения обмотки полюсов. В связи с этим различают независимое возбуждение мотора (обмотка возбуждения питается от постороннего источника) и самовозбуждение (обмотка возбуждения присоединена к обмотке якоря). Двигатели с самовозбуждением носят более короткие названия:

  • шунтовые (параллельное соединение обмоток);
  • сериесные (последовательное соединение обмоток);
  • компаундные (смешанное соединение обмоток).

Электромоторы применяются в различных областях промышленности и сельского хозяйства, а также бытовых установках. Их разнообразие велико. Основные типы ДПТ:

  • традиционного назначения;
  • специального назначения.

Особенности работы вентильных двигателей

Вентильные двигатели относятся к электрическим машинам специального назначения. Своим названием они обязаны применению в них устройств для выпрямления тока — вентилей. Достоинства вентильных электродвигателей:

  • изменение скорости вращения в широких пределах;
  • более высокий коэффициент полезного действия из-за уменьшения магнитных потерь вследствие малого магнитного сопротивления;
  • даже при пиковой нагрузке рабочие характеристики довольно неплохи.
Читать еще:  Электроподогрев двигателя схема ваз

Наряду с преимуществами, они имеют и некоторые недостатки. Но значение их не велико. Основными являются:

  • шумность;
  • управление требует определённой квалификации обслуживающего персонала;
  • высокая цена.

Области применения их различны: на производстве по добыче нефти, в химической промышленности и установках для бурения скважин.

Основная разница между вентильным и обычным двигателем заключается в конструкции. У вентильного нет некоторых привычных частей конструкции: коллектора и щёточного механизма. Вместо этого установлен коммутатор (инвертор), с помощью которого осуществляется управление вентильным двигателем. На инвертор поступает сигнал от датчика положения ротора.

Датчиками положения ротора могут быть трансформаторные или индуктивные бесконтактные элементы. Наиболее распространёнными являются датчики электродвижущей силы Холла. Такое устройство состоит из небольшой пластины полупроводникового материала. На ней находятся контактные звенья, к которым припаяны выводы, соединённые с источником питания. Выводы выходного сигнала также припаиваются к соответствующим звеньям пластины. Требованиями к датчикам положения ротора являются:

  • компактность;
  • минимальное значение мощности на входе;
  • большая кратность сигнала как максимального, так и минимального;
  • надёжная работа при любых условиях окружающей среды.

Коммутатор выполнен на полупроводниках. Его задача аналогична задаче щёточно-коллекторного узла в обычных двигателях и заключается в изменении направления тока. На сердечнике станины находится обмотка якоря, а на роторе — постоянный магнит. Такая конструкция устраняет возможность скольжения контакта на якоре.

У вентильного двигателя ток в фазах синусоидального вида. Возбуждение у него может быть двух видов:

  • электромагнитное;
  • магнитоэлектрическое.

При электромагнитном возбуждении обмотка возбуждения располагается на полюсах. Она подключается к сети благодаря контактным кольцам, размещённым на валу ротора. Таким образом, создание магнитного поля происходит электромагнитным путём.

В случае магнитоэлектрического возбуждения ни в цепи возбуждения, ни в якорной цепи скользящего контакта не будет. Постоянные магниты будут выступать в качестве полюсов. Эти двигатели называются бесколлекторными электродвигателями.

Свойства бесколлекторных приборов

Бесколлекторный двигатель постоянного тока (БДПТ) существенно отличается от вентильного двигателя. Его ток в фазах выглядит трапецеидально. БДПТ устроен более просто: широтно-импульсная модуляция заменена на коммутацию 120 или 180 градусов. Главными задачами безщеточного двигателя является точное положение ротора в необходимом промежутке и высокая скорость вращения.

Конструкция может быть двух видов: с магнитами на подвижной части (якоре) или неподвижной (статоре). В устройствах автоматики для охлаждения используются приводы с конструкцией магнитов на якоре. Характерной их особенностью является быстрое достижение высоких оборотов.

В системах оборудования для медицины распространено размещение магнитов на статоре. Эти микромашины называются высокомоментными двигателями. Скорость вращения у них не столь велика, но из-за отсутствия обмотки возбуждения и наличия постоянных магнитов они неплохо справляются с работой при перегрузках и сохраняют точность позиции в пространстве.

Сигнал на обмотки таких электромашин будет поступать от драйвера, задачей которого является управление вращающим моментом. Для того чтобы якорь повернулся на определённый угол, необходимо подать на нужные обмотки напряжение. Плавность вращения сохранить не удастся, но высокой скорости вращения добиться можно.

Разница между коллекторными и бесколлекторными двигателями состоит как в строении, так и в процессе работы. В контроллере коллекторные двигатели не нуждаются, а вот работа бесщеточного мотора без его участия недопустима. Достоинства бесщеточных двигателей:

  • возможность работы в условиях с различными характеристиками окружающей среды;
  • длительный срок использования;
  • надёжность в работе.

Недостатком является стоимость. Она довольно высока из-за наличия в строении полупроводникового коммутатора, постоянного магнита и чувствительных элементов.

Собрать вентильный или ДПТ своими руками — дело неблагодарное. Материалы, сложность работы и потраченное время будут стоить гораздо дороже, нежели потраченные средства на покупку двигателя заводского изготовления. Но надёжность и безопасность тоже будут в несколько раз выше.

Подбор этих электромашин необходимо проводить, опираясь на характеристики драйверов с каналами широтно-импульсной модуляции:

  • предельное напряжение при длительном использовании;
  • максимальная скорость вращения;
  • допустимая сила тока;
  • частота тока (обыкновенные устройства 7—8 кГц, более усовершенствованные модели — 16—32 кГц).

Главными звеньями при управлении бесколлекторным двигателем являются датчики положения. Сигнал с них передаётся на контроллер, и вследствие этого происходят переключения. Но возможна работа этих устройств и без датчиков. В этом случае играет роль перепад напряжения на обмотке, которая в определённый момент является нерабочей.

По количеству фаз многие моторы являются трехфазными, и для управления ими необходим дополнительный узел в устройстве — выпрямитель постоянного тока в трехфазный импульсный. Управление трехфазным бесщеточным двигателем постоянного тока также вызывает некоторые сложности из-за параллельного контроля нескольких параметров. Поскольку электрические машины устройства обратимые, то бесколлекторный мотор можно подключить как генератор.

Строение шагового типа оборудования

Разновидностью двигателей переменного тока специального назначения являются шаговые. Их иногда называют импульсными. Они относятся к синхронным электромоторам специального назначения. Принцип их работы состоит в том, что скачкообразные шаги на выходе получают благодаря импульсам напряжения на входе. Виды шаговых двигателей по виду ротора:

  • возбуждённые;
  • реактивные.

Строение устройства с активным ротором предполагает наличие в нём электромагнитов или постоянных магнитов. В двигателях с реактивным ротором обмотки возбуждения нет. Ротор изготавливается из магнитомягкого материала.

Обмотка управления находится на неподвижной части — статоре. По количеству фаз она может быть разной, но наиболее распространёнными являются трехфазные обмотки.

Принцип действия

Если у шагового двигателя на статоре имеется две пары полюсов с двумя обмотками управления, то его вращение будет зависеть от подачи напряжения на обмотку управления. При подаче сигнала на обмотку управления, которая находится на первой паре, ротор повернётся и займёт положение по ее оси. Когда на обмотке второй пары полюсов появится сигнал, ротору придётся занять положение между этими полюсами.

Читать еще:  Датчик температуры двигателя рено мастер

При отключении сигнала на обмотке первой пары и оставшемся сигнале на обмотке управления второй пары полюсов ротор повернётся на их ось. Таким образом, при вращении он как будто будет совершать шаги, поэтому и носит такое название. Шаги двигателя (угол поворота ротора) с двумя парами полюсов будут равняться 45 градусам. Система коммутации будет четырехтактной.

Для двухтактной системы коммутации при таком же количестве пар полюсов необходимо, чтобы сигнал поступал всегда только на одну определённую обмотку управления конкретной пары полюсов. Тогда и угол поворота ротора изменится и будет составлять 90 градусов.

Чтобы принцип работы шагового двигателя был понятен даже для чайников, необходимо обратить внимание на схему.

Ротор будет занимать положение в пространстве против той пары полюсов, на обмотке которой будет подано питание. Если же питание подано две на обмотки соседних полюсов, ротор займёт положение между ними. Чем меньше значение шага двигателя, тем точнее и устойчивее его работа.

Для работы шагового двигателя необходим коммутатор. Его задачей является превращение импульсов управления определённой последовательности в прямоугольные импульсы в системе с необходимым количеством фаз.

При большой нагрузке на двигатель точность поворота ротора будет нарушена. Он будет поворачиваться с некоторым отставанием, которое является углом статической ошибки. При холостом ходе шагового двигателя значение угла статической ошибки равно нулю.

Так как скорость протекания процессов работы обратно пропорциональна сопротивлению управляющих обмоток, то для того, чтобы ускорить вращение ротора, применяются резисторы. Их присоединяют последовательно в цепь управляющих обмоток статора. Оценивают экономичность работы по основному показателю — значению мощности на входе.

Разница между серводвигателем и асинхронным двигателем

Серводвигатель против асинхронного двигателя Двигатели — это класс электромеханических устройств, преобразующих электрическую энергию в механическую. В некоторых приложениях для привода механизма не

Содержание:

Серводвигатель против асинхронного двигателя

Двигатели — это класс электромеханических устройств, преобразующих электрическую энергию в механическую. В некоторых приложениях для привода механизма необходим чистый крутящий момент, а в некоторых приложениях необходимо контролировать положение и скорость вращения механизма. Асинхронный двигатель обеспечивает чистый неконтролируемый крутящий момент, в то время как серводвигатели обеспечивают управляемый крутящий момент, при этом скорость и положение вала (ротора) можно регулировать.

Подробнее об асинхронных двигателях

Первые асинхронные двигатели, основанные на принципах электромагнитной индукции, независимо друг от друга изобрели Никола Тесла (в 1883 г.) и Галилео Феррарис (в 1885 г.).

Асинхронный двигатель состоит из двух основных частей: статора и ротора. Статор в асинхронном двигателе представляет собой серию концентрических магнитных полюсов (обычно электромагнитов), а ротор представляет собой серию замкнутых обмоток или алюминиевых стержней, расположенных аналогично короткозамкнутой клетке; отсюда и название ротор с короткозамкнутым ротором. Вал для передачи создаваемого крутящего момента проходит через ось ротора. Ротор находится внутри цилиндрической полости статора, но не имеет электрического соединения с какой-либо внешней цепью. Коммутатор, щетки или другие соединительные механизмы не используются для подачи тока на ротор.

Как и любой двигатель, он использует магнитные силы для вращения ротора. Соединения в катушках статора расположены таким образом, что противоположные полюса образуются на прямо противоположной стороне катушек статора. На этапе запуска создаются периодически изменяющиеся по периметру магнитные полюса. Это создает изменение потока через обмотки ротора и индуцирует ток. Этот ток создает магнитное поле в роторе, и взаимодействие между полем статора и индуцированным полем приводит в движение двигатель.

Асинхронные двигатели предназначены для работы как с однофазными, так и с многофазными токами; последний для тяжелых машин, требующих большого крутящего момента. Скорость асинхронных двигателей можно регулировать, используя количество магнитных полюсов в полюсе статора или регулируя частоту входного источника питания. Скольжение, которое является мерой для определения крутящего момента двигателя, указывает на его КПД. Поскольку короткозамкнутые обмотки ротора имеют малое сопротивление, небольшое скольжение вызывает большой ток в роторе и создает большой крутящий момент. Тем не менее, скорость вращения ротора ниже, чем частота входного источника питания (или скорость вращения поля статора). Асинхронные двигатели не имеют контуров обратной связи для управления двигателем.

Подробнее о сервомоторах

Технически серводвигатель — это любой двигатель, который имеет обратную связь и управление с обратной связью, и это только часть сервомеханизма, в котором отрицательная обратная связь используется для управления работой двигателя.

Но обычно используемые промышленные серводвигатели представляют собой обычные асинхронные двигатели переменного тока с дополнительными функциями, такими как ротор с низким моментом инерции, тормоз с высоким крутящим моментом и встроенный энкодер для обратной связи по скорости и положению. Все эти компоненты в совокупности работают с сервоприводом. Сервомеханизмы с двигателями постоянного тока обычно используются в радиоуправляемых устройствах, обычных инструментах, требующих малой мощности и высокой точности.

Статор серводвигателя постоянного тока обычно состоит из постоянных магнитов, расположенных под углом 900 ° вокруг ротора. Серводвигатели разработаны для обеспечения стабильного уровня крутящего момента и имеют низкий момент инерции. Входной сигнал на серводвигатель имеет форму импульсов, и при каждом импульсе двигатель будет вращаться на конечную точную величину.

Серводвигатели могут обеспечивать высокий крутящий момент, а положение и скорость двигателя можно контролировать. Поэтому серводвигатели широко используются в приложениях, связанных с робототехникой и системами управления.

В чем разница между асинхронным двигателем и серводвигателем?

• Серводвигатель имеет замкнутую систему отрицательной обратной связи, тогда как обычный асинхронный двигатель имеет механизмы обратной связи (во встроенном энкодере).

• Скорость и положение серводвигателя можно регулировать и контролировать с большей точностью, в то время как в асинхронных двигателях можно регулировать только скорость.

• Серводвигатели имеют низкую инерцию, а ротор асинхронного двигателя — более высокую.

• Серводвигатель — это класс управляемых двигателей, это может быть асинхронный двигатель или другой тип.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector