Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет и выбор тормозных резисторов для преобразователей частоты

Расчет и выбор тормозных резисторов для преобразователей частоты

В статье рассматривается методике расчета и выбора тормозного сопротивления (тормозного резистора) для преобразователей частоты (ПЧ, частотника), на примере остановки асинхронного двигателя типа АИР.

Тормозные резисторы являются необходимыми элементами систем с тяжелыми режимами торможения (остановка большой нагрузки за малое время), если в их составе имеются преобразователи частоты с промежуточным звеном постоянного тока (например, серии GA700, GA500, A1000, L1000, J1000).


YASKAWA преобразователи частоты серий GA700 и GA500

Примерами таких систем могут служить:

  • Лифты, эскалаторы.
  • Различные краны и подъемные механизмы.
  • Шпиндели станков.
  • Конвейеры и системы подачи заготовок.


Примеры применений где требуются тормозные сопротивления

Пример расчета тормозного резистора

В качестве примера, рассмотрим работу преобразователя частоты серии GA700 (модель CIPR-GA70C4208) с двигателем АИР 280 М6 с циклом работы в 90 секунд и временем торможения 4 секунды (остановка производится с номинальной скорости вращения до 0). Двигатель подключен к механизму напрямую (без редуктора), а общий момент инерции составляет 38 кг*м 2 .


Циклограмма работы с участком торможения двигателя

Из циклограмм видно насколько сильно растет значение момента при переходе в отрицательную область во время торможения.

Если не предпринять меры по утилизации энергии, которая поступает на ПЧ во время торможения электродвигателя, то преобразователь отключится по ошибке перенапряжения на звене постоянного тока (код OV у YASKAWA). А в случае большой инерционной нагрузки на валу электродвигателя могут выйти из строя конденсаторы звена постоянного тока (ЗПТ).

Для утилизации возникающей энергии используют или тормозные сопротивления, преобразующие энергию в тепло, или рекуператоры для возврата ее в питающую сеть.

Для выбора тормозного резистора в первую очередь нам нужно определить электрическую мощность торможения:

Находим номинальную скорость двигателя в рад/с:

wном = 2p * nном / 60 = 2p * 968 / 60 = 101,3 [рад/c]

Рассчитываем максимальный момент для полной остановки по заданному циклу. Если механика имеет в своем составе несколько кинематических узлов (например, редукторы, барабаны и т.д.), то в суммарном моменте инерции эти узлы должны быть приведены к валу двигателя:

Mмакс = J* (wнач – wкон) / tторм = 38 * (101,3 – 0) / 4 = 962,35 [Н * м]

Определяем максимальную мощность при торможении:

Pмакс = Mмакс * (wнач – wкон) = 962,35 ´ (101,3 – 0) = 97486 [Вт]

Определяем электрическую мощность торможения. Так, как отсутствует редуктор, то величину его КПД берем равной 100%:

Pэл.торм = (Pмакс – k * Pном.дв) – ((1 – hред) * Pмакс )= (97486 – 0,05 * 90000) – ((1 – 1) * 97486) = 92986 [Вт]

Здесь k – вспомогательный коэффициент, зависящий от номинальной мощности двигателя:

Pном.дв, кВтk
до 1,50,25
от 2,2 до 4,00,20
от 5,5 до 110,15
от 15 до 450,08
выше 450,05

Производим расчет допустимого сопротивления резистора:

Rмакс = U 2 зпт / Pэл.торм = 760 2 / 92986 = 6,2 [Ом]

будет иметь следующие значения в зависимости от величины напряжения на входе ПЧ:

– для 220 В: Uзпт = 388 В ± 3 %

– для 380 В: Uзпт = 757 В ± 3 %

Определяем продолжительность включения (ПВ) для режима торможения:

ПВ = (tторм / Tцикла) ´ 100% = (4 / 90) ´ 100% = 4,4 %

Находим номинальную мощность тормозного резистора:

Pторм.ном = Pэл.торм / fk = 92986 / 10 = 9298,6 [Вт]

где – коэффициент, зависящий от значения ПВ (соответствие на рис.3)


Зависимость коэффициента fk от ПВ

Согласно расчету, получается резистор 6Ом/18,5кВт. Один резистор этим условиям не удовлетворяет, но можно использовать по два резистора RH-9600W015-10 (9,6 кВт, 15 Ом, ПВ=10%).


Тормозные резисторы разной мощности RFH и БТ

Выбор тормозного модуля

Для сброса энергии со звена постоянного тока при его повышении используется специальный силовой транзистор, называемый тормозным. Он может быть, как встроенным, так и внешним. У преобразователей YASKAWA тормозные модули встроены в сам ПЧ до определенной мощности:

  • A1000 и L1000: до 30 кВт (тяжелый режим нагрузки [HD])
  • GA700: до 75 кВт [HD]


Пример внешнего тормозного модуля YASKAWA CDBR-4045D

Для проверки работоспособности тормозного транзистора в данном режиме, необходимо найти ток, который будет протекать через него во время торможения. В нашем случае это будет:

Iторм = Uзпт / Rторм.ном = 760 / (15 / 2) = 101,3 [А]

В данном случае преобразователь GA700 имеет номинальную мощность 90 кВт при тяжелом режиме нагрузки [HD] и требует установки внешних тормозных модулей. По каталогу рекомендуется установка двух модулей CDBR-4045D с максимальным суммарным током 120 А.


Таблица характеристик тормозных модулей YASKAWA CDBR

Выводы

Расчет режимов торможения и выбор тормозных резисторов для преобразователей частоты необходимый этап перед его покупкой, чтобы в последствии избежать простоя оборудования и выхода из строя ПЧ.

ООО «КоСПА» обеспечивает поставку ПЧ YASKAWA со всеми необходимыми опциями и в случае необходимости может помочь в их выборе и проверке ваших расчетов.

Офис/склад: 111024, г. Москва, ул. Авиамоторная, дом 59. Доставка оборудования по России транспортными компаниями.

  • Почтовый адрес: 111250, г. Москва, а/я 57
    • Режим работы
    • Время работы офиса:
      пн-чт с 9.30 до 17.30, пт с 9.30 до 16.30

      Время работы склада:
      пн-чт с 9.30 до 17.30, пт с 9.30 до 16.30

    • Перерыв на обед
      с 13.15 до 14.00

    Что такое резистор

    Резистор или иначе сопротивление мы электронщики называем его по братски ‘Резюк” — пассивный элемент, применяющийся в электрических цепях, обладающий постоянным или переменным значением электрического сопротивления , предназначенный для линейного преобразования напряжения в силу тока, силы тока в напряжение, также используется для ограничения тока, и др. Во как! Звучит заумно, но давай разберемся, и ты поймешь, что — резистор это Не сложно! Резистор как компонент очень широко используется практически во всех электрических и электронных устройствах с этого компонента ты начнешь постигать основы электроники. Конструкция резистора представляет собой не проводящую электричество трубочку (или стер­жень), на которую нанесен тонкий слой ме­талла или сажи (углерода) чем тоньше слой тем больше сопротивление. Резистор используется для того, чтобы установить нужный ток в элек­трической цепи. Здесь нужно понять одну зависимость – чем больше сопротивление резистора, тем меньше ток и наоборот – чем меньше сопротивление, тем больше ток. Представь себе резиновый шланг по которому течет вода, если ты наступишь на него, то количество вытекающей из него воды станет меньше потому что уменьшится проток. То же самое происходит и с электрическим током при его прохождении через резистор.

    Основные характеристики и параметры резисторов

    Резистор не самый сложный компонент, но имеет свои характеристики и параметры.

    Читать еще:  Что убьет дизельный двигатель

    Рассмотрим основные: Номинальное сопротивление — это основной параметр. Предельная рассеиваемая мощность – тоже важный параметр. Резисторы различают по сопротивлению и мощности . Сопротивление, измеряют в омах — (на электрических схемах обозначается Ом), килоомах (на электрических схемах обозначается кОм) и мегоомах — (на электрических схемах обозначается мОм) а мощность — в ваттах Wt (мощность резистора на схемах указывается полосками на обозначении резистора). Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

    Постоянный резистор без указания номинальной мощности рассеивания

    (если не обозначена номинальная мощность, можно использовать резистор любой мощности)

    Постоянный резистор номинальной мощностью рассеивания 0,05 Вт

    Постоянный резистор номинальной мощностью рассеивания 0,125 Вт

    Постоянный резистор номинальной мощностью рассеивания 0,25 Вт

    Постоянный резистор номинальной мощностью рассеивания 0,5 Вт

    Постоянный резистор номинальной мощностью рассеивания 1 Вт

    Постоянный резистор номинальной мощностью рассеивания 2 Вт

    Постоянный резистор номинальной мощностью рассеивания 5 Вт

    В современных электрических схемах мощность резистора указывают только если требуется применение мощных резисторов. Если рядом с резистором его мощность не указана, можно смело ставить самый маленький размер.

    Номинальное сопротивление резистора.

    Номинальное сопротивление резисторов — это основной парамет.

    Величина сопротивления резистора выражается в Омах, кОмах, мОмах. 1 мОм = 1000 кОм, 1 кОм = 1000 Ом. На корпусе резистора наносится обозначение его номинального сопротивления, на резисторах Советского производства величина сопротивления обозначалась цифрами и ненужно было ломать голову какой резюк установлен на плате или лежит у тебя в коробке из под спичек (из спичечных коробков делают самодельные кассеты для хранения мелких радиодетелей). Современные резисторы, имеют обозначение номинала сопротивления в виде кольцевых полос различного цвета. Для определения сопротивления такого резистора имеются специальные таблицы.

    Типы резисторов и их обозначение

    Переменный резистор (реостат).

    Переменный резистор, включенный как реостат

    (ползунок соединён с одним из крайних выводов).

    Подстроечный резистор, включенный как реостат

    (ползунок соединён с одним из крайних выводов).

    Варистор (сопротивление зависит от приложенного напряжения).

    Термистор (сопротивление зависит от Температуры).

    Фоторезистор (сопротивление зависит от освещенности).

    Основные типы резисторов которые ты будешь использовать при ремонте или конструировании — постоянные, подстроечные и переменные. Одни из самых распространенных резисторов типа МЛТ (металлизированный, лакированный теплостойкий). Подстроечные резисторы предназначены для на­стройки и устанавливаются на монтажной плате или внутри корпуса аппаратуры.

    Переменные резисторы

    В отличие от постоянных резисторов, которые имеют два вывода, у переменных и подстроечных резисторов выводов три.

    На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении оси резистора, причем, если вращать ось в одну сто­рону, сопротивление между средним выводом и одним из крайних возрастает, и соответственно уменьшается между сред­ним выводом и другим крайним. Если же ось возвращают назад, происходит обратное. Это свойство переменного резис­тора используют, например, для регулирования громкости звука, тембра в усилителях, приемниках и пр.

    При нагревании и ли охлаждении значение сопротивления этих резисторов изменяется в большую или меньшую сторону, на этом свойстве терморезистора, основан принцип измерения температуры. Терморезисторы используют в приборах и оборудовании для измерения и регулировки температуры, защиты оборудования от перегрева.

    Фоторезистор

    Как и терморезистор изменяет значение сопротивления, изменение сопротивления происходит при попадании света на специальную пластину которая покрыта составом изменяющим свое свойство в зависимости от освещенности. Этот резистор применяется для управления осветительными приборами, устройствами контроля пламени печи и пр.

    Проверка резисторов

    Для проверки резисторов понадобится прибор мультиметр с его помощью ты измеряешь сопротивление резистора и сравниваешь с номи­нальным значением, которое указано на самом резисторе или на принципиальной схеме аппарата. При измерении сопро­тивления резистора полярность подключения к нему мультиметра не имеет значения. Т.е. какой провод прибора ты подключишь к той или иной ножке резистора при измерении сопротивления не имеет значения. Отклонение 10% от номинала, для обычных (не сверх точных и точных) резисторов, считается нормальным.

    При проверке переменных резисторов, измеряется со­противление между крайними выводами, которое должно соответствовать номинальному значению с учетом допуска и погрешности измерения. Так же необходимо измерять сопротивление между каждым из крайних выводов и сред­ним выводом при этом необходимо вращать ось резистора из одного крайнего положения в другое, значение должно изменяться плавно, без скачков от нуля до номинального значения.

    Соединение резисторов в электрической цепи

    Теперь, когда ты познакомился с ” резюками” давай еще немного помучаю тебя теорией о том, как резисторы подключают в электрическую схему это очень важно без этого не обойтись, дальше ты узнаешь почему.

    Последовательное соединение резисторов

    Последовательное соединение — это такое соединение, при котором каждый последующий резистор подключается к предыдущему, образуя неразрывную цепь без разветвлений. Ток в такой цепи будет одинаковым в каждой её точке, а вот напряжение U1, U2, U3 в различных её точках будет разным.

    Отсюда следует, что общее значение такого соединения определяется суммированием всех сопротивлений включенных последовательно. Общее сопротивление, рассчитывается по довольно простой формуле (Rобщ.=R1+R2+….Rn). Необходимо знать, что при последовательном соединении резисторов общее сопротивление (Rобщ). увеличивается.

    Параллельное соединение

    Соединив концы резисторов в точке А и точке В, мы получим участок цепи, который называется параллельным соединением и состоит из некоторого количества параллельных друг другу ветвей (в нашем случае – резисторов). При этом электрический ток между точками А и B распределится по каждой из этих ветвей. Напряжения на всех резисторах будут одинаковы: U=U1=U2

    Чем большее количество резисторов (или других звеньев электрической цепи, обладающих некоторым сопротивлением) соединить по параллельной схеме, тем больше путей для протекания тока образуется, и тем меньше общее сопротивление цепи. Общее сопротивление при параллельном соединении резисторов ты можешь рассчитать по этой формуле:

    Необходимо знать, что при параллельном соединении резисторов, общее сопротивление (Rобщ), уменьшается.

    Смешанное соединение

    Смешанное соединение — (как ты уже понял из приведенной схемы) представляет из себя цепь, в которую резисторы включены как последовательно, так и параллельно, все выше сказанное о параллельном и последовательном соединении, так же справедливо и для смешанного соединения резисторов. Смешанное соединение ты можешь рассчитать так.

    Для чего применяются последовательное, параллельное, и смешанное соединение резисторов? При практическом использовании резисторов, например сборке, регулировки параметров аппаратуры, ремонте электроники своими руками, может не оказаться резистора необходимого номинала, тогда тебя может выручить знание о способе соединения резисторов, так если необходим резистор номиналом 100Ком его можно сделать, соединив последовательно два резистора по 50Ком или соединить параллельно два резистора по 200Ком, или использовать смешанное соединение два резистора номиналом 70Ком соединить параллельно и к ними подключить последовательно резистор 65Ком. Конечно, я дал краткое описание, т.е. базовые знания о резисторах и способах их подключения. Если, тебе понадобится более подробное описание и теоретические выкладки, ты всегда можешь воспользоваться специальной литературой и интернетом.

    Читать еще:  Электрическая схема газель крайслер двигатель

    Что такое резистор?

    Что такое резистор — это пассивный элемент электрических цепей, который имеет конкретное или переменное значение электрического сопротивления, резистор предназначен для линейного преобразования силы тока в напряжение и обратно, ограничения тока, поглощения электрической энергии и т.д. Резистор является наиболее часто встречающимся элементом. Ниже будет рассказано, что такое резистор и для чего он нужен, как резисторы обозначаются на радиосхемах и какие виды резисторов существуют.

    Назначение резисторов – создание сопротивления электрическому току. Различают постоянные и переменные резисторы. В зависимости от мощности электрического тока, которую способен «рассеять» резистор, зависит и его размер.

    На рисунке мы видим, как различаются резисторы. Резистор, находящийся справа – самый мощный среди представленных. Его мощность может составлять несколько киловатт. Правый резистор называется SMD-резистором. Его размер говорит сам за себя о его мощности. Нанесенные на резисторы надписи говорят о их видах и мощности.

    Маркировка резисторов.

    Обозначения резисторов на схемах различаются в зависимости от страны. В нашей стране можно понять, где обозначен резистор, по прямоугольнику с маркировкой в виде наклонных или вертикальных линий, знаков V или Х, с буквой «R» вверху прямоугольника. На зарубежных (американских) схемах резистор обозначается сплошной линией с несколькими изломами.

    Ниже на рисунке видна маркировка резисторов:

    Наклонные линии обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры), указывают на мощность резистора в несколько Ватт, в соответствии со значением римской цифры.

    Переменный резистор.

    Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.

    Переменные резисторы, их также называют реостатами или потенциометрами, предназначены для постепенного регулирования силы тока и напряжения. Выглядят они так:

    Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр — напряжение. На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.

    На схемах цифрами от 1 до 3 указывается расположение выходов резистора.

    Регулировать мощность сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами. Выглядят они так:

    Подстроечный резистор.

    На радиосхемах подстроечные резисторы обозначаются следующим образом:

    Чтобы переменный потенциометр использовать в качестве переменного реостата, нужно соединить два вывода между собой.

    Термисторы, варисторы и фоторезисторы.

    Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. Это интересно, но термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.

    В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:

    Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Ни картинке ниже вы видите, как выглядят варисторы

    Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения. На схемах варисторы обозначаются так:

    В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода. Выглядят фоторезисторы так:

    А на схемах изображаются так:

    Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.

    Про резисторы для начинающих заниматься электроникой

    Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.

    Радиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.

    Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.

    Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.

    Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», зарядные устройства для аккумуляторов, регуляторы оборотов электродвигателей, частотные преобразователи для трехфазных двигателей, преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны схемы фотореле для включения освещения, охранные устройства и сигнализация, а также многое другое.

    Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.

    Компоненты электронных схем

    При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

    Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т.е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, микроконтроллеры и многое другое.

    Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.

    К пассивным относятся такие детали, как резисторы, конденсаторы, катушки индуктивности, диоды и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.

    Резисторы

    Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных схемах включения транзисторов.

    Читать еще:  Toyota caldina тюнинг двигателя

    Рисунок 1. Схемы включения свтодиода

    Свойства резисторов

    Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы.

    Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.

    Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.

    Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I 2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.

    Резисторы на схемах

    Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

    Рисунок 2. УГО резисторов

    Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I 2 * R, P = U 2 / R.

    Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

    Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 – 5,1МОм.

    Современная маркировка резисторов

    В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

    Рисунок 3. Маркировка резисторов

    На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип — резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.

    На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

    Рисунок 4. Резисторы для поверхностного монтажа SMD

    Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.

    Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.

    В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

    Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.

    Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.

    Соединение резисторов

    Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

    Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

    В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в делителях напряжения. Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

    При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

    Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.

    Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

    Записывайтесь в онлайн-университет от GeekBrains:

    Изучить C, механизмы отладки и программирования микроконтроллеров;

    Получить опыт работы с реальными проектами, в команде и самостоятельно;

    Получить удостоверение и сертификат, подтверждающие полученные знания.

    Starter box для первых экспериментов в подарок!

    После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

    Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector