Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Где взять достойные двигатели для малой авиации

Где взять достойные двигатели для малой авиации

Виталий Селиванов,
заслуженный летчик-испытатель РФ
Паровоз не может быть красивее своего котла» – так в начале века говорили инженеры-паровозостроители. На заре авиации из-за отсутствия легкого двигателя летать начинали на планерах с гор, используя потоки обтекания. Только создание легкого, работающего на бензине, двигателя внутреннего сгорания, наконец, дало старт аппаратам тяжелее воздуха. Бензиновый двигатель (с запасом топлива) был в десять раз легче, чем такой же по мощности двигатель электрический с аккумулятором или паровой с водой и топливом. Братья Райт, французы, немцы, а за ними и в России, кстати, только летом 1910 года, сто лет назад взлетело три аппарата: А.С. Кудашева, Я.М. Гаккеля и И.И. Сикорского. Правда, на всех аппаратах были импортные бензиновые двигатели «Анзани» 25 и 35 л.с.

Грех не вспомнить наших великих предков, но, к несчастью, у нас и сейчас с двигателями для небольших самолетов почти те же проблемы. В наследие от СССР нам достался всего один серийный поршневой двигатель М-14. Двигатель простой, надежный, неприхотливый к топливу и маслу. Не боится морозов. Сравнительно недорогой, если летать на нем не очень много. За это и любят двигатель М-14.

На чем же летают сейчас, в «малой авиации», т.е. сверхлегкие и легкие летательные аппараты? Наиболее распространены, известны и почти везде в мире обслуживаются двигатели австрийской фирмы Rotax 912 и 914. Мощностью 80–100 л.с. , они устанавливаются на аппараты взлетной массой до полутонны, с экипажем до двух человек. Это учебные и туристские, любительские аппараты.

Как только потребуется выполнять фигуры сложного пилотажа вдвоем (с инструктором), потребуется более прочный и тяжелый самолет взлетной массой 800–1000 кг (например, По-2, Як-18, Як-52). При этом с двигателем в 100–160 л.с. половину летного времени придется затрачивать на набор потерянной за пилотаж высоты с вертикальной скоростью 2–3 м/сек. А если захочется набирать высоту побыстрей, то и двигатель подойдет как раз М14. На нем можно получить в наборе до 10 м/сек, да и потеря высоты за пилотаж будет гораздо меньше. Конкурентами М14 выступают американские Lycoming и Teledyne Continental, чешские Walter, немецкие Centurion. Lycoming и Teledyne Continental капризны при запуске на земле даже летом, то им жарко – то холодно, зимой в воздухе вообще не запустить. Они употребляют только «свои», дорогие, импортные бензин и смазку, но все их минусы перевешиваются двумя плюсами:
1. Работают на «максимале» без ограничения по времени.
2. Расход топлива в 2 раза меньше, чем у нашего М14.

Если свести основные технические и экономические показатели двигателей в одну таблицу с задачей получения стоимости затрат на работу двигателя с налетом самолета до полного использования ресурса – 10 тыс. летных часов – получим таблицу.

Из нее видно, что за 10 000 часов налета на нашем М-14 придется заплатить на 30% больше чем на ТВД Alison и почти в три раза больше против дизеля Centurion. А вот двигатель М601, хотя и стоит почти в три раза дороже, чем М-14, но каждая его лошадиная сила обходится эксплуатанту в три раза дешевле, чем у М-14. Поэтому если мы хотим получить самолет для основного обучения по курсу военного летного училища, где вынуждены работать интенсивно и обеспечивать очень большой налет, то самолет, конечно, нужно иметь с ТВД, и пока лучше М601 серийного двигателя не видно!

Самолет нужен, конечно, пилотажный, с эксплуатационной перегрузкой до 7, достаточно высотный (7–10 км), следовательно, с герметичной кабиной. Наиболее подходящий из имеющихся и обслуживаемых в России двигателей для планируемого самолета – это чешский Walter М601. Его аналоги Pratt&Whittney поновей, поэкономичней, но системы их технического обслуживания и опыта эксплуатации в России нет. Дизельный двигатель на пилотажный самолет с временем полета 0,5–1,5 часа пока ставить рано – тяжел ( в Интернете у танкистов есть очень дельный сравнительный анализ преимуществ и недостатков газотурбинного и дизельного двигателей).

Пока получается, что самое дешевое летное обучение – на планере при запуске с лебедки. За 3 евро (120) рублей вас на планере забросят на высоту 500 м, откуда вы будете спокойно снижаться примерно 8–10 минут или можете уйти на свободное парение. За планерами следуют ультралайты с взлетным весом до 500 кг и двигателями Rotax 912 и 914, мощностью 80–100 л.с. На них можно проводить обучение полетам по кругу, простому пилотажу, полетам по маршруту. Это даст налет 30–40 часов и выход на уровень пилота-любителя. Заниматься таким обучением могут частные летные школы или ДОСААФ. Справка: уже проектируются сверхлегкие летательные аппараты, на которых будут использоваться электродвигатели с аккумулятором до 30 минут полета. И дешево, и экологически чисто, малошумно и безопасно.

Следующий этап: пилотажный учебный поршневой самолет. Одним из предпочтительных вариантов мог быть яковлевский самолет «Кадет». На нем можно учить сложному и высшему пилотажу, полетам строем и ночью. Но заставить военных пересесть снова на поршневой самолет будет очень трудно, полеты физически тяжелы, а оплата и льготы будут занижены. Поэтому такие машины, скорее всего, пригодятся ДОСААФ и частным летным школам. Двигатель все же придется менять – слишком дорог в эксплуатации – на 30% дороже, чем вдвое более мощный ТВД М601.

Если за единицу стоимости летного часа принять стоимость полета на самолете УТС с ТВД с максимальной скоростью около 500 км/ч, то, в зависимости от максимальной скорости самолета, можно получить соотношение цен летного часа на различных самолетах.

На графике четко видно, что до максимальной скорости 500 км/ч, цена самолета увеличивается плавно линейно, со скорости от 500 до 800 км/ч растет по параболе и далее почти линейно уходит вверх. Отсюда вывод: нет смысла увеличивать максимальную скорость УТС с ТВД более 500–600 км/ч, так как небольшое увеличение скорости обходится слишком дорого и в цене самолета, и в эксплуатации. Видимо, по этим причинам уменьшили мощность двигателей заказчики самолета Pilatus РС-7МК из ЮАР.

Если УТС с ТВД будет иметь скорость захода на посадку менее 150 км/ч, то необходимость в поршневом самолете первоначального обучения для военного училища может отпасть, и эта задача может быть решена на УТС с ТВД с меньшими затратами.

Читать еще:  Что такое конвертируемый двигатель

Для основной подготовки в летном училище, конечно, как и во всем мире, остро необходим УТС с ТВД («Авиапанорама» №№ 1 и 2, 2010).

Мы видим, как с помощью государства поддерживается авиапромышленность Китая, Индии, Бразилии и других развивающихся стран. Даже Турция планирует выпустить в 2011 году свой УТС с ТВД. Наш крупный бизнес – в основной массе технически малограмотный – покупает в первую очередь недвижимость и предметы роскоши. Кстати, и до революции наши финансисты не очень-то жертвовали на технический прогресс. Ведь не у нас, а на западе были установлены крупные призы за перелет через Ламанш и за другие рекордные полеты.

С отменой запретительной системы использования воздушного пространства, обещанного в 2008 году, теперь в конце 2010 года, вероятно, все же откроется большой российский рынок для небольших частных самолетов. Эту ситуацию государство могло бы использовать для развития собственного производства легких летательных аппаратов. Можно, как Китай и Индия, покупать партии лучших зарубежных самолетов, с правом их последующего производства. Но гораздо важнее для нас, авиационной промышленности и любителей авиации, это покупка и лицензионное производство лучших, самых распространенных и надежных двигателей Rotax, Teledyne Continental, Pratt&Whittney со шкалой мощности не производимых в России до сего времени. Имея широкий спектр выбора двигателей, наша авиационная промышленность смогла бы обеспечить российский рынок нужными самолетами. Исторические примеры только подтверждают это. Так было с Ли-2, так было с покупкой английских реактивных двигателей «Нин-1» и «Дервент-V», в результате получили самый массовый истребитель мира МиГ-15 и почти такой же массовый фронтовой бомбардировщик Ил-28.

На что хотелось бы обратить особое внимание. Наша национальная привычка к нищете породила массовую тенденцию: сделаем, что получится, а потом в серии доведем. Нужно помнить, чему учат студентов авиационных ВУЗов: доработка эскиза обойдется в цену резинки и карандаша (копейки), макета – в цену затраченного пиломатериала (тысячи рублей), опытного образца самолета – в миллионы рублей, а доработки серийного самолета потребуют очень больших денег, что может привести к краху всей программы вообще. Для исключения таких промахов нужно любить заказчика и делать все своевременно, чтобы наше изделие было лучше, чем у конкурентов.

Американцы испытали авиационный двигатель дизельного цикла

Engineered Propulsion Systems

Американская компания Engineered Propulsion Systems совместно с ВВС США провели испытания авиационного двигателя Graflight 8, работающего по циклу Дизеля. Как пишет Aviation Week, состоявшиеся испытания признаны успешными; сертификация новой силовой установки, которая позволит использовать ее на серийных самолетах, намечена на конец текущего года.

Современные легкие винтовые самолеты обычно оснащаются поршневыми двигателями, работающими по циклу Отто. При таком цикле сначала происходит сжатие рабочего тела, затем его поджиг, расширение рабочего тела и его охлаждение.

В двигателе этот цикл выглядит так: сперва в цилиндр подаются топливо и воздух, которые затем сжимаются поршнем, после чего сжатая воздушно-топливная смесь поджигается искрой. При сгорании смеси образуются горячие газы, смесь расширяется и толкает поршень, который уже приводит коленвал, преобразующий поступательное движение поршней во вращательное.

Двигатель, основанный на цикле Дизеля, работает несколько иначе. В нем в цилиндр сперва подается воздух, который затем резко сжимается поршнем. Во время сжатия температура воздуха в цилиндре резко поднимается. На пике сжатия в цилиндр впрыскивается топливо, которое самовоспламеняется при контакте с горячим воздухом. Затем начинается процесс расширения смеси, которая толкает поршень.

Авиационные поршневые двигатели имеют относительно небольшую массу, но конструкционно сложны, поскольку требуют сложной системы управления впрыском топлива и поджигом. Кроме того, такие двигатели работают на авиационном бензине. Испытанный Engineered Propulsion Systems двигатель Graflight 8 работает на авиационном керосине для реактивных двигателей.

Керосин для реактивных двигателей имеет большую энергетическую плотность, чем авиационный бензин. При этом благодаря дизельному циклу Graflight 8 способен эффективнее сжигать поступающее топлива. В результате, по оценке разработчиков, топливные расходы при использовании их двигателя окажутся на 45 процентов меньше, чем при использовании сопоставимой по мощности обычной поршневой установки.

Новый авиационный двигатель разрабатывается в качестве замены поршневых бензиновых двигателей мощностью 320-420 лошадиных сил. Несмотря на то, что разработка частично финансируется ВВС США, новая силовая установка будет использоваться преимущественно в гражданской легкой авиации.

Как ожидается, после получения на Graflight 8 сертификата Федерального управления гражданской авиации США, Engineered Propulsion Systems начнет серийное производство двигателя в первом квартале 2018 года. Сперва двигатели будут выпускаться только для новых самолетов, но затем будет разработан и комплект для установки Graflight 8 на уже существующие типы летательных аппаратов.

Восьмицилиндровый двигатель Graflight 8 способен развивать мощность до 350 лошадиных сил и приспособлен для работы на высотах до 9,1 тысячи метров. Обычно двигатели дизельного имеют бо́льшую, чем бензиновые установки, массу. Дело в том, что цилиндрам во время циклов сжатия и расширения нужно выдерживать большое давление, что требует дополнительного упрочнения конструкции.

Разработчики утверждают, что Graflight 8 по массе сопоставим с аналогичными по мощности поршневыми двигателями. Каким образом удалось добиться снижения массы установки, не уточняется. Новый двигатель является мультитопливным и может работать на авиационных керосинах марок Jet A и JP-8 (топливо для гражданских и военных самолетов соответственно) или на обычном дизельном топливе.

Следует отметить, что сегодня существует несколько типов двигателей дизельного цикла, используемых на гражданских самолетах, однако эти установки являются адаптацией существующих автомобильных дизельных двигателей. Graflight 8 разрабатывался с нуля и изначально предназначался только для установки на самолеты и возможной адаптации для использования на вертолетах.

Двигатели, работающие по дизельному циклу, рассматриваются в качестве силовых установок для пассажирских вертолетов будущего. В частности, исследования по использованию таких силовых установок проводятся в рамках европейской программы Clean Sky 2.

Предполагается, что вертолетные поршневые двигатели дизельного цикла, работающие на авиационном керосине, будут потреблять меньше топлива. Кроме того, считается, что такие двигатели будут более экологичными. При этом переход на дизельное топливо не рассматривается, поскольку при его сгорании выбрасываются опасные соединения серы и сажа.

Турбовинтовой двигатель

Турбовинтовые двигатели на первый взгляд внешне напоминают поршневые моторы по общей черте и тех и других — воздушному винту. Но на этом сходство прекращается, далее наступает путь конструктивно совершенно иной машины, с иным принципом работы, с иными характеристиками и режимами работы, с иными возможностями.

Читать еще:  Вибрация двигателя ямз 236 причины

Турбовинтовые двигатели (ТВД) – это разновидность газотурбинных двигателей, которые нашли широкое применение в авиации. Сами по себе газотурбинные двигатели (ГТД) были разработаны в качестве универсального преобразователя энергии, которые в итоге стали использовать в авиастроении. Газотурбинный двигатель представляет собой тепловую машину, в которой при сгорании топлива расширенные газы вращают турбину, создавая крутящий момент, а к валу турбины можно подключать необходимые агрегаты. В случае с ТВД к валу подключается воздушный винт.

Турбовинтовые двигатели – это своеобразная «помесь» поршневых моторов с турбореактивными. Поршневые двигатели были первыми силовыми установками, которыми снабжались самолеты. Они представляли собой цилиндры, расположенные в виде звезды, в центре которой располагался вал, вращающий воздушный винт. Но из-за своего большого веса и ограничений по скорости от них со временем отказались, отдав предпочтение турбореактивным двигателям. Правда, ТРД тоже оказались далеко не идеальными. При возможности развивать сверхзвуковую скорость они довольно «прожорливые», что повышает затраты на топливо при их эксплуатации, а их использование на пассажирских и грузовых самолетах делает перелеты слишком дорогими. Именно этот недостаток реактивных двигателей и было возложено устранить их турбовинтовым сородичам, которые на сегодняшний день успешно используются в авиации. Взяв за основу строение и принцип работы ТРД и умело совместив его с работой воздушного винта от поршневых моторов, они смогли соединить в себе небольшие габариты и малый вес, экономный расход топлива и высокий КПД.

Hawker Beechcraft King Air 350

Впервые в Советском Союзе ТВД сконструировали и испытали еще в 30-х годах, а в 50-е началось их серийное производство. Диапазон их мощностей был в пределах 1880-11000 кВт. Турбовинтовые двигатели долгое время успешно использовались в гражданской и военной авиации, отличаясь надежностью и долговечностью. Примером может служить заслуженный «ветеран» отечественного авиастроения АИ-20, которым оснащались ИЛ-18, АН-8, АН-32, АН-12, БЕ-12, ИЛ-38. Но со временем стало понятно, что увеличивать их мощность можно только до определенного предела, а использовать их на сверхзвуковых скоростях не получится, так что сфера их использования резко сократилась. Сейчас ТВД в основном используются в гражданской авиации на самолетах с низкой скоростью, тогда как сверхзвуковые самолеты оснащены турбореактивными двигателями. ТВД устанавливаются на АН-24, АН-32, ИЛ-18, ТУ-114.

Устройство и принцип работы турбовинтового двигателя

Строение турбовинтового двигателя довольно простое. Он состоит из воздушного винта с редуктором, компрессора, камеры сгорания, турбины и выходного устройства – сопла. Компрессор нагнетает и сжимает воздух, направляя его в камеру сгорания, куда впрыскивается топливо. Горючая смесь, полученная при смешивании воздуха с топливом, воспламеняется, образуя газы с высокой потенциальной энергией, которые, расширяясь, поступают на лопасти турбины, вращая ее, а сама турбина вращает воздушный винт и компрессор. Энергия, не потраченная на вращение турбины, выходит в виде потока воздуха через сопло, образуя реактивную тягу, величина которой не более 10% от общей тяги мотора. Поскольку она незначительна по своей величине, ТВД не считается реактивным. Как видно, по своему строению и принципу работы турбовинтовой двигатель очень напоминает турбореактивный с той лишь разницей, что в первом случае выработанная полезная энергия идет на вращение винта, а во втором она полностью выходит в виде потока воздуха через сопло, образуя реактивную тягу.

Строение турбовинтового двигателя

Рабочий вал

Различают двухвальные и одновальные турбовинтовые двигатели. В одновальных ТВД турбина с компрессором и винт расположены на одном валу, тогда как в двухвальных между ними нет механической связи: турбина и компрессор закреплены на одном валу, а винт через редуктор – на другом. Во втором случае конструкция мотора включает в себя две турбины, связанные между собой не механически, а газодинамически: одна для компрессора, вторая для винта. Это более распространенный и эффективный вариант, который, несмотря на более сложную конструкцию, используется чаще. Такое решение позволяет использовать энергию двигателя без запуска винтов, что удобно в случаях, когда самолет находится на земле и нужно обеспечить выработку электроэнергии и подачу воздуха высокого давления.

Компрессор

Компрессор ТВД имеет ступенчатую конструкцию с числом ступеней в пределах 2-6, что позволяет воспринимать значительные перепады давления и температур при работе, регулировать и снижать обороты. Многоступенчатая конструкция также дает возможность снизить массу и размеры мотора, что немаловажно для авиационных двигателей, где на счету каждый грамм веса. Компрессор состоит из рабочех колес с лопатками и направляющего аппарата. Направляющий аппарат может быть как регулируемым (с поворачивающимися лопатками вокруг своей оси), так и не регулируемым.

Воздушный винт

Воздушный винт создает необходимую тягу, но при этом скорость его вращения ограничена. Наиболее эффективно он работает на скорости 750-1500 об/мин, после чего КПД падает, а сам винт из движителя фактически превращается в тормоз. Это явление носит название «эффект запирания» и связано оно с тем, что отдельные части лопастей винта на высоких оборотах начинают двигаться со скоростью, превышающей скорость звука, что становится причиной его некорректной работы. Это же происходит, если увеличить диаметр лопастей, ведь чем они длиннее, тем больше линейная скорость на их концах.

Турбина

Турбина же развивает скорость до 20 000 об/мин, но винт на таких оборотах просто не сможет работать, поэтому он оснащается понижающим редуктором, уменьшающим скорость вращения и повышающим момент. Редукторы по своему строению могут отличаться, но их задача – понижение скорости вращения и увеличение момента – остается неизменной. Ограничение скорости вращения винта во многом ограничивает использование ТВД особенно в военной авиации, где важна скорость, но ученые и конструкторы ведут активную работу по созданию сверхзвукового двигателя, правда, пока их старания не увенчались успехом. Для увеличения тяги на некоторых моделях устанавливаются по два винта, которые в процессе работы вращаются в противоположные стороны, приводимые в движение одним редуктором. Примером такого двигателя является Д-27, который называют турбовинтовентиляторным. Он оснащен двумя винто-вентиляторами, закрепленными через редуктор на оси свободной турбины. Пока это единственный двигатель такого рода, который используется в гражданской авиации на самолетах АН-70, но его появление и успешное использование смогут стать настоящим прорывом в сфере улучшения эксплуатационных показателей ТВД.

Преимущества и недостатки

Подведя итоги, можно выделить основные преимущества и недостатки ТВД. Преимуществами турбовинтовых двигателей являются:

Читать еще:  Бмв х6 с какими двигателями

— небольшой вес в сравнение с поршневыми моторами;

— экономичность и меньший расход топлива в сравнение с турбореактивными двигателями, что объясняется наличием воздушного винта, КПД которого порой достигает 86%.

Но при всех своих достоинствах ТВД не могут полностью заменить собой реактивные двигатели, ведь их конструкция не позволяет развивать большие скорости. Их скоростной предел составляет 750 км/час, тогда как современная авиация требует намного большего. Еще один минус – шум при работе винта, превышающий гранично допустимые значения, определенные Международной организацией гражданской авиации.

Таким образом, несмотря на высокий КПД и экономичность, использование турбовинтовых двигателей ограничено. В основном ими оснащаются самолеты, летающие с небольшой скоростью и на дальние расстояния, что позволяет значительно снизить стоимость пассажирских и грузовых перелетов. В этих случаях их использование полностью оправдано. Но в военной авиации ТВД практически не используются – здесь важны не экономия топлива, а скорость, маневренность и бесшумность, что вполне могут обеспечить турбореактивные двигатели. Вместе с тем в авиационной промышленности постоянно ведутся работы по созданию сверхзвуковых винтов, которые смогли бы преодолевать звуковой барьер без потерь КПД и «эффекта запирания». Возможно, со временем этим двигателям удастся вытеснить своих реактивных собратьев и занять их место в современном авиастроении. Пока же ТВД остаются пусть и не самыми мощными, но выносливыми и надежными «рабочими лошадками».

Самолет на батарейках. Как будет работать электрический двигатель, которые создают для российской авиации

В России создали прототип электрического авиационного двигателя. Уже в 2020 году самолет с таким агрегатом отправится в первый полет. Какое будущее у двигателей такого плана?

О создании прототипа электрического авиадвигателя сообщил генеральный директор Центрального института авиационного моторостроения (ЦИАМ) им. П. И. Баранова Михаил Гордин. Самолет «Сигма-4» с аккумулятором на 80 лошадиных сил планировали поднять в воздух еще в 2019 году, но во время эксперимента столкнулись с определенными трудностями. Впоследствии неудачный опыт учли и переделали систему.

«В этом году самолет должен полететь на аккумуляторе, а через год попробуем сделать это на топливном элементе. Этот мотор служит прототипом электрического авиационного двигателя», — сказал Гордин.

Электрический двигатель

Раньше россияне знали только два вида электрического транспорта — троллейбусы и трамваи. Но впоследствии начали появляться непопулярные в России электромобили, а потом на дороги выехали автобусы с электрическими двигателями. Например, за 2019 год на улицы Москвы вышло 300 электробусов, а в 2020-м обещали еще столько же.

Источник фото: сайт правительства Москвы

Разобрать потенциальные проблемы электрических авиадвигателей можно как раз на примере электробусов, принцип работы и обслуживания которых уже понятен.

У электробуса есть два главных плюса: экологичность и дешевизна обслуживания — он не требует регулярных вложений. Однако срок жизни батареи электробуса — 7,5 года. Так как электродвигатель не подлежит капитальному ремонту, его можно будет только заменять на совершенно новый, а стоить он будет около 11 миллионов рублей. Для сравнения: обычный новый автобус целиком стоит от 12 до 15 миллионов.

Безусловно, электробусы помогают экологии. В таких машинах нет двигателя внутреннего сгорания (ДВС), им не нужен бензин в качестве топлива, то есть он не выбрасывает в атмосферу вредные вещества.

У электрического двигателя самолета будет такой же принцип работы, что и у электробуса. У такого агрегата будут схожие плюсы и минусы. Старший редактор интернет-издания «Транспорт в России» Павел Яблоков по просьбе «360» объяснил, что аккумулятор не только очень тяжелый, но и занимает много места. Как это должно работать в самолете, тоже пока не понятно, но это лотерея, в которой нужно поучаствовать, считает специалист.

Источник фото: Pixabay

«До определенной поры развития техники не было никаких альтернатив [в вопросе выбора двигателя]. Сейчас эта альтернатива появляется. И она логичная, даже невзирая на плюсы и минусы. Просто попробовать заглянуть в это направление, а потом делать выводы», — подчеркнул Яблоков.

Эксперт отметил, что электрические двигатели считаются более долговечными, чем традиционные ДВС. Причина в том, что у батареи меньше изнашивающихся частей. То есть там почти никакие элементы двигателя не соприкасаются, никаких взрывов не происходит и бензин не влияет на работоспособность агрегата.

В этом очевидном плюсе есть минус — аккумулятор не поддается капитальному ремонту. Можно заменить лишь отдельные части, но «поставить на ноги» вышедший из строя электродвигатель невозможно — его нужно менять целиком. И здесь встает вопрос надежности.

«Когда работает электродвигатель, он должен иметь надежный источник энергии (например, провод или рельсы — прим. ред.). Для аккумуляторов [самолета] это не будет постоянной энергией, потому что у аккумуляторов один заряд. К концу полета, понятно, уровень заряда снизится. Вопрос в том, насколько этот „электрический бак“ сможет вывезти этот полет», — сказал Павел Яблоков.

Стоит помнить: дизельный самолет потребляет огромное количество топлива. То есть он будет требовать большой запас энергии, чтобы долететь из точки А в точку Б.

По мнению Яблокова, будущее за использованием различных видов топлива в зависимости от условий, в которых эксплуатируется тот или иной транспорт.

Тренд развития

Управляющий директор журнала «Авиатранспортное обозрение» Максим Пядушкин в беседе с «360» отметил, что электродвигатели в самолетах — один из трендов развития мировой авиации. Специалисты отрасли пытаются перейти на электрические двигатели, потому что они меньше весят, более эффективные, тратят меньше топлива. Но пока авиация в начале пути.

Созданный прототип Пядушкин назвал слабым, так как 80 лошадиных сил способны поднять в воздух очень маленький самолет, который даже вряд ли сможет везти одного человека. В то же время не факт, что в будущем такие агрегаты будут исключительно на электричестве. Вероятно, инженеры будут работать над гибридной установкой. Это значит, что ДВС будет крутиться, двигать самолет и одновременно заряжать аккумулятор.

До времен, когда большие пассажирские самолеты будут оснащены полностью электрическим двигателем, еще очень далеко

По мнению специалиста, самолеты с такими агрегатами будут пользоваться популярностью только в частной, любительской и спортивной авиации либо такие двигатели будут ставить на беспилотники.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector