Sw-motors.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Роторный двигатель внутреннего решения и; возможности

Роторный двигатель внутреннего сгорания.
Новые решения и возможности

Современному двигателестроению предложено множество различных проектов роторных двигателей внутреннего сгорания, целью которых является создание работоспособного двигателя, который при небольших размерах и достаточно простой конструкции должен быть мощным, обладать большим крутящим моментом и высоким КПД. Добиться этого в рамках известных конструкций роторно-поршневых, роторно-лопастных и двигателей планетарного типа вследствие присущих им неустранимых недостатков (см. статью Роторные двигатели внутреннего сгорания. Достоинства и недостатки) не удалось, что, однако, не говорит о том, что указанная цель не может быть достигнута с помощью других конструктивных решений.

Нами разработан и запатентован роторный двигатель внутреннего сгорания, содержащий корпус с внутренней цилиндрической полостью и камерами сгорания, снабженными перекрывающимися перепускными каналами, ротор и систему подвижных заслонок, установленных в пазах корпуса и контактирующих с профилированной внешней поверхностью ротора.

Подробное описание конструкции и принципа его работы приведено на странице нашего сайта Турбороторный двигатель внутреннего сгорания.

В двигателе реализован целый ряд новых технических решений, позволяющих достичь указанных выше целей простыми средствами.

В первую очередь к ним следует отнести:

  • разделение внутренней цилиндрической полости статора на самостоятельные полости сжатия и расширения, сообщающиеся между собой через четное число равномерно размещенных по окружности камер сгорания;
  • выполнение ротора из установленных на общем валу и размещенных в полостях сжатия и расширения дисков, на внешних поверхностях которых выполнены чередующиеся с цилиндрическими частями сегментальные вырезы, которые вместе с заслонками образуют рабочие камеры переменного объема для осуществления термодинамических процессов и количество которых в два раза меньше количества камер сгорания;
  • разворот дисков ротора относительно друг друга так, что напротив каждого сегментального выреза одного расположена цилиндрическая часть другого;
  • попарное размещение заслонок около каждой камеры сгорания так, что одна из заслонок каждой пары установлена в полости сжатия, а другая в полости расширения;
  • выполнение заслонок поворотными и закрепление на осях их вращения силовых рычагов, взаимодействующих с профилированными поверхностями управляющих дисков, установленных на валу ротора;
  • выполнение объемов сегментальных вырезов в полости расширения больше, чем в полости сжатия.

Все это позволяет в несколько раз повысить мощность двигателя, во-первых, за счет уве-личения количества четырехтактных рабочих циклов, совершаемых за один оборот ротора. Так, например, при четырех камерах сгорания в предлагаемом двигателе за один оборот ротора будет совершаться восемь полных четырехтактных термодинамических цикла, в то время как в четырехцилиндровом поршневом двигателе внутреннего сгорания (ПДВС) за два оборота — только четыре, т.е. мощность предлагаемого двигателя при прочих равных условиях будет, по крайней мере, в четыре (!) раза больше, чем у ПДВС. При этом за счет увеличения числа камер сгорания она может быть увеличена еще больше. Кроме того, выполнение ротора симметричным и отсутствие в нем подвижных элементов, которые могут изменять его моменты инерции, не создает препятствий для существенного увеличения угловой скорости его вращения и, соответственно, мощности двигателя.

Выполнение объемов сегментальных вырезов в полости расширения больше, чем в полости сжатия, позволяет осуществить в двигателе термодинамические циклы с продолженным расширением, у которых степень расширения рабочего тела больше степени его сжатия. Это дает возможность существенно повысить КПД двигателя, обеспечить выпуск отработавших газов при давлении, близком к атмосферному, снизить температуру отработавших газов и уменьшить выброс вредных веществ.

Индикаторный КПД предлагаемого двигателя на номинальном режиме работы при этом может быть увеличен до ( 44-51 )% в карбюраторном (бензиновом) и до ( 54-62 )% в дизельном варианте, что на ( 10-15 )% больше, чем у существующих ДВС (см. страницу Турбороторный двигатель внутреннего сгорания).

Обеспечить требуемое соотношение объёмов рабочих камер в полостях сжатия и расширения при этом можно либо за счёт соответствующего выбора ширины дисков ротора в них, либо угловых размеров сегментальных вырезов ротора. При этом может быть достигнуто дополнительное повышение КПД и улучшение экологических показателей двигателя за счёт организации продувки камер сгорания свежим зарядом и полного сгорания рабочей смеси при постоянном объёме, что в некоторых источниках трактуется как осуществление 5-го такта , и без затруднений и каких-либо конструктивных изменений и дополнительных устройств может быть обеспечено простым выбором размеров и относительного углового расположения сегментальных вырезов ротора в полостях сжатия и расширения на углы Δφ 1 и Δφ 2 , как показано на рисунке 1.

Не меньшее значение для достижения указанных выше целей имеют такие вопросы как обеспечение смазки двигателя, его охлаждения и герметичности рабочих камер. От их решения существенно зависит работоспособность двигателя.

Вопрос обеспечения смазки двигателя решается весьма просто. Для этого в боковых стенках полостей сжатия и расширения, контактирующих с торцевыми поверхностями дисков ротора, по окружностям диаметров, равных внутренним диаметрам ободов дисков ротора, выполняются открытые в сторону полостей кольцевые каналы для подачи смазывающей жидкости, что обеспечивает непрерывную смазку мест контакта дисков ротора и заслонок между собой и элементами корпуса за счет смачивания торцевых поверхностей дисков ротора смазывающей жидкостью вдоль кольцевых каналов и ее распространения по всей поверхности их соприкосновения с боковыми стенками внутренних полостей, а также их цилиндрическим поверхностям под действием центробежных сил, создаваемых при вращении ротора (см. страницу Турбороторный двигатель внутреннего сгорания).

Еще проще решается вопрос охлаждения двигателя. В силу того, что поверхности наиболее нагреваемых частей в нашем двигателе (центрального элемента с камерами сгорания и статорных элементов, образующих внутренние цилиндрические полости сжатия и расширения) доступны как с внешней, так и с внутренней стороны, возможно их эффективное охлаждение путем обдува воздухом. При этом, если при необходимости обдува двигателя с внешней стороны нужно дооснастить его вентилятором, то для обдува с внутренней – достаточно ребра жесткости дисков ротора и управляющих дисков установить под углом к их осям, а во внутренних частях центрального элемента и боковых крышек корпуса выполнить вентиляционные окна (см. Турбороторный двигатель внутреннего сгорания).

Наиболее сложной и проблемной является задача обеспечения герметичности рабочих камер двигателя.

Рассмотрение его конструкции показывает, что для этого необходимо герметизировать места контакта следующих элементов:

  • статорных элементов с центральным элементом и боковыми крышками корпуса двигателя;
  • торцевых поверхностей дисков ротора с боковыми стенками полостей сжатия и расширения;
  • торцевых поверхностей заслонок с боковыми стенками полостей сжатия и расширения;
  • цилиндрических частей дисков ротора с внутренними цилиндрическими поверхностями статорных элементов;
  • заслонок с профилированными поверхностями дисков ротора;
  • задних цилиндрических частей заслонок с цилиндрическими частями пазов для их установки.

Герметичность мест контакта статорных элементов с центральным элементом и боковыми крышками корпуса двигателя в силу того, что эти элементы неподвижны относительно друг друга и пятна их контакта плоские, обеспечивается простой установкой между ними уплотнительных прокладок.

Также просто решается вопрос герметизации мест контакта задних цилиндрических частей заслонок с цилиндрическими частями пазов для их установки. Для этого достаточно установить между ними уплотнительные элементы как показано на рисунке 4.

Обеспечить установку подобных уплотнительных элементов в остальных местах контакта элементов двигателя не представляется возможным.

Однако это не говорит о том, что невозможна их герметизация.

Для разработки мер по её обеспечению рассмотрим некоторые особенности рассматриваемых мест контакта элементов двигателя. Их суть может быть проиллюстрирована схемой, приведенной на рисунке 2, и состоит в том, что имеющиеся в двигателе полости высокого (ПВД) и низкого (ПНД) давления разделены между собой пятнами контакта, образованными прилегающими друг к другу поверхностями подвижных контактирующих тел. Вследствие неточности прилегания контактирующих поверхностей друг к другу в пятнах контакта имеются неплотности, через которые происходит перетекание газовой смеси из ПВД в ПНД. Давление в ПНД при этом всегда постоянно и равно атмосферному, а в ПВД с определенной частотой меняется от атмосферного до некоторого максимального значения и обратно.

Читать еще:  Fiat ducato 2011 какой двигатель

Задача герметизации в данном случае будет заключаться в предотвращении перетекания газовой смеси через пятна контакта из ПВД в ПНД.

Очевидно, что полностью предотвратить его и обеспечить абсолютную герметичность пятна практически невозможно. Да это и не обязательно. Для обеспечения работоспособности двигателя достаточно, чтобы утечки газовой смеси из ПВД в ПНД не превышали допустимых пределов.

Для её решения прежде всего необходимо стремиться обеспечить высокую точность изготовления и сопряжения контактирующих элементов двигателя и, кроме того, предлагается использовать принцип работы лабиринтных уплотнений , основанный на многократном дросселировании газа, протекающего через каналы с резко меняющимися проходными сечениями (см. /1/), который в нашем случае может быть реализован выполнением ряда дренажных канавок в одном из контактирующих элементов двигателя поперек направления перемещения вдоль пятна контакта между ПВД и ПНД, как показано на рисунке 3.

При последовательном попадании газовой смеси в эти канавки в них будет происходить её расширение и процесс перетекания будет замедляться, причем чем дальше от полости высокого давления, тем больше. Этому же будет способствовать и периодическое изменение давления в ПВД от атмосферного до максимального значения и обратно. При его увеличении давление в дренажных канавках также будет увеличиваться, но будет оставаться меньше, чем в ПВД, и перетекание газа будет происходить в сторону ПНД, а при его последующем достаточно быстром уменьшении оно станет меньше, чем в дренажных канавках, вследствие чего начнется обратный отток газа в ПВД. Так как изменение давления в ПВД происходит с высокой частотой, то между указанными процессами возможно установление динамического равновесия и почти полное прекращение перетекания газа.

Герметизация предложенным способом будет тем эффективнее, чем большее число канавок может быть размещено в пятне контакта между ПВД и ПНД и чем оно длиннее.

Достаточную протяженность для этого имеют пятна контакта:

  • торцевых поверхностей дисков ротора с боковыми стенками полостей сжатия и расширения;
  • торцевых поверхностей заслонок с боковыми стенками полостей сжатия и расширения;
  • цилиндрических частей дисков ротора с внутренними цилиндрическими поверхностями статорных элементов.

Возможный вариант размещения дренажных канавок в указанных местах показан на рисунке 4.

Повышению герметичности мест контакта торцевых поверхностей заслонок и дисков ротора с боковыми стенками полостей сжатия и расширения будет способствовать также происходящее в процессе работы двигателя заполнение дренажных канавок и неплотностей между ними смазывающей жидкостью, которая будет выполнять роль уплотнителя.

Что касается места контакта заслонок с профилированными поверхностями дисков ротора, то его герметизация указанным способом, к сожалению, неосуществима, вследствие того, что пятно его контакта вырождается в линию (см. рисунок 4) и размещение дренажных канавок в нем невозможно.

Его герметизация осуществляется путем:

  • обеспечения постоянного контакта заслонок с профилированными поверхностями дисков ротора за счет их непрерывного принудительного поворота по заданному закону с помощью силовых рычагов и управляющих дисков;
  • постоянного поджатия заслонок к профилированным поверхностям дисков ротора за счет разности давлений между ПВД и ПНД, которое способствует их постоянной притирке в процессе работы двигателя и повышению герметичности данного места контакта с течением времени.

Таким образом из изложенного следует, что с помощью приведенных выше решений практически все трудности и проблемы на пути создания работоспособного роторного двигателя внутреннего сгорания могут быть преодолены и такой двигатель может быть создан.

Что такое ротационный двигатель

Ротационные детонационные двигатели

Все виды ротационных детонационных двигателей (RDE) роднит то, что система подачи топлива объединена с системой сжигания топлива в детонационной волне, но дальше все работает, как в обычном реактивом двигателе – жаровая труба и сопло. Именно этот факт и инициировал такую активность на ниве модернизации газотурбинных двигателей (ГТД). Представляется привлекательным заменить в ГТД только смесительную головку и систему розжига смеси. Для этого нужно обеспечить непрерывность детонационного горения, например, запустив волну детонации по кругу. Одним из первых такую схему предложил Николс в 1957 г. [6], а затем развил ее и в середине 60-х годов провел серию экспериментов с вращающейся детонационной волной (рис. 1).

Регулируя диаметр камеры и толщину кольцевого зазора, для каждого вида топливной смеси можно подобрать такую геометрию, что детонация будет устойчивой. На практике соотношения величины зазора и диаметра двигателя получаются неприемлемыми и регулировать скорость распространения волны приходится, управляя подачей топлива, о чем сказано ниже.

Так же как и в импульсных детонационных двигателях, круговая детонационная волна способна эжектировать окислитель, что позволяет использовать RDE при нулевых скоростях. Этот факт повлек за собой шквал экспериментальных и расчетных исследований RDE c кольцевой камерой сгорания и самопроизвольной эжекцией топливно-воздушной смеси, перечислять здесь которые не имеет никакого смысла. Все они построены примерно по одной схеме (рис. 2), напоминающей схему двигателя Николса (рис. 1).

Рис. 1. Схема организации непрерывной круговой детонации в кольцевом зазоре: 1 – детонационная волна; 2 – слой «свежей» топливной смеси; 3 – контактный разрыв; 4 – распространяющийся вниз по течению косой скачок уплотнения; D – направление движения детонационной волны

Рис. 2. Типичная схема RDE: V – скорость набегающего потока; V4 – скорость потока на выходе из сопла; а – свежая ТВС, b – фронт детонационной волны; c – присоединенный косой скачок уплотнения; d – продукты сгорания; p(r) – распределение давления на стенке канала

Разумной альтернативой схеме Николса могла бы стать установка множества топливно-окислительных форсунок, которые бы вспрыскивали топливно-воздушную сместь в область непосредственно перед детонационной волной по определенному закону с заданным давлением (рис. 3). Регулируя давление и скорость подачи топлива в область горения за детонационной волной, можно влиять на скорость ее распространения вверх по потоку. Данное направление является перспективным, но основная проблема в проектировании подобных RDE заключается в том, что повсеместно используемая упрощенная модель течения во фронте детонационного горения совершенно не соответствует реальности.

Рис. 3. RDE с регулируемой подачей топлива в область горения. Ротационный двигатель Войцеховского

Основные надежды в мире связываются с детонационными двигателями, работающими по схеме ротационного двигателя Войцеховского. В 1963 г. Б.В. Войцеховский по аналогии со спиновой детонацией [5] разработал схему непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале [1] (рис. 4).

Рис. 4. Схема Войцеховского непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале: 1 – свежая смесь; 2 – дважды сжатая смесь за тройной конфигурацией ударных волн, область детонации

В данном случае стационарный гидродинамический процесс с горением газа за ударной волной отличается от схемы детонации Чепмена–Жуге и Зельдовича–Неймана. Такой процесс вполне устойчив, его длительность определяется запасом топливной смеси и в известных экспериментах составляет несколько десятков секунд.

Схема детонационного двигателя Войцеховского послужила прототипом многочисленных исследований ротационных и спиновых детонационных двигателей, инициированных в последние 5 лет. На эту схему приходится более 85 % всех исследований. Всем им присущ один органический недостаток – зона детонации занимает слишком маленькую часть общей зоны горения, обычно не более 15 %. В результате удельные показатели двигателей получаются хуже, чем у двигателей традиционной конструкции.

Читать еще:  Датчик давления двигателя пежо 405

О причинах неудач с реализацией схемы Войцеховского

Большинство работ по двигателям с непрерывной детонацией связано с развитием концепции Войцеховского. Несмотря на более чем 40-летнюю историю исследований, результаты фактически остались на уровне 1964 г. Доля детонационного горения не превышает 15 % от объема камеры сгорания. Остальное – медленное горение в условиях, далеких от оптимальных.

Одной из причин такого положения дел является отсутствие работоспособной методики расчета. Поскольку течение является трехмерным, а при расчете учитываются только законы сохранения количества движения на ударной волне в перпендикулярном к модельному фронту детонации направлении, то результаты расчета наклона ударных волн к потоку продуктов сгорания отличаются от экспериментально наблюдаемых более чем на 30 %. Следствием является то, что, несмотря на многолетние исследования различных систем подачи топлива и эксперименты по изменению соотношения компонентов топлива, все, что удалось сделать, – это создать модели, в которых детонационное горение возникает и поддерживается в течение 10–15 с. Ни об увеличении КПД, ни о преимуществах по сравнению с существующими ЖРД и ГТД речи не идет.

Проведенный авторами проекта анализ имеющихся схем RDE показал, что все предлагающиеся сегодня схемы RDE неработоспособны в принципе. Детонационное горение возникает и успешно поддерживается, но только в ограниченном объеме. В остальном объеме мы имеем дело с обычным медленным горением, причем за неоптимальной системой ударных волн, что приводит к значительным потерям полного давления. Кроме того, давление оказывается также ниже в разы, чем необходимо для идеальных условий горения при стехиометрическом соотношении компонентов топливной смеси. В результате удельный расход топлива на единицу тяги оказывается на 30–40 % выше, чем у двигателей традиционных схем.

Но самой главной проблемой является сам принцип организации непрерывной детонации. Как показали исследования непрерывной круговой детонации, выполненные еще в 60-е годы [5], [1], фронт детонационного горения представляет собой сложную ударно-волновую структуру, состоящую как минимум из двух тройных конфигураций (о тройных конфигурациях ударных волн [3, 4]. Такая структура с присоединенной зоной детонации, как и любая термодинамическая система с обратной связью, оставленная в покое, стремится занять положение, соответствующее минимальному уровню энергии. В результате тройные конфигурации и область детонационного горения подстраиваются друг под друга так, чтобы фронт детонации перемещался по кольцевому зазору при минимально возможном для этого объеме детонационного горения. Это прямо противоположно той цели, которую ставят перед детонационным горением конструкторы двигателей.

Для создания эффективного двигателя RDE необходимо решить задачу создания оптимальной тройной конфигурации ударных волн и организации в ней зоны детонационного сжигания. Оптимальные ударно-волновые структуры необходимо уметь создавать в самых разных технических устройствах, например, в оптимальных диффузорах сверхзвуковых воздухозаборников [2]. Основная задача – максимально возможное увеличение доли детонационного горения в объеме камеры сгорания с неприемлемых сегодняшних 15 % до хотя бы 85 %. Существующие проекты двигателей, основанные на схемах Николса и Войцеховского, не могут обеспечить выполнения данной задачи.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Роторный двигатель принцип работы

Роторный двигатель: принцип работы

Устройство и принцип работы

Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).

Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.Принцип работы роторного двигателя.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.Ротор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.

Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.

Строение роторного двигателя

Ротор

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.

Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.

На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.

В каждой части камеры происходит один из четырех тактов:

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

О системе смазки и питании

Данный агрегат не имеет отличий в системе топливоподачи. Здесь также используется погружной насос, что подает бензин под давлением из бака. А вот смазочная система имеет свои особенности. Так, масло для трущихся частей двигателя подается прямо в камеру сгорания. Для смазки предусмотрено специальное отверстие. Но возникает вопрос: куда затем девается масло, если оно проникает в камеру сгорания? Здесь принцип работы схож с двухтактным двигателем. Смазка попадает в камеру и сгорает вместе с бензином. Такая схема работы используется на каждом роторно-лопастном двигателе и поршневом в том числе. Ввиду особой конструкции смазочной системы такие моторы не могут отвечать современным экологическим нормам. Это одна из нескольких причин, почему роторные двигатели на ВАЗе и других моделях авто серийно не применяются. Впрочем, сперва отметим преимущества РПД.

Читать еще:  Что такое nitro двигатель

Плюсы

Во-первых, данный мотор обладает небольшим весом и размерами. Это позволяет сэкономить место в подкапотном пространстве и разместить ДВС в любом автомобиле. Также низкий вес способствует более правильной развесовке автомобиля. Ведь большая часть массы на авто с классическими ДВС сосредоточена именно в передней части кузова.

Во-вторых, роторно-поршневой двигатель обладает высокой удельной мощностью. По сравнению с классическими моторами, данный показатель в полтора-два раза выше. Также у роторного двигателя более широкая полка крутящего момента. Он доступен практически с холостых оборотов, в то время как обычные ДВС нужно раскручивать до четырех-пяти тысяч. Кстати, роторный мотор намного легче набирает высокие обороты. Это еще один плюс.

В-третьих, такой двигатель имеет более простую конструкцию. Здесь нет ни клапанов, ни пружин, ни кривошипно-шатунного механизма в целом. Вместе с этим отсутствует привычная система газораспределения с ремнем и распределительным валом. Именно отсутствие КШМ способствует более легкому набору оборотов роторным ДВС. Такой мотор за доли секунды крутится до восьми-десяти тысяч. Ну и еще один плюс – это меньшая склонность к детонации.

Минусы

Первый минус – это высокие требования к качеству масла. Хоть мотор и работает по типу двухтактного, сюда нельзя заливать дешевую «минералку». Детали и механизмы силового агрегата подвергаются существенным нагрузкам, поэтому для сохранения ресурса нужна плотная масляная пленка между трущимися парами. Кстати, регламент замены смазки составляет шесть тысяч километров.

Следующий недостаток касается быстрого износа уплотняющих элементов ротора. Это происходит вследствие малого пятна контакта. Из-за износа уплотнительных элементов, образуется высокий перепад давлений. Это негативно сказывается на производительности роторного двигателя и расходе масла (а соответственно и экологических показателях).

Также роторные двигатели склонны к перегреву. Это происходит из-за особой линзовидной формы камеры сгорания. Она плохо отводит тепло по сравнению со сферической (как на обычных ДВС), поэтому при эксплуатации нужно всегда следить за температурным датчиком. В случае перегрева, деформируется ротор. При работе он будет образовать значительные задиры. В результате ресурс мотора приблизится к концу.

Роторно-поршневой двигатель

Главной особенностью любого роторно-поршневого двигателя можно считать применение специального ротора (поршня), имеющего три грани, который вращается внутри специального цилиндра по эпитрохоиде (впрочем, возможны и другие формы цилиндра). Постараемся подробно разобрать конструкцию РПД, его преимущества и недостатки перед другими типами двигателей.

Особенности конструкции роторно — поршневых двигателей Венкеля

Впервые, такой тип двигателя был разработан в 1957 году двумя инженерами: Вальтером Фройде и Феликсом Ванкелем. На валу устанавливается ротор, который имеет жесткое соединение со специальным зубчатым колесом. Это колесо входит в зацепление со статором, который имеет вид неподвижной шестерни. Диаметр ротора достаточно сильно превышает диаметр статора, что дает возможность зубчатому колесу полностью обкатываться вокруг статора. Каждая вершина граней ротора движется по эпитрохоидальной поверхности и отделяет три, постоянно меняющихся, объема.

Данная конструкция позволяет выполнить действия всех четырех тактов любого из существующих двигателей внутреннего сгорания, причем, без применения механизма, отвечающего за газораспределение. Камеры сгорания герметизируются с помощью специальных пружинных лент и пластин, которые придавливаются к поверхности цилиндра давлением, создаваемым газом. Так как в роторно-поршневом двигателе отсутствует ГРМ, это делает его конструкцию намного проще любого другого двигателя. Кроме того, отсутствие различных тяжелых элементов, таких как, шатуны и коленчатый вал, позволяют сделать его размеры намного меньше, в то время как, мощность увеличивается. Один оборот такого двигателя равняется одному циклу, что можно сравнить с полным оборотом двухцилиндрового поршневого двигателя.

Подача топлива в камеру сгорания, смазка подвижных частей двигателя, охлаждение и запуск осуществляются точно также, как и на обычном ДВС. Расход топлива может варьироваться от

Видео — Принци работы РДП

Преимущества и недостатки РДП

Преимущества

1. Прежде всего, такой двигатель обладает самым низким уровнем вибраций. Его конструкция абсолютно уравновешена и делает движение на легких транспортных средствах намного комфортнее.

2. Очень высокие динамические характеристики. Такой двигатель позволяет разогнать транспортное средство на первой передаче до 100 километров в час, при низкой нагрузке на механизмы. Двигатель достаточно долгое время выдерживает число оборотов, достигающее 8000 об/мин.

3. Движущиеся части механизма имеют очень низкую массу, а ротор двигателя выдает мощность в течение всех четвертей каждого оборота. Это позволяет добиться достаточно большой удельной мощности, в отличие от обычного поршневого двигателя. Для сравнения, роторно-поршневой двигатель с рабочим объемом 1.3 литра, выдает мощность, равную 220 лошадиным силам, в то время как, обычный поршневой двигатель с тем же объемом выдает мощность, не превышающую 100 лошадиных сил.

4. Вместо сотен различных деталей, в роторно-поршневых двигателях применяется всего 2-3 десятка. Кроме того, размеры и масса РПД намного меньше, чем у обычных двигателей с шатунами и коленчатым валом.

Недостатки

1. Соединение вала ротора с выходным валом, посредством эксцентрированного механизма, вызывает слишком большое давление между соединяемыми трущимися деталями. Это приводит к лишнему перегреву двигателя и повышенному износу деталей механизма. В связи с этим, появляется острая необходимость в периодической замене масла и уплотнительных элементов. Если выполнять данные требования в соответствии с регламентом, то ресурс двигателя значительно увеличивается, в противно случае, происходит поломка, которая непременно выведет агрегат из строя.

2. Камера сгорания имеет форму линзы, это означает, что при очень малом объеме она имеет очень большую площадь. Все это приводит к образованию лучистой энергии, которая бесполезно влияет на работу двигателя и также приводит к излишнему перегреву. Таким образом, КПД двигателя значительно снижается, что не позволяет использовать его в полной мере.

3. На пониженной передаче такой двигатель обладает очень большим расходом топлива, по сравнению с обычными ДВС.

4. Площадь соприкосновения уплотнителей и вращающихся деталей быстро снижается, это говорит о быстром износе сальников, которые способствует утечке смазывающего вещества и попаданию масла в камеру сгорания. В результате выхлоп получается очень токсичным, а ресурс двигателя быстро снижается. Тем не менее, данную проблему устранили применением высоколегированных сталей при изготовлении РПД.

5. В связи со строгими требованиями к геометрии всех деталей механизма, возникает необходимость в высокоточном оборудовании для изготовления таких двигателей. Это усложняет и делает дороже процесс их производства.

Где применяют роторно-поршневые двигатели?

Изначально, разработка роторно-поршневых двигателей велась для спортивных автомобилей. Ведь для гоночных автомобилей не столь важен большой ресурс, так как ремонт поршневых двигателей тоже требовался и после первого заезда.

В серийном производстве РПД устанавливался на автомобили немецкого производства. Это был седан представительского класса NSU Ro 80. Автомобиль для своего времени был достаточно современным, так как имел привлекательный дизайн и хорошие аэродинамические свойства. Однако, ввиду серьезных недостатков роторно-поршневых двигателей, связанных со слишком частым техническим обслуживанием, получил отрицательную оценку, в связи с чем, стал оснащаться обычными поршневыми двигателями. Это связано с тем, что двигатель приходил в негодность уже после 50 тысяч километров, что являлось малоэкономичным показателем.

В настоящее время роторно-поршневые двигатели изготавливают только два завода в мире – это ВАЗ (Россия) и Mazda (Япония).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector